يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"Deep anomaly detection"', وقت الاستعلام: 0.43s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Conference
  3. 3
  4. 4
    Conference
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    المساهمون: Bindini, Luca, Pagani, Stefano, Bernardini, Andrea, Grossi, Benedetta, Giomi, Andrea, Frontera, Antonio, Frasconi, Paolo

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001296925300001; volume:98; firstpage:1; lastpage:12; numberofpages:12; journal:BIOMEDICAL SIGNAL PROCESSING AND CONTROL; https://hdl.handle.net/11311/1272982; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85201322586

  9. 9
  10. 10
    Conference

    المساهمون: Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051), Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Idemia, IAPR, IEEE

    المصدر: International Conference on Pattern Recognition ; https://hal.science/hal-03737352 ; International Conference on Pattern Recognition, IAPR ; IEEE, Aug 2022, Montreal, Canada

    جغرافية الموضوع: Montreal

    Time: Montreal, Canada

  11. 11
    Academic Journal

    المساهمون: School of Computer Science and Engineering, Interdisciplinary Graduate School (IGS), Energy Research Institute @ NTU (ERI@N), Alibaba-NTU Joint Research Institute

    Relation: IEEE Internet of Things Journal; Liu, Y., Garg, S., Nie, J., Zhang, Y., Xiong, Z., Kang, J. & Hossain, M. S. (2020). Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet of Things Journal, 8(8), 6348-6358. https://dx.doi.org/10.1109/JIOT.2020.3011726; https://hdl.handle.net/10356/159853; 2-s2.0-85104070584; 6348; 6358

  12. 12

    المساهمون: School of Computer Science and Engineering, Interdisciplinary Graduate School (IGS), Energy Research Institute @ NTU (ERI@N), Alibaba-NTU Joint Research Institute

  13. 13
    Dissertation/ Thesis

    المؤلفون: Robinson, William

    المساهمون: McNeill, Dean (Electrical and Computer Engineering) McLeod, Robert (Electrical and Computer Engineering), Shafai, Cyrus (Electrical and Computer Engineering)

    وصف الملف: application/pdf

  14. 14
    Dissertation/ Thesis
  15. 15
    Academic Journal
  16. 16
    Conference

    وصف الملف: application/pdf

    Relation: http://dx.doi.org/10.1109/CSDE56538.2022.10089265; Copiaco, A., Himeur, Y., Amira, A., Mansoor, W., Fadli, F., & Atalla, S. (2022, December). Exploring deep time-series imaging for anomaly detection of building energy consumption. In 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1-5). IEEE.; https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85153685644&origin=inward; http://hdl.handle.net/10576/53148; 1-5

  17. 17
    Academic Journal
  18. 18
    Electronic Resource