-
1Academic Journal
المؤلفون: Di Vito, Mauro Antonio, Rucco, Ilaria, de Vita, Sandro, Doronzo, Domenico Maria, Bisson, Marina, de' Michieli Vitturi, Mattia, Rosi, Mauro, Sandri, Laura, Zanchetta, Giovanni, Zanella, Elena, Costa, Antonio
المساهمون: Di Vito, Mauro Antonio, Rucco, Ilaria, de Vita, Sandro, Doronzo, Domenico Maria, Bisson, Marina, de' Michieli Vitturi, Mattia, Rosi, Mauro, Sandri, Laura, Zanchetta, Giovanni, Zanella, Elena, Costa, Antonio
وصف الملف: ELETTRONICO
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001195777700001; volume:15; issue:4; firstpage:405; lastpage:436; numberofpages:32; journal:SOLID EARTH; https://hdl.handle.net/11568/1239888
-
2Conference
المؤلفون: Doronzo, Domenico, Delle Donne, Dario, Bellucci Sessa, Eliana, Convertito, Vincenzo, de' Michieli Vitturi, Mattia, de Vita, Sandro, Di Traglia, Federico, Nappi, Rosa, Nardone, Lucia, Nave, Rosella, Sansivero, Fabio, Di Vito, Mauro Antonio
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia
مصطلحات موضوعية: Ischia island, landslide
Relation: EGU General Assembly 2024; http://hdl.handle.net/2122/17178
-
3Academic Journal
المؤلفون: Pelullo, Carlo, Chakraborty, Sumit, Montagna, Chiara Paola, Arienzo, Ilenia, Brown, Richard James, D'Antonio, Massimo, de Vita, Sandro, D'Oriano, Claudia, Nazzari, Manuela, Pappalardo, Lucia, Petrosino, Paola
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia
مصطلحات موضوعية: 04.08. Volcanology
وصف الملف: application/pdf
Relation: Contributions to Mineralogy and Petrology; /179 (2024)
-
4Academic Journal
المؤلفون: Sandri, Laura, de' Michieli Vitturi, Mattia, Costa, Antonio, Di Vito, Mauro Antonio, Rucco, Ilaria, Doronzo, Domenico Maria, Bisson, Marina, Gianardi, Roberto, de Vita, Sandro, Sulpizio, Roberto
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
مصطلحات موضوعية: Lahar, Somma-Vesuvius, Volcanic Hazards, Sub-Plinian eruptions, 04.08. Volcanology
وصف الملف: application/pdf
Relation: Solid Earth; 4/15 (2024); Auker, M. R., Sparks, R. S. J., Siebert, L., Crosweller, H. S., and Ewert, J.: A statistical analysis of the global historical volcanic fatalities record, J. Appl. Volcanol., 2, 2, https://doi.org/10.1186/2191-5040-2-2, 2013. Bisson, M., Spinetti, C., and Sulpizio, R.: Volcaniclastic flow hazard zonation in the Sub-Apennine Vesuvian area using GIS and remote sensing, Geosphere, 10, 1419–1431, 2014. Cantelli, Y.: Analisi statistica degli eventi di precipitazione associati alla generazione di lahar nell'area del Vesuvio, Master Thesis, Alma Mater Studiorum – Università di Bologna, 2021 (in Italian). Cioni, R., Bertagnini, A., Santacroce, R., and Andronico, D.: Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme, J. Volcanol. Geoth. Res., 178, 331–346, https://doi.org/10.1016/j.jvolgeores.2008.04.024, 2008. Costa, A., Dell'Erba, F., Di Vito, M. A., Isaia, R., Macedonio, G., Orsi, G., and Pfeiffer, T.: Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy), Bull. Volcanol., 71, 259–273, 2009. de' Michieli Vitturi, M.: demichie/IMEX_SfloW2D_v2, Zenodo [code], https://doi.org/10.5281/zenodo.10639237, 2024. de' Michieli Vitturi, M., Costa, A., Di Vito, M. A., Sandri, L., and Doronzo, D. M.: Lahar events in the last 2000 years from Vesuvius eruptions – Part 2: Formulation and validation of a computational model based on a shallow layer approach, Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, 2024. Di Vito, M. A., de Vita, S., Doronzo, D. M., Bisson, M., Di Vito, M. A., Rucco, I., and Zanella, E.: Field data collected from pyroclastic and lahar deposits of the 472 AD (Pollena) and 1631 Vesuvius eruptions, Zenodo [data set], https://doi.org/10.5281/zenodo.10814860, 2024a. Di Vito, M. A., Rucco, I., de Vita, S., Doronzo, D. M., Bisson, M., de' Michieli Vitturi, M., Rosi, M., Sandri, L., Zanchetta, G., Zanella, E., and Costa, A.: Lahar events in the last 2000 years from Vesuvius eruptions – Part 1: Distribution and impact on densely inhabited territory estimated from field data analysis, Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, 2024b. Fiorillo, F. and Wilson, R. C.: Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy), Eng. Geol., 75, 263–289, 2004. Gattuso, A., Bonadonna, C., Frischknecht, C., Cuomo, S., Baumann, V., Pistolesi, M., Biass, S., Arrowsmith, J. R., Moscariello, M., and Rosi, M.: Lahar risk assessment from source identification to potential impact analysis: the case of Vulcano Island, Italy, J. Appl. Volcanol., 10, 9, https://doi.org/10.1186/s13617-021-00107-6, 2021. Gurioli, L., Sulpizio, R., Cioni, R., Sbrana, A., Santacroce, R., Luperini, W., and Andronico, D.: Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record, Bull. Volcanol., 72, 1021–1038, https://doi.org/10.1007/s00445-010-0379-2, 2010. Jenkins, S. F., Biass, S., Williams, G. T., Hayes, J. L., Tennant, E., Yang, Q., Burgos, V., Meredith, E. S., Lerner, G. A., Syarifuddin, M., and Verolino, A.: Evaluating and ranking Southeast Asia's exposure to explosive volcanic hazards, Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, 2022. Jordan, T. H., Marzocchi, W., Michael, A., and Gerstenberger, M.: Operational earthquake forecasting can enhance earthquake preparedness, Seismol. Res. Lett., 85, 955–959, 2014. Macedonio, G., Costa, A., and Folch, A.: Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment, J. Volcanol. Geoth. Res., 178, 366–377, 2008. Manville, V.: Palaeohydraulic analysis of the 1953 Tangiwai lahar: New Zealand's worst volcanic disaster, Acta Vulcanol., 16, 137–151, 2004. Marzocchi, W., Papale, P., Sandri, L., and Selva, J.: Reducing the volcanic risk in the frame of the hazard/risk separation principle, in Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, edited by: Schroeder J. F. and Papale, P., Vol. 2, ISBN 978-0-12-818082-2, https://doi.org/10.1016/B978-0-12-818082-2.00014-7, 2021. Massaro, S., Stocchi, M., Martínez Montesinos, B., Sandri, L., Selva, J., Sulpizio, R., Giaccio, B., Moscatelli, M., Peronace, E., Nocentini, M., Isaia, R., Titos Luzón, M., Dellino, P., Naso, G., and Costa, A.: Assessing long-term tephra fallout hazard in southern Italy from Neapolitan volcanoes, Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, 2023. Mead, S. R. and Magill, C. R.: Probabilistic hazard modelling of rain-triggered lahars, J. Appl. Volcanol., 6, 8, https://doi.org/10.1186/s13617-017-0060-y, 2017. Neglia, F., Dioguardi, F., Sulpizio, R., Ocone, R., and Sarocchi, D.: Computational fluid dynamic simulations of granular flows: Insights on the flow-wall interaction dynamics, Int. J. Multiphas. Flow, 157, 104281, https://doi.org/10.1016/j.ijmultiphaseflow.2022.104281, 2022. Neri, A., Aspinall, W. P., Cioni, R., Bertagnini, A., Baxter, P. J., Zuccaro, G., Andronico, D., Barsotti, S., Cole, P. D., Esposti Ongaro, T., Hincks, T. K., Macedonio, G., Papale, P., Rosi, M., Santacroce, R., and Woo, G.: Developing an event tree for probabilistic hazard and risk assessment at Vesuvius, J. Volcanol. Geoth. Res., 178, 397–415, https://doi.org/10.1016/j.Jvolgeores.2008.05.014, 2008. Neri, A., Bevilacqua, A., Esposti Ongaro, T., Isaia, R., Aspinall, W. P., Bisson, M., Flandoli, F., Baxter, P. J., Bertagnini, A., Iannuzzi, E., Orsucci, S., Orsucci, S., Pistolesi, M., Rosi, M., and Vitale, S.: Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps, J. Geophys. Res.-Sol. Ea., 120, 2330–2349, 2015. Parra, E. and Cepeda, H.: Volcanic hazard maps of the Nevado del Ruiz Volcano, Colombia, J. Volcanol. Geoth. Res., 42, 117–127, 1990. Pierson, T. C., Janda, R. J., Thouret, J. C., and Borrero, C. A.: Perturbation and melting of snow and ice by the 13 november 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, glow and deposition of lahars, J. Volcanol. Geoth. Res., 41, 17–66, 1990. Pierson, T. C., Daag, A. S., Delos Reyes, P. J., Regalado, M. T., Solidum, R. U., and Tubianosa B. S.: Flow and Deposition of Posteruption Hot Lahars on the East Side of Mount Pinatubo, July–October 1991, in: Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, edited by: Newhall, C. G. and Punongbayang, R. S., Philippine Institute of Volcanology and Seismology, Quezon City, University of Washington Press, Seattle and London, https://pubs.usgs.gov/pinatubo/index.html (last access: 8 March 2024), 1996. Pierson, T. C., Major, J. J., Amigo, Á., and Moreno, H.: Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile, Bull. Volcanol., 75, 1–17, https://doi.org/10.1007/s00445-013-0723-4, 2013. Pizzimenti, L., Tadini, A., Gianardi, R., Spinetti, C., Bisson, M., and Brunori C. A.: Digital Elevation Models derived by ALS data: Sorrentina Peninsula test areas, Rapporto Tecnico INGV – No. 361, https://doi.org/10.13140/RG.2.2.12436.50564, 2016. Ricciardi, G. P., Siniscalchi, V., Cecere, G., and Macedonio, G.: Meteorologia Vesuviana dal 1864 al 2001, CD-Rom, 2007. Rodolfo, K. S., Umbal, J. V., Alonso, R. A., Remotigue, C. T., Paladio-Melosantos, M. L., Salvador, J. H. G., Evangelista, D., and Miller Y.: Two Years of Lahars on the Western Flank of Mount Pinatubo: Initiation, Flow Processes, Deposits, and Attendant Geomorphic and Hydraulic Changes, in: Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, edited by: Newhall, C. G. and Punongbayang, R. S., Philippine Institute of Volcanology and Seismology, Quezon City, University of Washington Press, Seattle and London, https://pubs.usgs.gov/pinatubo/index.html (last access: 8 March 2024), 1996. Rosi, M., Principe, C., and Vecci, R.: The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geoth. Res., 58, 151–182, https://doi.org/10.1016/0377-0273(93)90106-2, 1993. Sandri, L.: Archive of probability maps of lahar invasion from Somma-Vesuvius, as computed in Sandri et al (Solid Earth, 2024), Zenodo [data set], https://doi.org/10.5281/zenodo.10794183, 2024. Sandri, L., Costa, A., Selva, J., Tonini, R., Macedonio, G., Folch, A., and Sulpizio, R.: Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes, Sci. Rep., 6, 24271, https://doi.org/10.1038/srep24271, 2016. Sandri, L., Tierz, P., Costa, A., and Marzocchi, W.: Probabilistic hazard from pyroclastic density currents in the Neapolitan area (Southern Italy), J. Geophys. Res.-Sol. Ea., 123, 3474–3500, https://doi.org/10.1002/2017JB014890, 2018. Schilling, S. P.: LAHARZ: GIS programs for automated delineation of lahar hazard zones, U.S. Geological Survey Open-file Report, https://doi.org/10.3133/ofr98638, 1998. Selva, J., Costa, A., Marzocchi, W., and Sandri, L.: BET VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy), Bull. Volcanol., 72, 717–733, https://doi.org/10.1007/s00445-010-0358-7, 2010. Selva, J., Costa, A., De Natale, G., Di Vito, M. A., Isaia, R., and Macedonio G.: Sensitivity test and ensemble hazard assessment for tephra fallout at Campi Flegrei, Italy, J. Volcanol. Geoth. Res., 351, 1–28, https://doi.org/10.1016/j.jvolgeores.2017.11.024, 2018. Selva, J., Sandri, L., Taroni, M., Sulpizio, R., Tierz, P., and Costa, A.: A simple two-state model interprets temporal modulations in eruptive activity and enhances multivolcano hazard quantification, Sci. Adv., 8, eabq4415, https://doi.org/10.1126/sciadv.abq4415, 2022. Sulpizio, R., Mele, D., Dellino, P., and La Volpe, L.: A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy, Bull. Volcanol., 67, 743–767, https://doi.org/10.1007/s00445-005-0414-x, 2005. Sulpizio, R., Zanchetta, G., Demi, F., Di Vito, M. A., Pareschi, M. T., and Santacroce, R.: The Holocene syneruptive volcaniclastic debris flows in the Vesuvian area; geological data as a guide for hazard assessment, in: Neogene-Quaternary continental margin volcanism; a perspective from Mexico, edited by: Siebe, C., Macias, J. L., and Aguirre-Diaz, G. J., Special Paper, Geological Society of America Vol. 402, 217–235, ISBN 978-0813724027, 2006. Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., and Boschi, E.: TINITALY/01: a new Triangular Irregular Network of Italy, Ann. Geophys., 50, 407–425, 2007. Tierz, P., Woodhouse, M. J., Phillips, J. C., Sandri, L., Selva, J., Marzocchi, W., and Odbert, H. M.: A framework for probabilistic multi-hazard assessment of rain-triggered lahars using Bayesian Belief Networks, Front. Earth. Sci., 5, 73, https://doi.org/10.3389/feart.2017.00073, 2017. Tierz, P., Stefanescu, E. R., Sandri, L., Sulpizio, R., Valentine, G. A., Marzocchi, W., and Patra, A. K.: Towards quantitative volcanic risk of pyroclastic density currents: Probabilistic hazard curves and maps around Somma-Vesuvius (Italy), J. Geophys. Res.-Sol. Ea., 123, 6299–6317, https://doi.org/10.1029/2017JB015383, 2018. Tierz, P., Loughlin, S. C., and Calder, E. S.: VOLCANS: an objective, structured and reproducible method for identifying sets of analogue volcanoes, Bull. Volcanol., 81, 76, https://doi.org/10.1007/s00445-019-1336-3, 2019. Tonini, R., Sandri, L., and Thompson, M.: PyBetVH: A Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps, Comput. Geosci., 79, 38–46, 2015. Umbal, J. V. and Rodolfo, K. S.: The 1991 lahars of southwestern Mount Pinatubo and evolution of the lahar-damned Mapanuepe Lake, in: Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, edited by: Newhall, C. G. and Punongbayang, R. S., Philippine Institute of Volcanology and Seismology, Quezon City, University of Washington Press, Seattle and London, https://pubs.usgs.gov/pinatubo/index.html (last access: 8 March 2024), 1996. Vallance, J. W. and Iverson, R. M.: Lahars and their deposits, in: The encyclopedia of volcanoes, edited by: Sigurdsson, H., Academic Press, 649–664, https://doi.org/10.1016/B978-0-12-385938-9.00037-7, 2015. Voight, B., Calvache, M. L., Hall, M. L., and Monsalve, M. L.: Nevado del Ruiz Volcano, Colombia 1985, in: Bobrowsky, P. T., Encyclopedia of Natural Hazards, Encyclopedia of Earth Sciences Series, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-4399-4_253, 2013. Wilson, G., Wilson, T. M., Deligne, N. I., and Cole, J. W.: Volcanic hazard impacts to critical infrastructure: A review, J. Volcanol. Geoth. Res., 286, 148–182, https://doi.org/10.1016/j.jvolgeores.2014.08.030, 2014. Zanchetta, G., Sulpizio, R., and Di Vito, M. A.: The role of volcanic activity and climate in alluvial fan growth at volcanic areas: an example from southern Campania (Italy), Sediment. Geol., 168, 249–280, 2004a. Zanchetta, G., Sulpizio, R., Pareschi, M. T., Leoni, F. M., and Santacroce, R.: Characteristics of May 5–6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation, J. Volcanol. Geoth. Res., 133, 377–393, 2004b. Zuccaro, G. and De Gregorio, D.: Time and space dependency in impact damage evaluation of a sub-Plinian eruption at Mount Vesuvius, Nat. Hazards, 68, 1399–1423, 2013. Zuccaro, G., Cacace, F., Spence, R. J. S., and Baxter, P. J.: Impact of explosive eruption scenarios at Vesuvius, J. Volcanol. Geoth. Res., 178, 416–453, 2008.
-
5Academic Journal
المؤلفون: Fabbrocino, Silvia, Bellucci Sessa, Eliana, de Vita, Sandro, Avino, Rosario, Carandente, Antonio, Marotta, Enrica, Todisco, Fabio, Di Vito, Mauro Antonio
المساهمون: Department of Earth, Environment and Resources Science (DiSTAR), University of Naples Federico II, Naples, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Napoli Osservatorio Vesuviano, Naples, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Freelance Geologist, Naples, Italy
مصطلحات موضوعية: Hydrogeological map, hydrologic unit, permeability index, volcanic aquifer, thermal spring, Ischia Island
وصف الملف: application/pdf
Relation: Journal of Maps; 1/20(2024)
-
6Academic Journal
المؤلفون: Russolillo, Anna, Foresta Martin, Franco, Merico, Antonio, Sapia, Vincenzo, Talamo, Pierfrancesco, Materni, Valerio, Pischiutta, Marta, de Vita, Sandro, Furlani, Stefano, Targia, Domenico, Di Vito, Mauro Antonio
المساهمون: Universita ` degli Studi Suor Orsola Benincasa di Napoli, Italy - Associazione Villaggio Letterario, Ustica, Palermo, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Università degli Studi di Siena, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, Ministero dei Beni Culturali, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Dipartimento di Matematica e Geoscienze, Università di Trieste, Italy, Regione Siciliana, Parco Archeologico di Himera, Solunto e Monte Iato, Italy
مصطلحات موضوعية: Georadar, Electrical resistivity tomography, Middle Bronze Age, Villaggio Dei Faraglioni, Fortification system, Ustica Island
وصف الملف: application/pdf
Relation: Journal of Applied Geophysics; /220(2024); Akca, ˙ I., Balkaya, Ç., Pülz, A., Alanyalı, H.S., Kaya, M.A., 2019. Integrated geophysical investigations to reconstruct the archaeological features in the episcopal district of Side (Antalya, Southern Turkey). J. Appl. Geophys. 163, 22–30. Balkaya, Ç., Ekinci, Y.L., Çakmak, O., Blomer, ¨ M., Arnkens, J., Kaya, M.A., 2021. A challenging archaeo-geophysical exploration through GPR and ERT surveys on the Keber Tepe, City Hill of Doliche, Commagene (Gaziantep, SE Turkey). J. Appl. Geophys. 186, 104272. Barberi, F., Innocenti, F., 1980. Volcanisme Neog´ene et Quaternaire. Guide a l’excursion 122-A. Soc. It. Miner. Petrol. 99–104. Barberi, F., Borsi, S., Ferrara, G., Innocenti, F., 1969. Strontium isotopic composition of some recent basic volcanites of the Southern Tyrrhenian Sea and Sicily Channel. Contrib. Mineral. Petrol. 23, 157–172. https://doi.org/10.1007/BF00375177. Cinque, A., Civetta, L., Orsi, G., Peccerillo, A., 1988. Geology and geochemistry of the island of Ustica (Southern Tyrrhenian Sea). Boll. Soc. Ital. Miner. Petrol 43, 987–1002. Conyers, L.B., 2015. Analysis and interpretation of GPR datasets for integrated archaeological mapping. Near Surf. Geophys. 13, 645–651. https://doi.org/ 10.3997/1873-0604.2015018. Corradini, E., Wilken, D., Zanon, M., Groß, D., Lübke, H., Panning, D., Dorfler, ¨ W., Rusch, K., Mecking, R., Erkul, E., Pickartz, N., Feeser, I., Rabbel, W., 2020. Reconstructing the palaeoenvironment at the early Mesolithic site of Lake Duvensee: Ground-penetrating radar and geoarchaeology for 3D facies mapping. The Holocene 30 (6), 820–833. https://doi.org/10.1177/0959683620902234. Corradini, E., Groß, D., Wunderlich, T., Lübke, H., Wilken, D., Erkul, E., Schmolcke, ¨ U., Rabbel, W., 2022. Finding Mesolithic Sites: a Multichannel Ground-Penetrating Radar (GPR) investigation at the Ancient Lake Duvensee. Remote Sens. 14, 781. https://doi.org/10.3390/rs14030781. Counts, D.B., Tuck, A.S., 2009. Discovery and Dis course: Archaeology and Interpretation. In: Koine: Mediterranean Studies in Honor of R. Ross Holloway, Oxbow Books, Oxford. de Vita, S., 1993. Assetto geologico-strutturale ed evoluzione vulcanologica dell’isola di Ustica (Stratigrafia, tettonica e meccanismi eruttivi). Tesi di dottorato, Napoli, p. 162. de Vita, S., Foresta Martin, F., 2017. The palaeogeographic setting and the local environmental impact of the 130 ka Falconiera tuff-cone eruption (Ustica island, Italy). Ann. Geophys. 60 (2), S0224. https://doi.org/10.4401/ag-7113. de Vita, S., Orsi, G., 1994. I terrazzi marini dell’isola di Ustica (mar Tirreno meridionale – Italia). Mem. Descr. Carta Geol. It. 52, 405–406. de Vita, S., Guzzetta, G., Orsi, G., 1995. Deformational features of the Ustica volcanic area in the SouthernTyrrhenian Sea (Italy), 7, pp. 623–629. https://doi.org/ 10.1111/j.1365-3121.1995.tb00711.x. de Vita, S., Laurenzi, M.A., Orsi, G., Voltaggio, M., 1998. Application of 40Ar/39Ar and 230Th dating methods to the chronostratigraphy of Quaternary basaltic volcanic areas: the Ustica island case history. Quat. Int. 47 (48), 117–127. https://doi.org/ 10.1016/S1040-6182(97)00077-3. Di Mauro, M., Alfonsi, L., Sapia, V., Urbini, S., 2014. A neighborhood revealed by geophysical prospection: An example of urbanization at the Phoenician–Punic settlement of Mozia (Western Sicily, Italy). J. Appl. Geophys. 104, 114–120. https:// doi.org/10.1016/j.jappgeo.2014.02.021. Epimakhov, A.V., Berseneva, N.A., Fedorova, N.V., Noskevich, V.V., 2016. Geophysics and Archaeology of Bronze Age Settlements-a Case Study from Kamennyi Ambar Fortified Settlement (South Urals). Near Surface Geoscience 2016-22nd European meeting of Environmental and Engineering Geophysics (Vol. 2016, no. 1, pp. cp 495). European Association of Geoscientists & Engineers. https://doi.org/10.3997/ 2214609.201602029. Foresta Martin, F., Frurlani, S., 2021. Geomorphology and prehistoric settlements on a Volcanic Island: the Case of Ustica (Palermo, Italy). Ann. Geophys. 64 https://doi. org/10.4401/ag-8703. Holloway, R.R., Lukesh, S.S., 1995. Ustica I: Excavations of 1990 and 1991, Providence, Rhoe island Brown University, Louvain- La – Neuve. Belgium Universit`e de Louvain 69–75. Holloway, R.R., Lukesh, S.S., 2001. Ustica II: Excavations of 1994 and 1999. Rhoe island ===Leckebusch, J., 2005. Use of antenna arrays for GPR surveying in archaeology. Near Surf. Geophys. 3 (2), 111–115. Loke, M.H., Barker, R.D., 1995. Least-square inversion of apparent resistivity pseudosections. Geophysics 60, 1682–1690. https://doi.org/10.1190/1.1443900. Mannino, G., 1970. Ustica. Sicilia Archeologica 11, 37–41. Mannino, G., 1979. Ustica: risultati di esplorazioni archeologiche. Sicilia Archeologica Tapani 12 (41), 7–40. Mannino, G., 1982. Il villaggio dei Faraglioni di Ustica. Notizie preliminari. Studi in onore di Ferrante Rittatore Vonwiller 1 (1982), 280–297. Mannino, G., 1991. Ustica: Nuove e più antiche testimonianze archeologiche. Sicilia Archeologica 24 (75), 65–85. Mannino, G., 1997. Ustica (Palermo). Mannino, G., 1998. Il neolitico nel palermitano e la nuova scoperta nell’isola di Ustica. Quaderni del Museo Archeologico Regionale “Antonio Salinas” 4, 56–57. Mannino, G., 2015. La scoperta del Neolitico a Ustica. Lettera del Centro Studi e Documentazione Isola di Ustica 48-49, 30–35. Mannino, G., Ailara, V., 2016. Carta Archeologica dell’isola di Ustica. Edizioni del Centro Studi e Documentazione Isola di Ustica, Ustica (Palermo). Milo, P., Vagner, ´ M., Tencer, T., Murín, I., 2022. Application of Geophysical Methods in Archaeological survey of early medieval Fortifications. Remote Sens. 14 (10), 2471. https://doi.org/10.3390/rs14102471. Murín, I., Neumann, M., Brady, C., Batora, ´ J., Capo, ˇ M., Drozd, D., 2022. Application of magnetometry, georadar (GPR) and geoelectrical methods in archaeo-geophysical investigation of a Napoleonic battlefield with fortification at Pressburg (Bratislava, Slovakia). J. Appl. Geophys. 196, 104493 https://doi.org/10.1016/j. jappgeo.2021.104493. Neubauer, W., Eder-Hinterleitner, A., Seren, S., Melichar, P., 2002. Georadar in the Roman civil town Carnuntum, Austria: an approach for archaeological interpretation of GPR data. Archaeol. Prospect. 9 (3), 135–156. https://doi.org/10.1002/arp.183. Orlando, L., Michetti, L.M., Belelli Marchesini, B., Papeschi, P., Giannino, F., 2019. Dense georadar survey for a large-scale reconstruction of the archaeological site of Pyrgi (Santa Severa, Rome). Archaeol. Prospect. 26 (4), 369–377. https://doi.org/ 10.1002/arp.1750. Palio, O., 2020. Strutture difensive della Sicilia preistorica, tra Neolitico e Bronzo Antico. In: Calio, M.L., et al. (Eds.), Fortificazioni e societ`a nel Mediterraneo occidentale. Atti del convegno di Archeologia organizzato dall’universit`a di Catania, dal Politecnico di Bari e dalla University of Manchester. Catania-Siracusa 14–16 febbraio 2019. Edizioni Quasar, Roma, pp. 15–24. Parkinson, W.A., Duffy, P.R., 2007. Fortifications and enclosures in European prehistory: a cross-cultural perspective. J. Archaeol. Res. 15, 97–141. https://doi.org/10.1007/ s10814-007-9010-2. Porcelli, F., Sambuelli, L., Comina, C., Spano, ` A., Lingua, A., Calantropio, A., Catanzariti, G., Chiabrando, F., Fischanger, F., Maschio, P., Ellaithy, A., Airoldi, G., De Ruvo, V., 2020. Integrated geophysics and geomatics surveys in the Valley of the Kings. Sensors. 20 (6), 1552. https://doi.org/10.3390/s20061552. Romano, R., Sturiale, C., 1971. Carta geologica dell’Isola di Ustica: R. Romano e C. Sturiale. Istituto internazionale di ricerche vulcanologiche. Istituto internazionale di vulcanologia (Catania, Italy). Russolillo, A., Foresta Martin, F., Furlani, S., Talamo, P., Vinci, G., Zangara, S., 2022. The fortification system of the prehistoric Villaggio Dei Faraglioni on the Ustica island (Sicily): Some new data. In: Convegno Internazionale di Archeologia Aerea - Lecce. Sapia, V., Materni, V., Florindo, F., Marchetti, M., Gasparini, A., Voltattorni, N., Civico, R., Giannattasio, F., Miconi, L., Marabottini, M.F., Urbini, S., 2021. Multi parametric imaging of Etruscan chamber tombs: Grotte Di Castro Case Study (Italy). Appl. Sci. 11 (17), 7875. https://doi.org/10.3390/app11177875. Scarano, T., 2012. Roca I. Le fortificazioni della media eta ` del bronzo, Claudio Gerenzi Editore, pp. 63–93. http://www.jstor.org/stable/24308743. Skeates, R., 2002. The social dynamics of enclosures in the Neolithic Tavoliere, South East Italy. J. Mediterr. Archaeol. 13, 155–188. https://doi.org/10.1558/jmea. v13i2.155. Spatafora, F., 2005. Ustica e le rotte tirreniche. Il Villaggio dei Faraglioni (campagne di scavo 2003-2004). In: Les Lingots peau-de-boeuf et la navigation en Mediterranee Centrale, Actes du II Colloque international (Lucciana, Mariana 15-18 settembre 2005), pp. 133–141. Spatafora, F., 2016. Tra mare e terra: la preistoria di Ustica e il villaggio dei Faraglioni in, in Ubi minor… Le isole minori del Mediterraneo centrale dal Neolitico ai primi contatti coloniali (a cura di A.Cazzella, A.Guidi, F.Nomi), Scienze dell’Antichita, ` 22, Fascicolo, 2, pp. 315–326. Spatafora, F., Mannino, G., Soprintendenza, Palermo, Ambientali, Peri Beni Culturali e, 2008. Ustica: guida breve. (Regione Siciliana). Assessorato Regionale dei Beni Culturali Ambientali e della Pubblica Istruzione. Speciale, C., Freund, K.P., de Vita, S., Larosa, N., Forgia, V., Battaglia, G., Tykot, R.H., Vassallo, S., 2021a. Obsidian from the Site of Piano Dei Cardoni, Ustica: preliminary results on the first Occupation of the Island. Open Archaeol. 7, 273–290. https://doi. org/10.1515/opar-2020-0140. Speciale, C., Montana, G., Mentesana, R., Forgia, V., Mantia, F., Battaglia, G., Di Vito, M. A., Vassallo, S., de Vita, S., 2021b. Materials and tools across volcanoes: exploitation of georesources in Piano dei Cardoni (Ustica, Italy) during prehistory. Ann. Geophys. 64 (5), VO552. https://doi.org/10.4401/ag-8684. Tykot, R.H., Martin, F.F., 2020. Analysis by pXRF of prehistoric obsidian artifacts from several sites on Ustica (Italy): Long-distance open-water distribution from multiple island sources during the Neolithic and Bronze ages. Open Archaeol. 6 (1), 348–392. https://doi.org/10.1515/opar-2020-0118. Voza, G., 1972. Thapsos, primi risultati delle più recenti scoperte. In: Atti della XIV Riunione Scientifica Istituto Italiano Preistoria e Protostoria, Firenze, 1972, pp. 175–205. Yilmaz, S., Balkaya, Ç., Cakmak, O., Oksum, E., 2019. GPR and ERT explorations at the archaeological site of Kılıç village (Isparta, SW Turkey). J. Appl. Geophys. 170, 103859.
-
7Academic Journal
وصف الملف: application/pdf
-
8Report
المؤلفون: Paredes-Mariño, Joali, Morgavi, Daniele, Di Vito, Mauro, De Vita, Sandro, Sansivero, Fabio, Dueffels, Kai, Beckmann, Gert, Perugini, Diego
المصدر: Paredes-Mari\~no, et al., 2017. doi:10.1016/j.jvolgeores.2017.07.020
مصطلحات موضوعية: Physics - Geophysics
URL الوصول: http://arxiv.org/abs/1803.05296
-
9Academic Journal
المؤلفون: Di Vito, Mauro Antonio, Sparice, Domenico, de Vita, Sandro, Doronzo, Domenico Maria, Ricciardi, Giovanni Pasquale, Uzzo, Tullia
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia
مصطلحات موضوعية: Osservatorio Vesuviano, Geoheritage, Volcano observatory, Volcano monitoring
وصف الملف: application/pdf
Relation: Bulletin of Volcanology; 8/85(2023); Achiam M, Marandino M (2014) A framework for understanding the conditions of science representation and dissemination in muse ums. Mus Manag Curatorsh 29(1):66–82. https://doi.org/10. 1080/09647775.2013.869855 Acocella V, Funiciello R (1999) The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J Volcanol Geotherm Res 88(1-2):109–123. https:// doi.org/10.1016/S0377-0273(98)00109-7 Alessio G, De Lucia M (2017) Promotion and development of pro tected volcanic areas through feld-based environmental com munication activities: the ‘Gran Cono’ tour in the Vesuvius National Park (Italy). Geol 9(3):435–442. https://doi.org/10. 1007/s12371-017-0242-3 Arnò V, Principe C, Rosi M, Santacroce R, Sbrana A, Sheridan MF (1987) Eruptive history. Quaderni de la Ricerca Scientifca, Somma-Vesuvius 114:53–103 Avvisati G, de Vita S, Di Vito MA, Marotta E, Sangianantoni A, Peluso R, Ricciardi GP, Tulino S, Uzzo T, Ghilardi M, De Natale G (2015a) Reale Osservatorio Vesuviano: the frst volcanological observatory in the world. In: EGU General Assembly Conference Abstracts. EGU General Assembly, Vienna Avvisati G, Marotta E, Peluso R, Sangianantoni A, De Natale G, de Vita S, Di Vito MA, Marfé B, Pinto S, Tulino S, Trimarchi E, Ghilardi M (2015b) Analysis of tourism in Campania as a tool for the devel opment of high-quality cultural services for sightseers: the “Reale Osservatorio Vesuviano” case history. Tour Hosp Int J 5:64–87 Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean Fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47:175–185. https://doi.org/10. 1007/BF01961547 Barsotti S, Di Vito MA, Óladóttir BA (2021) European Catalogue of Volcanoes. IMO, UI and CPD-NCIP, https://volcanos.eurovolc.eu. . Belkin HE, Gidwitz T (2020) The contributions and infuence of two Americans, Henry S. Washington and Frank A. Perret, to the study of Italian volcanism with emphasis on volcanoes in the Naples area. In: Vesuvius, Campi Flegrei, and Campanian Volcanism, pp 9–32. https://doi.org/10.1016/B978-0-12-816454-9.00002-X Bertagnini A, Landi P, Rosi M, Vigliargio A (1998) The Pomici di Base plinian eruption of Somma-Vesuvius. J Volcanol Geotherm Res 83(3-4):219–239. https://doi.org/10.1016/S0377-0273(98)00025-0 Borgstrom S, De Lucia M, Nave R (1999) Luigi Palmieri: frst scientifc bases for geophysical surveillance in Mt. Vesuvius area Annali di Geofsica 42(3):587–590 http://hdl.handle.net/2122/1390 Brantley SR, Kauahikaua JP, Babb JL, Orr TR, Patrick MR, Poland MP, Trusdell FA, Oliveira D (2019) Communication strategy of the U.S. Geological Survey Hawaiian Volcano Observatory dur ing the lava-fow crisis of 2014–2015, Kīlauea Volcano, Hawai‘i. In: Field volcanology: a tribute to the distinguished career of Don Swanson, Michael P. Poland, Michael O. Garcia, Victor E. Camp, Anita Grunder. https://doi.org/10.1130/2018.2538(16) Brewer J (2019) Scientifc networks, Vesuvius and politics: the case of Teodoro Monticelli in Naples, 1790-1845. Incontri Rivista europea di studi italiani 34(1):54–67. https://doi.org/10.18352/ incontri.10285 Brown RJ, Orsi G, de Vita S (2008) New insights into Late Pleisto cene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bull Volcanol 70(5):583–603. https://doi.org/ 10.1007/s00445-007-0155-0 Carlino S (2021) Brief history of volcanic risk in the Neapolitan area (Campania, southern Italy): a critical review. Nat Haz ards Earth Syst Sci 21(10):3097–3112. https://doi.org/10.5194/ nhess-21-3097-2021 Casertano L (1999) The scientifc life of Luigi Palmieri. 100th anni versary commemoration (21/04/1807-09/09/1896). Ann Geofs 42(3):581–585 http://hdl.handle.net/2122/1388 Cashman KV, Giordano G (2008) Volcanoes and human history. J Vol canol Geotherm Res 176(3):325–329. https://doi.org/10.1016/j. jvolgeores.2008.01.036 Castellano M, Buonocunto C, Capello M, La Rocca M (2002) Seismic surveillance of active volcanoes: the Osservatorio Vesuviano seismic network (OVSN, Southern Italy). Seismol Res Lett 73(2):177–184 Chester DK, Duncan AM, Wetton P, Wetton R (2007) Responses of the Anglo-American military authorities to the eruption of Vesu vius, March 1944. J Hist Geogr 33(1):168–196. https://doi.org/ 10.1016/j.jhg.2006.02.001 Chiodini G, Caliro S, Avino R, Bini G, Giudicepietro F, De Cesare W, Ricciolino P, Aiuppa A, Cardellini C, Petrillo Z, Selva J, Siniscalchi A, Tripaldi S (2021) Hydrothermal pressure-temper ature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J Volcanol Geotherm Res 414:107245. https://doi.org/10. 1016/j.jvolgeores.2021.107245 Cioni R, Marianelli P, Sbrana A (1992) Dynamics of the AD 79 erup tion: stratigraphic, sedimentological and geochemical data on the successions from the Somma-Vesuvius southern and eastern sectors. Acta Vulcanol 2(10):109–123 Cioni R, Santacroce R, Sbrana A (1999) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesu vius Caldera. Bull Volcanol 61(4):207–222. https://doi.org/10. 1007/s004450050272 Cioni R, Isaia R, Sulpizio R, de Vita S, Di Vito MA, Pistolesi M, Smith V, Stock M, Talamo P (2020) The city of Napoli and its active volcanoes. Geol Field Trips Maps 11(1.2):1–107 Cirillo F, Peluso R (2020) Manualistica di riferimento per la Sala di Monitoraggio dell’Osservatorio Vesuviano: Procedure Opera tive per i Comunicati e Utilizzo del nuovo Software WESSEL. Miscellanea INGV 57:41–45 http://hdl.handle.net/2122/14194 Cole PD, Scarpati C (2010) The 1944 eruption of Vesuvius, Italy: com bining contemporary accounts and feld studies for a new vol canological reconstruction. Geol Mag 147(3):391–415. https:// doi.org/10.1017/S0016756809990495 Coratza P, Reynard E, Zwoliński Z (2018) Geodiversity and geoherit age: crossing disciplines and approaches. Geoheritage 10:525– 526. https://doi.org/10.1007/s12371-018-0333-9 Costa A, Di Vito MA, Ricciardi GP, Smith VC, Talamo P (2022) The long and intertwined record of humans and the Campi Flegrei volcano (Italy). Bull Volcanol 84(1):1–27. https://doi.org/10. 1007/s00445-021-01503-x Cubellis E (2014) Mercalli e la sismicità dell’isola d’Ischia. Miscel lanea INGV 24:85–90 http://hdl.handle.net/2122/9221 Cubellis E, Luongo G, Obrizzo F (2017) Cultural climate in Naples between the birth and development of volcanology. Rend Online Soc Geol It 43:64–78. https://doi.org/10.3301/ROL.2017.36 De Boer JZ, Sanders DT (2012) Volcanoes in human history. In: Vol canoes in human history: the far-reaching efects of major erup tions. Princeton University Press De Lucia M (2007) Iniziative didattiche per la mitigazione del rischio vulcanico presso l’INGV-Osservatorio Vesuviano: il museo. La didattica nei musei scientifci italiani. De Lucia M (2014) “When will Vesuvius erupt?” Why research insti tutes must maintain a dialogue with the public in a high-risk volcanic area: the Vesuvius Museum Observatory. In: Geoethics. Ethical Challenges and Case Studies in Earth Sciences. Elsevier http://hdl.handle.net/2122/10072 De Lucia M, Ricciardi GP (2014) Giuseppe Mercalli e l’eruzione del Vesuvio del 1906. Miscellanea INGV 24:78–84 http://hdl.handle. net/2122/9221 De Lucia M, Russo M (2011) The “Mariano Carati” collection of the museum of osservatorio vesuviano. In: GEOITALIA 2011-Ottavo Forum Italiano di Scienze della Terra-Torino De Lucia M, Iannella A, Ottaiano M, Siviglia V (2004) The museum of Osservatorio Vesuviano-INGV. In: ECSITE Annual Conference 2004 De Lucia M, Ricciardi GP, Russo M (2006) The role of media as inter mediaries among scientists, authorities and population during the 1906 eruption of Vesuvius volcano. Italy-a case history, Cities on volcanoes, p 4 De Lucia M, Russo M., Ricciardi GP (2011). 120 anni di storia dell’Italia e del Vesuvio nella collezione di medaglie di lava vesuviana dell’Osservatorio Vesuviano. In uomini e ragioni: i 150 anni della geologia unitaria, Sessione F4-Geoitalia 2011–VIII forum Italiano di Scienze della Terra. ISPRA-Istituto Superiore per la protezione e la ricerca ambientale-Roma. settembre 2011. De Lucia M, Limoncelli B, Ottaiano M, Parlato L, Scala O (2010) Il museo dell’osservatorio vesuviano e il suo pubblico. Anni 2005-2009. Rapporti Tecnici INGV 150 http://hdl.handle.net/ 2122/6468 De Martino P, Dolce M, Brandi G, Scarpato G, Tammaro U (2021) The ground deformation history of the neapolitan volcanic area (Campi Flegrei caldera, Somma–Vesuvius Volcano, and Ischia island) from 20 years of continuous GPS observations (2000–2019). Remote Sens 13(14):2725. https://doi.org/10.3390/rs13142725 de Vita S, Sansivero F, Orsi G, Marotta E (2006) Cyclical slope insta bility and volcanism related to volcano-tectonism in resurgent calderas: the Ischia Island (Italy) case study. Eng Geol 86(2- 3):148–165. https://doi.org/10.1016/j.enggeo.2006.02.013 de Vita S, Sansivero F, Orsi G, Marotta E, Piochi M (2010) Volcano logical and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 ky. Geol Soc Am Spec Pap 464:193–239. https://doi.org/10.1130/2010.2464(10) de Vita S, Di Vito MA, Gialanella C, Sansivero F (2013) The impact of the Ischia Porto Tephra eruption (Italy) on the Greek colony of Pithekoussai. Quat Int 303:142–152. https://doi.org/10.1016/j. quaint.2013.01.002 de Vita S, Ricciardi GP, Di Vito MA, Marotta E (2014) I vulcani attivi dell’area napoletana: Vesuvio, Campi Flegrei e Ischia negli studi di Giuseppe Mercalli. Miscellanea INGV 24:50–58 http://hdl. handle.net/2122/9221 de Vita S, Di Vito MA, Barra D, Aiello G, Gialanella C (2021) Dis seminating the knowledge on the complex interactions between humans and volcanoes: the geological section of the Villa Arbusto archaeological museum at Lacco Ameno (Ischia, Naples-Italy). Ann Geophys 64(5):1–12. https://doi.org/10.4401/ag-8666 de Vita S, Uzzo T, Ricciardi GP, Di Vito MA (2022) La fotografa nello studio e nel monitoraggio dell’attività vulcanica all’Osservatorio Vesuviano. In: Addabbo C, Casati S (eds) L’occhio della scienza. Edizioni ETS, Pisa ISBN 13: 978-8846764911 Di Lorenzo H, Di Vito MA, Talamo P, Bishop J, Castaldo N, de Vita S, Nave R, Pacciarelli M (2013) The impact of the Pomici di Avel lino Plinian eruption of Vesuvius on Early and Middle Bronze Age human settlement in Campania (southern Italy). Tagungen des Landesmuseums für Vorgeschichte Halle 9(253):e265 Di Vito M, Lirer L, Mastrolorenzo G, Rolandi G (1987) The 1538 Monte Nuovo eruption (Campi Flegrei, Italy). Bull Volcanol 49(4):608–615. https://doi.org/10.1007/BF01079966 Di Vito MA, Isaia R, Orsi G, Southon JD, De Vita S, D'Antonio M, Pappa lardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2-4):221–246. https://doi.org/10.1016/S0377-0273(99)00037-2 Di Vito MA, Zanella E, Gurioli L, Lanza R, Sulpizio R, Bishop J, Tema E, Boenzi G, Laforgia E (2009) The Afragola settlement near Vesuvius, Italy: the destruction and abandonment of a Bronze Age village revealed by archaeology, volcanology and rock magnetism. Earth Planet Sci Lett 277(3-4):408–421. https://doi. org/10.1016/j.epsl.2008.11.006 Di Vito MA, Piochi M, Mormone A, Tramelli A (2011) Somma Vesuvius: the volcano and the observatory http://hdl.handle.net/2122/7204 Di Vito MA, Castaldo N, De Vita S, Bishop J, Vecchio G (2013) Human colonization and volcanic activity in the eastern Campania Plain (Italy) between the Eneolithic and Late Roman periods. Quat Int 303:132–141. https://doi.org/10.1016/j.quaint.2013.01.001 Di Vito MA, de Vita S, Ricciardi GP, Marotta E, Avvisati G, Uzzo T, De Natale G, Ghilardi M (2014a) Volcanoes, a window into the Earth’s interior: the dissemination of scientifc knowledge in the new exhibit of the Royal Observatory of Vesuvius (ROV). Rend Online Soc Geol It 31(1):789 Di Vito MA, Ricciardi GP, Alessio G, de Vita S, Nappi R, Uzzo T (2014b) I luoghi Mercalliani: gli studi attraverso l’Italia dal 1876 al 1914. In Giuseppe Mercalli da Monza al Reale Osservatorio Vesuviano: una vita tra insegnamento e ricerca. Miscellanea INGV 24:40–49 http://hdl.handle.net/2122/9221 Di Vito MA, de Vita S, Ricciardi GP, Uzzo T, Vertechi E, Avvisati G, Marotta E, Peluso R, De Natale G (2015) Il Reale Osserva torio Vesuviano e il Parco Nazionale del Vesuvio: l’eccellenza di un’istituzione scientifca per la valorizzazione del territorio. In: Leone U (ed) Geositi Vesuviani. AMRA, pp 1–16 ISBN 978-88-89972-59-5 Di Vito MA, Acocella V, Aiello G, Barra D, Battaglia M, Carandente A, De Gaudio C, de Vita S, Ricciardi PG, Ricco C, Scandone R, Terrasi F (2016) Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci Rep 6(1):32245. https://doi.org/10.1038/srep32245 Di Vito MA, de Vita S, Uzzo T, Ricciardi GP, (2018) The Vesuvius Observatory, an invaluable scientifc, historical and naturalistic geosite in the framework of the most famous volcano in the world. In: Millenia of stratifcation between human life and volcanoes: strategies for coexistence - Cities on Volcanoes 10, Napoli 2 - 7 September 2018, Abstracts Volume. Edited by R.A. Corsaro, M.G. Di Giuseppe, R. Isaia, A. Mormone, R. Nave. Miscellanea INGV 43:1134. Di Vito MA, Talamo P, de Vita S, Rucco I, Zanchetta G, Cesarano M (2019) Dynamics and efects of the Vesuvius Pomici di Avel lino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy). Quat Int 499:231–244. https://doi.org/10.1016/j.quaint.2018.03.021 Di Vito MA (2021) European Catalogue of Volcanoes: Vesuvio. https://volcanoes.eurovolc.eu/index.html Di Vito MA, Aurino P, Boenzi G, Laforgia E, Rucco I (2021) Human communities living in the Central Campania plane and erup tions of Vesuvio and Campi Flegrei since Neolithic. Ann Geo phys 64(5):VO546. https://doi.org/10.4401/ag-8708 Di Vito MA Doronzo DM (2021). European Catalogue of Volcanoes: Campi Flegrei. https://volcanoes.eurovolc.eu/index.html Dóniz-Páez J (2022) Editorial of the special issue “Geomorphol ogy, geoheritage, geoparks and geotourism in volcanic areas”. Geosci 12(2):85. https://doi.org/10.3390/geosciences12020085 Donovan A, Oppenheimer C, Bravo M (2012) Social studies of volcanol ogy: knowledge generation and expert advice on active volcanoes. Bull Volcanol 74(3):677–689. https://doi.org/10.1007/s00445-011-0547-z Doronzo DM, Di Vito MA, Arienzo I, Bini M, Calusi B, Cerminara M, Corradini S, de Vita S, Giaccio B, Gurioli L, Mannella G, Ricciardi GP, Rucco I, Sparice D, Todesco M, Trasatti E, Zanchetta G (2022) The 79 CE eruption of Vesuvius: a lesson from the past and the need of a multidisciplinary approach for developments in volcanology. Earth Sci Rev 231:104072. https://doi.org/10.1016/j.earscirev.2022.104072 Elson MD, Ort MH (2018) Archaeological volcanology. In: Varela SLL (ed) The encyclopedia of archaeological sciences. https:// doi.org/10.1002/9781119188230.saseas0041 Ford J (2018) Art of gouache. Search Press, Limited, Regno Unito Gasparini P, Pierattini D (1996) Macedonio Melloni e l’Osservatorio Vesuviano. Le Scienze 333:88–95 Gasparini P, Musella S, Pierattini D (1992) Macedonio Melloni and the foundation of the Vesuvius Observatory. J Volcanol Geotherm Res 53(1-4):1–10. https://doi.org/10.1016/0377- 0273(92)90070-T Gray M (2013) Geodiversity: valuing and conserving abiotic nature. Ed. Wiley, p 512 Ippolito F, Marinelli G (1981) Alfred Rittmann. Bull Volcanol 44:217– 221. https://doi.org/10.1007/BF02600560 Isaia R, Vitale S, Marturano A, Aiello G, Barra D, Ciarcia S, Iannuzzi E, Tramparulo FDA (2019) High-resolution geological investigations to reconstruct the long-term ground movements in the last 15 kyr at Campi Flegrei caldera (southern Italy). J Volcanol Geotherm Res 385:143–158. https://doi.org/10.1016/j.jvolgeores.2019.07.012 Leone U (2015) Geositi Vesuviani. AMRA doppiavoce Napoli Livadie CA, Pearce M, Delle Donne M, Pizzano N (2019) The efects of the Avellino Pumice eruption on the population of the Early Bronze age Campanian plain (Southern Italy). Quat Int 499:205– 220. https://doi.org/10.1016/j.quaint.2018.03.035 Louderback GD (1948) Giovanni Agamennone. Bull Seismol Soc Am 38(4):289–290 Lowenstern JB, Ewert JW, Lockhart AB (2022a) Strengthening local volcano observatories through global collaborations. Bull Vol canol 84(1):1–9. https://doi.org/10.1007/s00445-021-01512-w Lowenstern JB, Wallace K, Barsotti S, Sandri L, Stovall W, Bernard B, Privitera E, Komorowski JC, Fournier N, Balagizi C, Garaebiti E (2022b) Guidelines for volcano-observatory operations during crises: recommendations from the 2019 volcano observatory best practices meeting. J Appl Volcanol 11(1):1–24. https://doi.org/ 10.1186/s13617-021-00112-9 Luongo G, Nazzaro A (1990) I sismograf di Ascanio Filomarino e di Luigi Palmieri nella storia degli studi Vesuviani. Special Issue of the Istituto Nazionale di Geofsica, pp 97–108 Luongo G, Perrotta A, Scarpati C (2003a) Impact of the AD 79 explo sive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events. J Volcanol Geo therm Res 126(3-4):201–223. https://doi.org/10.1016/S0377- 0273(03)00146-X Luongo G, Perrotta A, Scarpati C, De Carolis E, Patricelli G, Ciarallo A (2003b) Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties. J Vol canol Geotherm Res 126(3-4):169–200. https://doi.org/10.1016/ S0377-0273(03)00147-1 Macdonald R, Bagiński B, Rolandi G, De Vivo B, Kopczyńska A (2016) Petrology of parasitic and eccentric cones on the fanks and base of Somma-Vesuvius. Mineral Petrol 110(1):65–85. https://doi.org/10.1007/s00710-015-0410-6 Margheriti L, Nostro C, Cocina O, Castellano M, Moretti M, Lauciani V, Quintiliani M, Bono A, Mele FM, Pintore S et al (2021) Seis mic surveillance and earthquake monitoring in Italy. Seismol Res Lett 92(3):1659–1671. https://doi.org/10.1785/0220200380 Martin SC (2020) Past eruptions and future predictions: analyzing ancient responses to Mount Vesuvius for use in modern risk man agement. J Volcanol Geotherm Res 396:106851. https://doi.org/ 10.1016/j.jvolgeores.2020.106851 Martini M, de Vita S, Di Vito M, Nave R, Ricciardi G, De Lucia M (2009) MOVE: a new earth sciences museum at Vesuvius Obser vatory (Naples, Italy). In: AGU Joint Assembly – The meeting of the Americas, Toronto (Canada) 24-27 May 2009 Milano G, Pino NA (2014) Intensità macrosismica e magnitudo: stime diverse della forza dei terremoti. Miscellanea INGV 24:98–103 http://hdl.handle.net/2122/9221 Molisso G, Amoresano S, Bojankow L, Carandente R, Perrella L, Vic inanza R (2014) La morte di Giuseppe Mercalli. Miscellanea INGV 24:151–155 http://hdl.handle.net/2122/9221 Mulligan JF (2001) Emil Wiechert (1861–1928): esteemed seismolo gist, forgotten physicist. Am J Phys 69(3):277–287. https://doi. org/10.1119/1.1323962 Nave R, de Vita S, Di Vito MA, Martini M (2011) MOVE. the new earth sciences museum of the Vesuvian Observatory. In: Euro pean Geosciences Union, General Assembly, Vienna, Austria 03-08 April 2011 Nave R, Siniscalchi V (2014) Stromboli: l’eruzione del 1891 negli studi di Giuseppe Mercalli. Miscellanea INGV 24:65–70 http:// hdl.handle.net/2122/9221 Nazzaro A, De Lucia M, De Gregorio A, Tammaro U (1995) Il Museo vulcanologico dell'Osservatorio Vesuviano nel contesto del Parco 1 Naturale del Vesuvio. Museologia scientifca, pp 1–2 http://hdl. handle.net/2122/15827 Németh K, Casadevall T, Moufti MR, Marti J (2017) Volcanic geo heritage. Geoheritage 9(3):251–254. https://doi.org/10.1007/ s12371-017-0257-9 Orsi G (2022) Volcanic and deformation history of the Campi Flegrei volcanic feld, Italy. In: Orsi G, D’Antonio M, Civetta L (eds) Campi Flegrei. Active volcanoes of the world. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37060-1_1 Orsi G, Gallo G, Heiken G, Wohletz K, Yu E, Bonani G (1992) A comprehensive study of pumice formation and dispersal: the Cretaio Tephra of Ischia (Italy). J Volcanol Geotherm Res 53(1- 4):329–354. https://doi.org/10.1016/0377-0273(92)90090-Z Orsi G, De Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74(3-4):179–214. https://doi.org/10.1016/S0377-0273(96)00063-7 Panizza M (2009) The geomorphodiversity of the Dolomites (Italy): a key of geoheritage assessment. Geoheritage 1(1):33–42. https:// doi.org/10.1007/s12371-009-0003-z Panizza M, Piacente S (2017) Geomorphodiversity in Italy: examples from the Dolomites, Northern Apennines and Vesuvius. In: Sol dati M, Marchetti M (eds) Landscapes and landforms of Italy. World geomorphological landscapes. Springer, Cham. https:// doi.org/10.1007/978-3-319-26194-2_43 Perrotta A, Scarpati C, Luongo G, Aoyagi M (2006) Burial of Emperor Augustus’ villa at Somma Vesuviana (Italy) by post-79 AD Vesu vius eruptions and reworked (lahars and stream fow) deposits. J Volcanol Geotherm Res 158(3-4):445–466. https://doi.org/10. 1016/j.jvolgeores.2006.08.006 Pino NA, Milano G (2014) La catastrofe calabro-messinese del 1908: l’analisi di Mercalli del terremoto più disastroso della storia d’Italia. Miscellanea INGV 24:91–97 http://hdl.handle.net/2122/9221 Planagumà L, Martí J (2020) Identifcation, cataloguing and preserva tion of outcrops of geological interest in monogenetic volcanic felds: the case of La Garrotxa Volcanic Zone Natural Park. Geo heritage 12:84. https://doi.org/10.1007/s12371-020-00508-w Planagumà-Guàrdia L, Martí-Molist J, Vila-Subirós J (2022) Conser vation of the geological heritage of volcanic felds: La Garrotxa Volcanic Zone Natural Park. Spain Geoheritage 14:39. https:// doi.org/10.1007/s12371-022-00677-w Primerano P, Giordano G, Costa A, de Vita S, Di Vito MA (2021) Recon structing fallout features and dispersal of Cretaio Tephra (Ischia Island, Italy) through feld data analysis and numerical modelling: implications for hazard assessment. J Volcanol Geotherm Res 415:107248. https://doi.org/10.1016/j.jvolgeores.2021.107248 Raia L (2023) Un architetto al servizio della scienza. Gaetano Fazzini e la costruzione del Reale Osservatorio Meteorologico Vesuviano. Editori Paparo, 220 pp., EAN: 9788831983648. Redondi P (2011) Alessandro Malladra geologo: dal Sempione al Vesu vio. Almanacco storico ossolano 2012:65–111 Ricciardi GP (2009) Diario del Monte Vesuvio: Venti secoli di immag ini e cronache di un vulcano nella città. Edizioni scientifche e artistiche, Napoli Ricco C, Petrosino S, Aquino I, Cusano P, Madonia P (2021) Tracking the recent dynamics of Mt. Vesuvius from joint investigations of ground deformation, seismicity and geofuid circulation. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-020-79636-w Riede F (2019) Doing palaeo-social volcanology: developing a frame work for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets. Quat Int 499:266–277. https://doi.org/10.1016/j.quaint.2018.01.027 Rolandi G, Barrella AM, Borrelli A (1993) The 1631 eruption of Vesu vius. J Volcanol Geotherm Res 58(1-4):183–201. https://doi.org/ 10.1016/0377-0273(93)90107-3 Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Vol canol Geotherm Res 58(1-4):151–182. https://doi.org/10.1016/ 0377-0273(93)90106-2 Russo M, Punzo I (2004) I minerali del Somma-Vesuvio. Ed. AMI, Cremona, p 320 Russo M, De Lucia M, Milano G, Ricciardi GP (2014) Giuseppe Mer calli e l’Osservatorio Vesuviano: la direzione dal 1911 al 1914. Miscellanea INGV 24:145–150 http://hdl.handle.net/2122/9221 Santacroce R, Sbrana A (2003) Geological map of Vesuvius. SELCA Firenze Sbrana A, Marianelli P, Pasquini G (2018) Volcanology of Ischia (Italy). J Maps 14(2):494–503. https://doi.org/10.1080/17445 647.2018.1498811 Sbrana A, Cioni R, Marianelli P, Sulpizio R, Andronico D, Pasquini G (2020) Volcanic evolution of the Somma-Vesuvius Complex (Italy). J Maps 16(2):137–147. https://doi.org/10.1080/17445647.2019. 1706653 Scarpati C, Perrotta A, De Simone GF (2016) Impact of explosive volcanic eruptions around Vesuvius: a story of resilience in Roman time. Bull Volcanol 78(3):1–6. https://doi.org/10.1007/ s00445-016-1017-4 Schröder W, Treder HJ (1999) Some aspects in Emil Wiechert’s sci entifc work. Acta Geodaetica et Geophysica Hungarica 34:181– 186. https://doi.org/10.1007/BF03325569 Selva J, Acocella V, Bisson M, Caliro S, Costa A, Della Seta M, De Martino P, de Vita S, Federico C, Giordano G, Martino S, Car daci C (2019) Multiple natural hazards at volcanic islands: a review for the Ischia volcano (Italy). J Appl Volcanol 8(1):1–43. https://doi.org/10.1186/s13617-019-0086-4 Sigurdsson H (2015) Volcanoes in art. In: The encyclopedia of volca noes, second edn. Academic Press, pp 1321–1343. https://doi. org/10.1016/B978-0-12-385938-9.00077-8 Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in AD 79. Natl Geogr Res 1(3):332–387 Siniscalchi V, Nave R (2014) Vulcano: l’eruzione del 1888-1890 negli studi di Giuseppe Mercalli. Miscellanea INGV 24:59–64 http:// hdl.handle.net/2122/9221 Smith P (1998) Thomas Cook & Son’s Vesuvius Railway. Japan Rail Trans Rev 15:10–15 Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implica tions for eruption history and chronostratigraphic markers. Quat Sci Rev 30(25-26):3638–3660. https://doi.org/10.1016/j.quasc irev.2011.07.012 Snedigar S, Cameron C, Nye C (2007) The Alaska Volcano Observa tory website–a tool for information management and dissemina tion-abstract. In: The Alaska Geological Society 2007 Technical Conference Abstracts Volume, 2007 Sparice D, Scarpati C, Perrotta A, Mazzeo FC, Calvert AT, Lanphere MA (2017) New insights on lithofacies architecture, sedimento logical characteristics and volcanological evolution of pre-cal dera (> 22 ka), multi-phase, scoria-and spatter-cones at Somma Vesuvius. J Volcanol Geotherm Res 347:165–184. https://doi. org/10.1016/j.jvolgeores.2017.09.010 Stix J, Heiken G (2022) Communication when it is needed most—the past, present and future of volcano geoheritage. Bull Volcanol 84(7):1–13. https://doi.org/10.1007/s00445-022-01574-4 Sulpizio R, Mele D, Dellino P, Volpe LL (2005) A complex, Sub plinian-type eruption from low-viscosity, phonolitic to tephri phonolitic magma: the AD 472 (Pollena) eruption of Somma Vesuvius, Italy. Bull Volcanol 67:743–767. https://doi.org/10. 1007/s00445-005-0414-x Sulpizio R, Mele D, Dellino P, La Volpe L (2007) Deposits and physical properties of pyroclastic density currents during com plex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Sediment 54(3):607–635. https://doi. org/10.1111/j.1365-3091.2006.00852.x Toniolo L, Amoretti V, Gravina E, Martinelli R, Scala P, Sparice D (2021) Da Mumia alle ultime vittime di Pompei: nuove ricerche nella villa di Civita Giuliana. Rivista Studi Pompeiani 32:123–130 Trasatti E, Acocella V, Di Vito MA, Del Gaudio C, Weber G, Aquino I, Caliro S, Chiodini G, de Vita S, Ricco C, Caric chi L (2019) Magma degassing as a source of long-term seismicity at volcanoes: the Ischia island (Italy) case. Geo phys Res Lett 46(24):14421–14429. https://doi.org/10.1029/ 2019GL085371 Uzzo T, Di Vito MA, Ricciardi GP, de Vita S (2013) La valorizzazi one delle collezioni storiche di interesse scientifco: l’esempio delle medaglie di lava dell’Osservatorio Vesuviano. Quaderni di Geofsica 114:1–66 http://hdl.handle.net/2122/8830 Vezzoli L (1988) Island of Ischia. Quaderni de ‘La Ricerca Scientifca’ 114(10):7–126 Consiglio Nazionale delle ricerche
-
10Academic Journal
المؤلفون: Nardone, Lucia, Vassallo, Maurizio, Cultrera, Giovanna, Sapia, Vincenzo, Petrosino, Simona, Pischiutta, Marta, Di Vito, Mauro Antonio, de Vita, Sandro, Galluzzo, Danilo, Milana, Giuliano, Bellucci Sessa, Eliana, Bobbio, Antonella, Bordoni, Paola, Cara, Fabrizio, Carandente, Antonio, Civico, Riccardo, Cogliano, Rocco, Cusano, Paola, Di Giulio, Giuseppe, Esposito, Roberta, Famiani, Daniela, Fodarella, Antonio, Giannattasio, Fabio, Marchetti, Marco, Marotta, Enrica, Moretti, Milena, Napolitano, Ferdinando, Pucillo, Stefania, Riccio, Gaetano, Sepe, Vincenzo, Tarabusi, Gabriele, Tramelli, Anna
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Irpinia, Grottaminarda, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Universita ` degli Studi di Salerno, Dipartimento di Fisica “E.R. Caianiello”, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia
مصطلحات موضوعية: Ischia volcanic island, Shear-wave velocity of volcanic deposits, Site effects, Seismic noise analysis, 1D Resistivity models, 04.08. Volcanology
وصف الملف: application/pdf
Relation: Journal of Volcanology and Geothermal Research; /438(2023); Acocella, V., Funiciello, R., Marotta, E., Orsi, G., de Vita, S., 2004. The role of extensional structures on experimental calderas and resurgence. J. Volcanol. Geotherm. Res. 129, 199–217. Azzaro, R., Del Mese, S., Martini, G., Paolini, S., Screpanti, A., Verrubbi, V., Tertulliani, A., 2017. QUEST - Rilievo macrosismico per il terremoto dell’isola di Ischia del 21 agosto 2017. Rapporto interno INGV. https://doi.org/10.5281/ zenodo.849091. Bedrosian, P.A., Burgess, M.K., Nishikawa, T., 2013. Faulting and groundwater in a desert environment: Constraining hydrogeology using time-domain electromagnetic data. Near Surf. Geophys. 11 (5), 545–555. https://doi.org/10.3997/1873- 0604.2013043. Blazquez, C.S., Nieto, I.M., Gonz´alez, M.A.M., ´ García, P.C., Martín, A.F., Gonz´alez Aguilera, D., 2022. Geophysical exploration for shallow geothermal applications: a case study in Arta, ` (Balearic Islands, Spain). Geothermics 105, 102517. Brown, R.J., Civetta, L., Arienzo, I., D’Antonio, M., Moretti, R., Orsi, G., Tomlinson, E.L., Albert, P.G., Menzies, M.A., 2014. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib. Mineral. Petrol. 168 (3), 1–23. Capello, M., Caputo, A., Orazi, M., Scarpato, G., Peluso, R., Buonocunto, C., Torello, V., De Cesare, W., D’Auria, L., Giudicepietro, F., 2011. Il sito multiparametrico dell’Osservatorio Geofisico di Casamicciola Terme (Ischia). Rapp. Tecnici INGV number 185, ISSN, 2039–7941. Capuano, P., De Matteis, R., Russo, G., 2015. The structural setting of the Ischia Island caldera (Italy): first evidencefrom seismic and gravity data. Bull Volcanol. 77, 79. https://doi.org/10.1007/s00445-015-0965-4. Carlino, S., Sbrana, A., Pino, N.A., Marianelli, P., Pasquini, G., De Martino, P., De Novellis, V., 2022. The Volcano-Tectonics of the Northern Sector of Ischia Island Caldera (Southern Italy): Resurgence, Subsidence and Earthquakes. Front. Earth Sci. 10, 730023 https://doi.org/10.3389/feart.2022.730023. Celico, P., Stanzione, D., Esposito, L., Formica, F., Piscopo, V., De Rosa, B., 1999. La complessit`a idrogeologica di un’area vulcanica attiva: l’Isola di Ischia (Napoli Campania). Boll. Soc. Geol. Ital. 118, 485–504. Chiarabba, C., Amato, A., Boschi, E., Barberi, F., 2000. Recent seismicity and tomographic modelling of the Mount Etna plumbing system. J. Geophys. Res. Solid Earth 105 (B5), 10923–10938. Christiansen, A.V., Auken, E., 2012. A global measure for depth of investigation. Geophysics 77, 171–177. https://doi.org/10.1190/GEO2011-0393.1. Civico, R., Sapia, V., Di Giulio, G., Villani, F., Pucci, S., Baccheschi, P., Amoroso, S., Cantore, L., Di Naccio, D., Hailemikael, S., Smedile, A., Vassallo, M., Marchetti, M., Pantosti, D., 2017. Geometry and evolution of a fault-controlled quaternary basin by means of TDEM and single-station ambient vibration surveys: the example of the 2009 L’Aquila earthquake area. J. Geophys. Res. Solid Earth 122, 2236–2259. Costanzo, M.R., Nunziata, C., Strollo, R., 2017. VS of the uppermost crust structure of the Campi Flegrei caldera (southern Italy) from ambient noise Rayleigh wave analysis. J. Volcanol. Geotherm. Res. 347, 278–295. Cusano, P., Petrosino, S., De Lauro, E., Falanga, M., 2020a. The whisper of the hydrothermal seismic noise at Ischia Island. J. Volcanol. Geotherm. Res. 389, 106693 doi:10.1016/j. jvolg eores. 2019. 106693. Cusano, P., Petrosino, S., De Lauro, E., De Martino, S., Falanga, M., 2020b. Characterization of the seismic dynamical state through joint analysis of earthquakes and seismic noise: the example of Ischia Volcanic Island (Italy). Adv. Geosci. 52 (19–28) doi:10. 5194/ adgeo- 52- 19- 2020. Daniele, L., Tardani, D., Schmidlin, D., Quiroga, I., Cannatelli, C., Somma, R., 2022. Seawater intrusion and hydrogeochemical processes in the Ischia Island groundwater system. J. Geochem. Explor. 234, 106935. D’Auria, L., Giudicepietro, F., Tramelli, A., Ricciolino, P., Lo, Bascio D., Orazi, M., Martini, M., Peluso, R., Scarpato, G., Esposito, A., 2018. The seismicity of Ischia Island. Seismol. Res. Lett. 89, 1750–1760. de Vita, S., Sansivero, F., Orsi, G., Marotta, E., 2006. Cyclical slope instability and volcanism related to volcano-tectonism in resurgent calderas: the Ischia Island (Italy) case study. Eng. Geol. 86, 148–165. de Vita, S., Sansivero, F., Orsi, G., Marotta, E., Piochi, M., 2010. Volcanological and Structural Evolution of the Ischia Resurgent Caldera (Italy) over the Past 10 k.y. Stratigraphy and Geology of Volcanic Areas, Gianluca Groppelli, Lothar Viereck Goette. Della, Seta M., Marotta, E., Orsi, G., de Vita, S., Sansivero, F., Fredi, P., 2012. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy). Bull. Volcanol. 74 (1), 79–106 (IF 2,232). https://doi.org/10.1007/s00445-011-0501-0. Di Giuseppe, M.G., Troiano, A., Carlino, S., 2017. Magnetotelluric imaging of the resurgent caldera on the island of Ischia (southern Italy): Inferences for its structure and activity. Bull. Volcanol. 79 (12), 85. Di Napoli, R., Martorana, R., Orsi, G., Aiuppa, A., Camarda, M., De Gregorio, S., Gagliano, Candela E., Luzio, D., Messina, N., Pecoraino, G., Bitetto, M., de Vita, S., Valenza, M., 2011. The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: the Ischia Island case study. Geochem. Geophys. Geosyst. 12 (7). Effersø, F., Auken, E., Sørensen, K.I., 1999. Inversion of band-limited TEM responses. Geophys. Prospect. 47, 551–564. https://doi.org/10.1046/j.1365-2478.1999.00135. x. ESRI, 2011. ArcGIS Desktop: Release 10, Environmental Systems Research Institute, Redlands, USA. available at: https://www.esri.com/en-us/home (last access: 20 December 2022). Fabbrocino, S., Bellucci, Sessa E., de Vita, S., Di Vito, M.A., Avino, R., Marotta, E., 2022. A GIS-based hydrogeological approach to the assessment of the groundwater circulation in the Ischia volcanic island. Front. Earth Sci. https://doi.org/10.3389/ feart.2022.883719. Falanga, M., Cusano, P., De Lauro, E., Petrosino, S., 2021. Picking up the hydrothermal whisper at Ischia Island in the Covid-19 lockdown quiet. Sci. Rep. 11 (1), 1–11. https://doi.org/10.1038/s41598-021-88266-9. Fitterman, D.V., Anderson, W.L., 1987. Effect of transmitter turn-off time on transient soundings. Geoexploration 24 (2), 131–146. Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.Y., Comina, C., Cornou, C., Cox, Brady, Di Giulio, G., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., Socco, V., 2017. Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull. Earthq. Eng. 16, 2367–2420. https://doi.org/10.1007/ s10518-017-0206-7. Galluzzo, D., Nardone, L., Gaudiosi, G., Martino, C., Scarpato, G., Carandente, A., Buonocunto, C., Govoni, A., Moretti, M., D’Alema, E., SISMIKO Working Group, 2017. Seismic Data acquired by the SISMIKO Emergency Group - Ischia-Italy 2017 - T13 [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi. org/10.13127/sd/u0j8hsaevf. Galluzzo, D., Nardone, L., Carandente, A., Buonocunto, C., Scarpato, G., Marotta, E., Milano, G., Govoni, A., Moretti, M., 2019. Le attivita ` del gruppo operativo SISMIKO in occasione del terremoto di Ischia Mw3.9 (Md4.0) del 21 agosto 2017. Quad. Geofisica 154, 1–28. Iervolino, I., Baltzopoulos, G., 2017. Preliminary engineering report on ground motion data of the Aug 21st, 2017. Ischia earthquake V1.0. https://doi.org/10.13140/ RG.2.2.31712.99842 available at http://www.reluis.it. Jurkevics, A., 1988. Polarization analysis of three component array data. Bull. Seismol. Soc. Am. 78, 1725–1743. Konno, K., Ohmachi, T., 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88, 228–241. Lesage, P., Heap, M.J., Kushnir, A., 2018. A generic model for the shallow velocity structure of volcanoes. J. Volcanol. Geotherm. Res. 356, 114–126. Li, R., Hu, X., Xu, D., Liu, Y., Yu, N., 2020. Characterizing the 3D hydrogeological structure of a debris landslide using the transient electromagnetic method. J. Appl. Geophys. 175, 103991. Locati, M., Camassi, R., Rovida, A., Ercolani, E., Bernardini, F., Castelli, V., Caracciolo, C. H., Tertulliani, A., Rossi, A., Azzaro, R., D’Amico, S., Antonucci, A., 2022. Database Macrosismico Italiano (DBMI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/DBMI/DBMI15.4. Mancini, M., Chiara, Caciolli M., Gaudiosi, I., Andrea, Alleanza G., Cavuoto, G., Coltella, M., Cosentino, G., Di Fiore, V., d’Onofrio, A., Gargiulo, F., Milana, G., 2021. Seismic microzonation in a complex volcano-tectonic setting: the case of northern and western Ischia Island (southern Italy). Ital. J. Geosci. 140 (3), 382–408. Manzo, R., Nardone, L., Gaudiosi, G., Martino, C., Galluzzo, D., Bianco, F., Di Maio, R., 2022. A first 3-D shear wave velocity model of the Ischia Island (Italy) by HVSR inversion. Geophys. J. Int. 230 (3), 2056–2072. Maresca, R., Damiano, N., Nardone, L., Di Vito, M.A., Bianco, F., 2014. A comparison of surface and underground array measurements of ambient noise recorded in Naples (Italy). J. Seismol. 18 (3), 385–400. Margheriti, L., Nostro, C., Cocina, O., Castellano, M., Moretti, M., Lauciani, V., Quintiliani, M., Bono, A., Mele, F.M., Pintore, S., Montalto, P., 2021. Seismic surveillance and earthquake monitoring in Italy. Seismol. Res. Lett. 92 (3), 1659–1671. Moretti, M., Pondrelli, S., Margheriti, L., Abruzzese, L., Anselmi, M., Arroucau, P., Baccheschi, P., Baptie, B., Bonadio, R., Bono, A., Bucci, A., Buttinelli, M., Capello, M., Cardinale, V., Castagnozzi, A., Cattaneo, M., Cecere, G., Chiarabba, C., Chiaraluce, L., Cimini, G.B., Cogliano, R., Colasanti, G., Colasanti, M., Criscuoli, F., D’Alema, E., D’Alessandro, A., D’Ambrosio, C., Danecek, P., De Caro, M., De Gori, P., Delladio, A., De Luca, G., De Luca, G., Demartin, M., Di Nezza, M., Di Stefano, R., Falco, L., Fares, M., Frapiccini, M., Frepoli, A., Galluzzo, D., Giandomenico, E., Giovani, L., Giunchi, C., Govoni, A., Hawthorn, D., Ladina, C., Lauciani, V., Lindsay, A., Mancini, S., Mandiello, A.G., Marzorati, S., Massa, M., Memmolo, A., Migliari, F., Minichiello, F., Monachesi, G., Montuori, C., Moschillo, R., Murphy, S., Pagliuca, N.M., Pastori, M., Piccinini, D., Piccolini, U., Pintore, S., Poggiali, G., Rao, S., Saccorotti, G., Segou, M., Serratore, A., Silvestri, M., Silvestri, S., Vallocchia, M., Valoroso, L., Zuccarello, L., Michelini, A., Mazza, S., 2016. SISMIKO: emergency network deployment and data sharing for the 2016 Central Italy seismic sequence. Ann. Geophys. 59 (5) https://doi.org/10.4401/ag7212. Munkholm, M.S., Auken, E., 1996. Electromagnetic noise contamination on transient electromagnetic soundings in culturally disturbed environments. J. Environ. Eng. Geophys. 1, 119–127. Nabighian, M.N., 1979. Quasi-static transient response of a conducting half-space. Geophysics 44, 1700–1705 gpyGPYSA70016–8033 Geophysics. Nabighian, M.N., Macnae, J.C., 1991. Appendix A: TEM systems. In: Nabighian, M.N. (Ed.), Electromagnetic Methods in Applied Geophysics, vol. II. Denver, Colorado, Newmont Exploration Limited, pp. 479–483. Nakamura, Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. In: Quart. Rept. RTRI, Jpn, 30, pp. 25–33. Napolitano, F., Gervasi, A., La Rocca, M., Guerra, I., Scarpa, R., 2018. Site Effects in the Pollino Region from the HVSR and Polarization of Seismic Noise and Earthquakes. Bull. Seismol. Soc. Am. 108 (1), 309–321. https://doi.org/10.1785/0120170197. Nappi, R., Alessio, G., Gaudiosi, G., Nave, R., Marotta, E., Siniscalchi, V., Civico, R., Pizzimenti, L., Peluso, R., Belviso, P., Porfido, S., 2018. The 21 august 2017 md 4.0 Casamicciola earthquake: first evidence of Coseismic Normal surface faulting at the Ischia Volcanic Island. Seismol. Res. Lett. 89, 4, 1323–1334. https://doi.org/ 10.1785/0220180063. Nardone, L., Manzo, R., Galluzzo, D., Pilz, M., Carannante, S., Di Maio, R., Orazi, M., 2020. Shear wave velocity and attenuation structure of Ischia Island using broadband seismic noise records. J. Volcanol. Geotherm. Res. 401, 106970 https:// doi.org/10.1016/j.jvolgeores.2020.106970. Nardone, L., Esposito, R., Galluzzo, D., Petrosino, S., Cusano, P., La Rocca, M., Bianco, F., 2020b. Array and spectral ratio techniques applied to seismic noise to investigate the Campi Flegrei (Italy) subsoil structure at different scales. Adv. Geosci. 52, 75–85. Petrosino, S., De Siena, L., 2021. Fluid Migrations and Volcanic Earthquakes from Depolarized Ambient Noise. Nat. Commun. 12, 6656. https://doi.org/10.1038/ s41467-021-26954-w. Petrosino, S., Damiano, N., Cusano, P., Di Vito, M.A., de Vita, S., Del Pezzo, E., 2012. Subsurface structure of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis. Geochem. Geophys. Geosyst. 13, Q07006. https://doi.org/10.1029/ 2011GC004030. Pischiutta, M., Cultrera, G., Caserta, A., Luzi, L., Rovelli, A., 2010. Topographic effects on the hill of Nocera Umbra, Central Italy. Geophys. J. Int. 182 (2), 977–987. Pischiutta, M., Fondriest, M., Demurtas, M., Magnoni, F., Di Toro, G., Rovelli, A., 2017. Structural control on the directional amplification of seismic noise (Campo Imperatore, Central Italy). Earth Planet. Sci. Lett. 471, 10–18. Piscopo, V., Formica, F., Lana, L., Lotti, F., Pianese, L., Trifuoggi, M., 2020. Relationship between aquifer pumping response and quality of water extracted from wells in an active hydrothermal system: the case of the Island of Ischia (southern Italy). Water 12 (9), 2576. Revil, A., Finizola, A., Ricci, T., Delcher, E., Peltier, A., Barde-Cabusson, S., Avard, G., Bailly, T., Bennati, L., Byrdina, S., Colonge, J., Di Gangi, F., Douillet, G., Lupi, M., Letort, J., Sun, Tsang Hin, E., 2011. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, selfpotential, soil temperature and soil CO2 concentration measurements. Geophys. J. Int. 186 (3), 1078–1094. https://doi.org/10.1111/j.1365-246X.2011.05112.x. Rigano, R., Cara, F., Lombardo, G., Rovelli, A., 2008. Evidence for ground motion polarization on fault zones of Mount Etna volcano. J. Geophys. Res. 113, B10306. https://doi.org/10.1029/2007JB005574. Rovelli, A., Caserta, A., Marra, F., Ruggiero, V., 2002. Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, Central Italy. Bull. Seismol. Soc. Am. 92, 2217–2232. https://doi.org/10.1785/0120010288. Russo, E., Felicetta, C., D’Amico, M.C., Sgobba, S., Lanzano, G., Mascandola, C., Pacor, F., Luzi, L., 2022. ITalian ACcelerometric Archive (ITACA), version 3.2. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/ itaca.3.2. Sapia, V., Viezzoli, A., Menghini, A., Marchetti, M., Chiappini, M., 2015. The Italian reference site for TEM methods. Ann. Geophys. 58 (5, G0548) https://doi.org/ 10.4401/ag-6805. Sbrana, A., Toccaceli, R., 2011. Carta geologica Isola d’Ischia scala 1: 10000. Note Illustrative. Regione Campania, Litografica Artistica Cartografica, Firenze, p. 216. Sbrana, A., Marianelli, P., Pasquini, G., 2018. Volcanology of Ischia (Italy). J. Maps 14 (2), 494–503. Selva, J., Acocella, V., Bisson, M., Caliro, S., Costa, A., Della, Seta M., De Martino, P., de Vita, S., Federico, C., Giordano, G., Martino, S., Cardaci, C., 2019. Multiple natural hazards at volcanic islands: a review for the Ischia volcano (Italy). J. Appl. Volcanol. 8, 5. https://doi.org/10.1186/s13617-019-0086-4. SESAME, 2004. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements. In: Processing and Interpretation. SESAME European Research Project WP12, pp. 1–62. Srigutomo, W., Kagiyama, T., Kanda, W., Munekane, H., Hashimoto, T., Tanaka, Y., Utada, H., Utsugi, M., 2008. Resistivity structure of Unzen Volcano derived from time domain electromagnetic (TDEM) survey. J. Volcanol. Geotherm. Res. 175 (1–2), 231–240. Strollo, R., Nunziata, C., Iannotta, A., Iannotta, D., 2015. The uppermost crust structure of Ischia (southern Italy) from ambient noise Rayleigh waves. J. Volcanol. Geotherm. Res. 297, 39–51. Tramelli, A., Orazi, M., Nardone, L., Bobbio, A., Benincasa, A., Buonocunto, C., Capello, M., Caputo, A., Castellano, M., D’Auria, L., De Cesare, W., Di Filippo, A., Galluzzo, D., Gaudiosi, G., Giudicepietro, F., Liguoro, F., Lo, Bascio D., Martini, M., Martino, C., Peluso, R., Ricciolino, P., Scarpato, G., Torello, V., Bianco, F., 2022. The seismic network of Ischia island from 1993 to 2021, in Volcanic Island: from Hazard Assessment to Risk Mitigation. Geol. Soc. Spec. Publ. https://doi.org/10.1144/ SP519-2021-192. Trasatti, E., Acocella, V., Di Vito, M.A., Del Gaudio, C., Weber, G., Aquino, I., Caliro, S., Chiodini, G., de Vita, S., Ricco, C., Caricchi, L., 2019. Magma degassing as a source of long-term seismicity at volcanoes: the Ischia Island (Italy) case. Geophys. Res. Lett. 46 (24), 14421–14429. Villani, F., Sapia, V., Baccheschi, P., Civico, R., Di Giulio, G., Vassallo, M., Marchetti, M., Pantosti, D., 2018. Geometry and structure of a fault-bounded extensional basin by integrating geophysical surveys and seismic anisotropy across the 30 October 2016 Mw 6.5 earthquake fault (central Italy): The Pian Grande di Castelluccio basin. Tectonics 37. https://doi.org/10.1029/2018TC005205. Wathelet, M., Jongmans, D., Ohrnberger, M., 2005. Direct inversion of spatial autocorrelation curves with the neighbourhood algorithm. Bull. Seismol. Soc. Am. 95 (5), 1787–1800. https://doi.org/10.1785/0120040220.
-
11Academic Journal
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia, orcid, #NODATA#, Camacho, Antonio G.
Relation: Geological Society Special Publication; Publisher's version; https://doi.org/10.1144/SP519-2022-129; Sí; Journal of the Geological Society - London; http://hdl.handle.net/10261/359579; 2-s2.0-85149045926; https://api.elsevier.com/content/abstract/scopus_id/85149045926
-
12Book
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Addabbo, C, Casati, S, #PLACEHOLDER_PARENT_METADATA_VALUE#
مصطلحات موضوعية: fotografia, attività vulcanica, Osservatorio Vesuviano
وصف الملف: application/pdf
Relation: L’occhio della scienza; http://hdl.handle.net/2122/15824
الاتاحة: http://hdl.handle.net/2122/15824
-
13Academic Journal
المؤلفون: Speciale Claudia, Freund Kyle P., de Vita Sandro, Larosa Nunzia, Forgia Vincenza, Battaglia Giuseppina, Tykot Robert H., Vassallo Stefano
المصدر: Open Archaeology, Vol 7, Iss 1, Pp 273-290 (2021)
مصطلحات موضوعية: obsidian exploitation, island archaeology, middle neolithic, pxrf, sicily, Archaeology, CC1-960
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2300-6560
-
14Academic Journal
المؤلفون: Sparice, Domenico, Pelullo, Carlo, de Vita, Sandro, Arienzo, Ilenia, Petrosino, Paola, Mormone, Angela, Di Vincenzo, Gianfranco, Marfè, Barbara, Cariddi, Bruna, De Lucia, Maddalena, Vertechi, Enrico, D'Oriano, Claudia, Del Carlo, Paola, Di Roberto, Alessio, Giaccio, Biagio, Zanchetta, Giovanni, Di Vito, Mauro Antonio
المساهمون: Sparice, Domenico, Pelullo, Carlo, de Vita, Sandro, Arienzo, Ilenia, Petrosino, Paola, Mormone, Angela, Di Vincenzo, Gianfranco, Marfè, Barbara, Cariddi, Bruna, De Lucia, Maddalena, Vertechi, Enrico, D'Oriano, Claudia, Del Carlo, Paola, Di Roberto, Alessio, Giaccio, Biagio, Zanchetta, Giovanni, Di Vito, Mauro Antonio
مصطلحات موضوعية: Neapolitan Volcanic Area Campi Flegrei Pre-caldera volcanism Scientific drilling X-ray powder diffraction 40Ar/39Ar dating
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001343404400001; volume:455; firstpage:1; lastpage:25; numberofpages:25; journal:JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH; https://hdl.handle.net/11588/987424
-
15Conference
المؤلفون: Pelullo, Carlo, Balcone-Boissard, Hélène, Cariddi, Bruna, Chakraborty, Sumit, d'Antonio, Massimo, de Lucia, Maddalena, de Vita, Sandro, Di Vito, Mauro Antonio, Petrosino, Paola, Piochi, Monica, Rividi, Nicolas, Solomita, Germano, Sparice, Domenico, Zanon, Vittorio, Arienzo, Ilenia
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Napoli (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Institut des Sciences de la Terre de Paris (iSTeP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut für Geologie, Mineralogie und Geophysik, Ruhr University Bochum = Ruhr-Universität Bochum (RUB), Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), University of Naples Federico II = Università degli studi di Napoli Federico II, Instituto de Investigação em Vulcanologia e Avaliação de Riscos, universidade dos Açores, Ponta Delgada (IVAR), Universidade dos Açores
المصدر: EGU General Assembly 2024 ; https://hal.science/hal-04600411 ; EGU General Assembly 2024, Apr 2024, Vienne (AUT), France. 2024, ⟨10.5194/egusphere-egu24-19813⟩
مصطلحات موضوعية: [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
جغرافية الموضوع: Vienne (AUT), France
Relation: hal-04600411; https://hal.science/hal-04600411
-
16Academic Journal
المؤلفون: Doronzo, Domenico Maria, Di Vito, Mauro Antonio, Arienzo, Ilenia, Bini, Monica, Calusi, Benedetta, Cerminara, Matteo, Corradini, Stefano, de Vita, Sandro, Giaccio, Biagio, Gurioli, Lucia, Mannella, Giorgio, Ricciardi, Giovanni Pasquale, Rucco, Ilaria, Sparice, Domenico, Todesco, Micol, Trasatti, Elisa, Zanchetta, Giovanni
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia, Universitè Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, France, Dipartimento di Scienze della Terra, Universit`a di Pisa, Itala, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia
مصطلحات موضوعية: 79 CE eruption, Vesuvius, Plinian eruption, Pompeii, Multidisciplinary approach, Pyroclastic succession, Pyroclastic currents, 79 CE tephra dispersal
وصف الملف: application/pdf
Relation: Earth-science Reviews; /231(2022); Agustin-Flores, J., N´emeth, K., Cronin, S.J., Lindsay, J.M., Kereszturi, G., Brand, B.D., Smith, I.E.M., 2014. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). J. Volcanol. Geotherm. Res. 276, 46–63. Aldrete, G.S., 2007. Flood of the Tiber in Ancient Roma, Baltimore. Aubry, T.J., Cerminara, M., Jellinek, A.M., 2019. Impacts of climate change on volcanic stratospheric injections: comparison of 1-D and 3-D plume model projections. Geophys. Res. Lett. 2019GL083975. Anderson, P.W.S., 2014. Pompeii. FilmDistrict, Constantin Film Produktion, Don Carmody Productions. Impact Pictures. Arrighi, S., et al., 2001. Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull. Volcanol. 63, 126–150. Aubry, T.J., et al., 2021. The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): a new observational database to support explosive eruptive column model validation and development. J. Volcanol. Geotherm. Res. 417. Auger, E., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science (80) 294, 1510–1512. https://doi.org/ 10.1126/SCIENCE.1064893. Avvisati, C., 2018. Il Mattino, Giovedì 18 Ottobre 2018. Bagheri, G.H., Bonadonna, C., Manzella, I., Vonlanthen, P., 2015. On the characterization of size and shape of irregular particles. Powder Technol. 270, 141–153. Baker, A., Hellstrom, J.C., Kelly, B.F.J., Mariethoz, G., Trouet, V., 2015. A composite annual-resolution stalagmite record of North Atlantic climate over the last three Millennia. Sci. Rep. 5, 10307. Balachandar, S., Eaton, J.K., 2010. Turbulent Dispersed Multiphase Flow. Annu. Rev. Fluid Mech. 42, 111–133. Balcone-Boissard, H., Villemant, B., Boudon, G., Michel, A., 2008. Non-volatile vs volatile behaviours of halogens during the AD 79 plinian eruption of Mt. Vesuvius. Earth Planet. Sci. Lett. 269, 66–79. Barbante, C., Kehrwald, N.M., Marianelli, P., Vinther, B.M., Steffensen, J.P., Cozzi, G., Hammer, C.U., Clausen, H.B., Siggaard-Andersen, M.-L., 2013. Greenland ice core evidence of the 79 AD Vesuvius eruption. Clim. Past 9, 1221–1232. Barberi, F., Bizouard, H., Clocchiatti, R., Metrich, N., Santacroce, R., Sbrana, A., 1981. The somma-vesuvius magma chamber: a petrological and volcanological approach. Bull. Volcanol. 1981 443 44, 295–315. https://doi.org/10.1007/BF02600566. Barberi, F., Cioni, R., Rosi, M., Santacroce, R., Sbrana, A., Vecci, R., 1989. Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and compositional analysis of pyroclastic deposits. J. Volcanol. Geotherm. Res. 38, 287–307. Barberi, F., Macedonio, G., Pareschi, M.T., Santacroce, R., 1990. Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344 (6262), 142–144. https:// doi.org/10.1038/344142a0. Baxter, P.J., Neri, A., Todesco, M., 1998. Physical modelling and human survival in pyroclastic flows. Nat. Hazards 17, 163–176. Biggs, J., Ebmeier, S.K., Aspinall, W.P., Lu, Z., Pritchard, M.E., Sparks, R.S.J., Mather, T. A., 2014. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. https://doi.org/10.1038/ncomms4471. Bignami, C., Chini, M., Amici, S., Trasatti, E., 2020. Synergic use of multi-sensor satellite data for volcanic hazards monitoring: the fogo (Cape Verde) 2014–2015 effusive eruption. Front. Earth Sci. 8, 22. https://doi.org/10.3389/feart.2020.00022. Bini, M., Zanchetta, G., Perșoiu, A., Cartier, R., Catala, ` A., Cacho, I., Dean, J.R., Di Rita, F., Drysdale, R.N., Finn`e, M., Isola, I., Jalali, B., Lirer, F., Magri, D., Masi, A., Marks, L., Mercuri, A.M., Peyron, O., Sadori, L., Sicre, M.A., Welc, F., Zielhofer, Brisset E., 2019. The 4.2 ka BP event in the mediterranean region: an overview. Clim. Past 15, 555–577. Bini, M., Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R.N., Fabiani, F., Genovesi, S., Hellstrom, J.C., 2020. Hydrological changes during the Roman Climatic Optimum in Northern Tuscany (Central Italy) as evidenced by speleothem records and archeological data. J. Quat. Sci. 35, 791–802. https://doi.org/10.1002/jqs.3224. Bonasia, V., Del Pezzo, E., Pingue, F., Scandone, R., Scarpa, R., 1985. Eruptive history, seismic activity and ground deformations at Mt. Vesuvius, Italy. Ann. Geophys. 3, 395–406. Borgia, A., Tizzani, P., Solaro, G., Manzo, M., Casu, F., Luongo, G., Pepe, A., Berardino, P., Fornaro, G., Sansosti, E., Ricciardi, G.P., Fusi, N., Di Donna, G., Lanari, R., 2005. Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity. Geophys. Res. Lett. 32, 1–4. https://doi.org/10.1029/ 2004GL022155. Braccini, G.C., 1632. Dell’incendio fattosi nel Vesuvio a XVI di Dicembre MDCXXXI, Napoli, Secondino Roncagliolo. Brosch, E., et al., 2021. Destructiveness of pyroclastic surges controlled by turbulent fluctuations. Nat. Commun. 12, 7306. Bryan, S.E., Cas, R.A.F., Martí, J., 2000. The 0.57 Ma plinian eruption of the Granadilla Member, Tenerife (Canary Islands): an example of complexity in eruption dynamics and evolution. J. Volcanol. Geotherm. Res. 103, 209–238. Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P.J., Esper, J., Kaplan, J.O., de Vaan, M.A.C., Luterbacher, J., Wacker, L., Tegel, W., Kirdyanov, A.V., 2016. Cooling and societal change during the late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–237. Cagnat, R., Feignon, J.G., Besnier, M., 1927. Ann´ee epigraphique, 0096. http://db.edcs. eu/epigr/epi_einzel.php?s_sprache=it&p_belegstelle=AE+1927,+00096&r_sortie rung=Belegstelle. Calusi, B., Andronico, D., Pecora, E., Biale, E., Cerminara, M., 2020. PyTirCam-1.0: a python model to manage thermal infrared camera data. Remote Sens. 12, 4056. Cao, Z., Patra, A., Bursik, M., Pitman, E.B., Jones, M., 2017. Plume-SPH 1.0: a three dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics. Geosci. Model Dev. Discuss. 1–37. Cao, Z., Bursik, M., Yang, Q., Patra, A., 2021. Simulating the transport and dispersal of volcanic ash clouds with initial conditions created by a 3D plume model. Front. Earth Sci. 9, 1–18. Carey, S., Sigurdsson, H., 1987. Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geol. Soc. Am. Bull. 99, 303–314. Caricchi, C., Vona, A., Corrado, S., Giordano, G., Romano, C., 2014. 79 AD Vesuvius PDC deposits’ temperatures inferred from optical analysis on woods charred in-situ in the Villa Dei Papiri at Herculaneum (Italy). J. Volcanol. Geotherm. Res. 289, 14–25. Cas, R.A.F., Wright, J.V., 1987. Volcanic successions: Modern and Ancient. Chapman & Hall, p. 528. Cassano, E., La Torre, P., 1987. Geophysics, in: Santacroce, R. (Ed.), Somma-Vesuvius. Quaderni de “La Ricerca Scientifica”, CNR, Roma, pp. 175–195. Cassio, Dione, 2000. Storia romana LXVI, 21–24. Testo Greco a fronte, vol. 7. Libri 64-67. Ed. BUR. Cella, F., Fedi, M., Florio, G., Grimaldi, M., Rapolla, A., 2007. Shallow Structure of the Somma-Vesuvius Volcano from 3D Inversion of Gravity Data. https://doi.org/ 10.1016/j.jvolgeores.2006.12.013. Cerminara, M., Esposti Ongaro, T., Valade, S., Harris, A.J.L., 2015. Volcanic plume vent conditions retrieved from infrared images: a forward and inverse modeling approach. J. Volcanol. Geotherm. Res. 300, 129–147. Cerminara, M., Esposti Ongaro, T., Berselli, L.C., 2016a. ASHEE-1.0: a compressible, equilibrium–Eulerian model for volcanic ash plumes. Geosci. Model Dev. 9, 697–730. Cerminara, M., Esposti Ongaro, T., Neri, A., 2016b. Large eddy simulation of gas-particle kinematic decoupling and turbulent entrainment in volcanic plumes. J. Volcanol. Geotherm. Res. 326, 143–171. Cerminara, M., Brosch, E., Lube, G., 2021. A theoretical framework and the experimental dataset for benchmarking numerical models of dilute pyroclastic density currents. ArXiv 2106.14057, 1–17. Cini Castagnoli, G., Bonino, G., Caprioglio, F., Provenzale, A., Serio, M., Guang-Mei, Z., 1990. The carbonate profile of two recent Ionian Sea cores: evidence that the sedimentation rate is constant over the last millennia. Geophys. Res. Lett. 17, 1937–1940. Cinque, A., Robustelli, G., 2009. Alluvial and coastal hazards caused by long-range effects of Plinian eruptions: the case of the Lattari Mts. After the AD 79 eruption of Vesuvius. Geol. Soc. Lond. Spec. Publ. 322, 155–171. Cioni, R., 2000. Volatile content and degassing processes in the AD 79 magma chamber at Vesuvius (Italy). Contrib. Mineral. Petrol. 140, 40–54. Cioni, R., Marianelli, P., Sbrana, A., 1990. L’eruzione del 79 d.C.: stratigrafia dei depositi ed impatto sugli insediamenti romani nel settore orientale e meridionale del Somma Vesuvio. Rivista di Studi Pompeiani IV, pp. 179–198. Cioni, R., Marianelli, P., Sbrana, A., 1992. Dynamics of the A.D. 79 eruption: stratigraphic, sedimentological and geochemical data on the successions from the Somma-Vesuvius southern and eastern sectors. Acta Vulcanol. 2, 109–123. Cioni, R., Civetta, L., Marianelli, P., Metrich, N., Santacroce, R., Sbrana, A., 1995. Compositional layering and syneruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J. Petrol. 36, 739–776. Cioni, R., Gurioli, L., Sbrana, A., Vougioukalakis, G., 2000. Precursory phenomena and destructive events related to the late Bronze Age Minoan (Thera, Greece) and 79 AD (Vesuvius, Italy) Plinian eruptions: Inferences from the stratigraphy in the archaeological areas. Geol. Soc. Spec. Publ. 171, 123–141. Cioni, R., Longo, A., Macedonio, G., Santacroce, R., Sbrana, A., Sulpizio, R., Andronico, D., 2003. Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J. Geophys. Res. 108, B22063. Cioni, R., Gurioli, L., Lanza, R., Zanella, E., 2004. Temperatures of the AD 79 pyroclastic density current deposits (Vesuvius, Italy). J. Geophys. Res. 109, 1–18. https://doi. org/10.1029/2002JB002251. Cioni, R., Pistolesi, M., Rosi, M., 2015. Plinian and Subplinian Eruptions. In: Encyclopedia of Volcanoes, 2nd Ed. Elsevier Science Publishing. Cioni, R., Tadini, A., Gurioli, L., Bertagnini, A., Mulas, M., Bevilacqua, A., Neri, A., 2020. Estimating eruptive parameters and related uncertainties for pyroclastic density currents deposits: worked examples from Somma-Vesuvius (Italy). Bull. Volcanol. 82, 65. https://doi.org/10.1007/s00445-020-01402-7. Civetta, L., Galati, R., Santacroce, R., 1991. Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull. Volcanol. 1991 534 53, 287–300. https://doi.org/10.1007/BF00414525. Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M.F., Pugnaghi, S., Gangale, G., 2008. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements. J. Appl. Remote. Sens. 2, 023550 https://doi.org/10.1117/1.3046674. Corradini, S., Guerrieri, L., Lombardo, V., Merucci, L., Musacchio, M., Prestifilippo, M., Scollo, S., Silvestri, M., Spata, G., Stelitano, D., 2018. Proximal monitoring of the 2011-2015 Etna lava fountains using MSG-SEVIRI data. Geosci. Special Issue on Volcanic Plumes: Impacts on the Atmosphere and Insights into Volcanic Processes 8, 140. https://doi.org/10.3390/geosciences8040140. Corradini, S., Guerrieri, L., Stelitano, D., Salerno, G., Scollo, S., Merucci, L., Prestifilippo, M., Musacchio, M., Silvestri, M., Lombardo, V., Caltabiano, T., 2020. Near real-time monitoring of the Christmas 2018 etna eruption using SEVIRI and products validation. Remote Sens. 12, 1336. https://doi.org/10.3390/rs12081336. Cosentino, C., Molisso, F., Scopelliti, G., Caruso, A., Insinga, D., Lubritto, C., Pepe, F., Sacchi, M., 2017. Benthic foraminifera as indicators of relative sea-level fluctuations: Paleoenvironmental and paleoclimatic reconstruction of a Holocene marine succession (Calabria, South-Eastern Tyrrhenian Sea). Quat. Int. 439, 79–101. Costa, A., et al., 2016. Results of the eruptive column model inter-comparison study. J. Volcanol. Geotherm. Res. 326, 2–25. Costa, A., Suzuki, Y.J., Koyaguchi, T., 2018. Understanding the plume dynamics of explosive super-eruptions. Nat. Commun. 9. Crocitti, M., Sulpizio, R., Insinga, D., De Rosa, R., Donato, P., Iorio, M., Zanchetta, G., Barca, D., Lubritto, C., 2018. On ash dispersal from moderately explosive volcanic eruptions: examples from Holocene and Late Pleistocene eruptions of Italian volcanoes. J. Volcanol. Geotherm. Res. 385, 198–221. Dartevelle, S., et al., 2002. Origin of the Mount Pinatubo climactic eruption cloud: implications for volcanic hazards and atmospheric impacts. Geology 30, 663–666. D’Auria, L., Massa, B., De Matteo, A., 2014. The stress field beneath a quiescent stratovolcano: the case of Mount Vesuvius. J. Geophys. Res. Solid Earth 119, 1181–1199. https://doi.org/10.1002/2013JB010792. De Gori, P., Cimini, G.B., Chiarabba, C., De Natale, G., Troise, C., Deschamps, A., 2001. Teleseismic tomography of the Campanian volcanic area and surrounding Apenninic belt. J. Volcanol. Geotherm. Res. 109, 55–75. https://doi.org/10.1016/S0377-0273 (00)00304-8. De Natale, G., Petrazzuoli, S.M., Troise, C., Pingue, F., Capuano, P., 2000. Internal stress field at Mount Vesuvius: a model for background seismicity at a central volcano. J. Geophys. Res. Solid Earth 105, 16207–16214. https://doi.org/10.1029/ 2000jb900031. De Natale, G., Troise, C., Trigila, R., Dolfi, D., Chiarabba, C., 2004. Seismicity and 3-D substructure at Somma-Vesuvius volcano: evidence for magma quenching. Earth Planet. Sci. Lett. 221, 181–196. https://doi.org/10.1016/S0012-821X(04)00093-7. De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., 2006. The Somma-Vesuvius volcano (Southern Italy): Structure, dynamics and hazard evaluation. Earth-Sci. Rev. 74, 73–111. https://doi.org/10.1016/j. earscirev.2005.08.001. Degruyter, W., Bonadonna, C., 2013. Impact of wind on the condition for column collapse of volcanic plumes. Earth Planet. Sci. Lett. 377-378, 218–226. Dellino, P., Dioguardi, F., Isaia, R., et al., 2021. The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of Vesuvius. Sci. Rep. 11, 4959. https://doi.org/10.1038/s41598-021-84456-7. Dermody, B.J., Boer, H.J., Bierkens, M.F.P., Weber, S.L., Wassen, M.J., Dekker, S.C., 2012. A seesow in Mediterranean precipitation during the Roman Period linked to millennial-scale changes in the North Atlantic. Clim. Past 8, 637–651. Devenish, B.J., Cerminara, M., 2018. The transition from Eruption Column to Umbrella Cloud. J. Geophys. Res. Solid Earth 123, 2018JB015841. Di Donato, V., Ruello, M.R., Liuzza, V., Carsana, V., Giampaola, D., Di Vito, M.A., Morhange, C., Cinque, A., Ermolli, E.R., 2018. Development and decline of the ancient harbor of Neapolis. Geoarchaeology 33, 1–16. Di Donato, V., Insinga, D.D., Iorio, M., Molisso, F., Rumolo, P., Cardines, C., Passaro, S., 2019. The palaeoclimatic and palaeoceanographic history of the Gulf of Taranto (Mediterranean Sea) in the last 15 ky. Glob. Planet. Chang. 172, 278–297. Di Stefano, R., Chiarabba, C., 2002. Active source tomography at Mt. Vesuvius: Constraints for the magmatic system. J. Geophys. Res. Solid Earth 107, ESE 4-1. https://doi.org/10.1029/2001JB000792. Di Vito, M.A., Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., Bishop, J., Tema, E., Boenzi, G., Laforgia, E., 2009. The Afragola settlement near Vesuvius, Italy: the destruction and abandonment of a Bronze Age village revealed by archeology, volcanology and rock-magnetism. Earth Planet. Sci. Lett. 277, 408–421. Dobran, F., Neri, A., Macedonio, G., 1993. Numerical simulation of collapsing volcanic columns. J. Geophys. Res. 98 (B3), 4231–4259. https://doi.org/10.1029/ 92JB02409. Dobran, F., Neri, A., Todesco, M., 1994. Assessing the pyroclastic flow hazard at Vesuvius. Nature 367 (6463), 551–554. https://doi.org/10.1038/367551a0. Doronzo, D.M., 2012. Two new end members of pyroclastic density currents: Forced convection-dominated and inertia-dominated. J. Volcanol. Geotherm. Res. 219-220, 87–91. Doronzo, D.M., Dellino, P., 2011. Interaction between pyroclastic density currents and buildings: Numerical simulation and first experiments. Earth Planet. Sci. Lett. 310, 286–292. Doronzo, D.M., de Tullio, M.D., Dellino, P., Pascazio, G., 2011. Numerical simulation of pyroclastic density currents using locally refined Cartesian grids. Comput. Fluids 44, 56–67. Doronzo, D.M., Martí, J., Sulpizio, R., Dellino, P., 2012. Aerodynamics of stratovolcanoes during multiphase processes. J. Geophys. Res. 117, B01207. Doronzo, D.M., Giordano, G., Palladino, D.M., 2022. Energy facies: a global view of pyroclastic currents from vent to deposit. Terra Nova 34, 1–11. Druitt, T., Calder, E.S., Cole, P.D., Hoblitt, R.P., Loughlin, S.C., Norton, G.E., Ritchie, L.J., Sparks, R.S.J., Voight, B., 2002. Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufri`ere Hills Volcano, Montserrat: An important volcanic hazard. In: Druitt, T., Kokelaar, P. (Eds.), The Eruption of Soufri`ere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, vol. 21, pp. 263–279. Dufek, J., Bergantz, G.W., 2007. Suspended load and bed-load transport of particle-laden gravity currents: the role of particle–bed interaction. Theor. Comput. Fluid Dyn. 21, 119–145. Dürig, T., Gudmundsson, M.T., Karmann, S., Zimanowski, B., Dellino, P., Rietze, M., Büttner, R., 2015. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust buoyancy transition—a case study of the 2010 eruption of Eyjafjallajokull, ¨ Iceland. Earth Planets Space 67, 180. Esposti Ongaro, T., Neri, A., Menconi, G., de Michieli Vitturi, M., Marianelli, P., Cavazzoni, C., Erbacci, G., Baxter, P.J., 2008. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. JVGR 178, 378–396. https://doi.org/10.1016/j.jvolgeores.2008.06.036. Esposti Ongaro, T., Cerminara, M., Charbonnier, S.J., Lube, G., Valentine, G.A., 2020. A framework for validation and benchmarking of pyroclastic current models. Bull. Volcanol. 82. Esposti, Ongaro T., Neri, A., Todesco, M., Macedonio, G., 2002. Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modeling. II. Analysis of flow variables. Bull. Volcanol. 64, 178–191. Esposti, Ongaro T., Cavazzoni, C., Erbacci, G., Neri, A., Salvetti, M.V., 2007. A parallel multiphase flow code for the 3D simulation of volcanic explosive eruptions. Parallel Comput. 33, 541–560. https://doi.org/10.1016/j.parco.2007.04.003. Ferry, J., Balachandar, S., 2001. A fast Eulerian method for disperse two-phase flow. Int. J. Multiphase Flow 27, 1199–1226. Filomarino, A., 1797. Gabinetto Vesuviano del Duca della Torre (III ed.). Talani, Napoli. Folch, A., Costa, A., Macedonio, G., 2015. FPLUME-1.0: an integrated volcanic plume model accounting for ash aggregation. Geosci. Model Dev. Discuss. 8, 8009–8062. Fisher, R.V., Schmincke, H.U., 1984. Pyroclastic Rocks. Springer Berlin, Heidelberg, p. 472. Folch, A., et al., 2020. FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides - part 1: Model physics and numerics. Geosci. Model Dev. 13, 1431–1458. Freret-Lorgeril, V., et al., 2021. Examples of multi-sensor determination of eruptive source parameters of explosive events at Mount Etna. Remote Sens. 13. Galli, P., Scionti, V., 2006. Two unknown M > 6 historical earthquakes revealed by palaeoseismological and archival researches in eastern Calabria (southern Italy). Seismotectonic implications. Terra Nova 18, 44–49. Gasparini, P., Zollo, A., Auger, E., Bobbio, A., Emolo, A., Frattini, M., Herrero, A., Iannaccone, G., Improta, L., Nielsen, S., Simini, M., Achauer, U., Jordan, M., Chiarabba, C., Ciaccio, M.G., Lucente, P.F., De Franco, R., Biella, G., Del Pezzo, E., De Matteis, R., La Rocca, M., De Natale, G., Capuano, P., Godano, C., Martini, M.,Pingue, F., Troise, C., Dietrich, M., Coutant, O., Guerra, I., Kissling, E., Marsella, E., Milana, G., Gorini, A., Marcucci, A., Zambonelli, E., Mirabile, L., Buonocore, B., Nowack, R., Scarpa, R., De Luca, G., Filippi, L., Solarino, S., Eva, E., Virieux, J., Bertrand, E., Charvis, P., Deschamps, A., Deverchere, J., Lomax, A., Montelli, R., Bongiovanni, G., 1998. Looking Inside Mt. Vesuvius. Eos (Washington. DC), 79, pp. 229–232. https://doi.org/10.1029/98EO00165. Giacomelli, L., Perrotta, A., Scandone, R., Scarpati, C., 2003. The eruption of Vesuvius of 79 AD and its impact on human environment in Pompeii. Episodes 26, 235–238. Giacomelli, L., Scandone, R., Rosi, M., 2021. The loss of geological memory of past catastrophes: the case of Pompeii. Ann. Geophys. 64, V0547. Gigante, M., 1989. Il Fungo sul Vesuvio secondo Plinio il Giovane. Lucarini Ed. 38. Gouhier, M., Donnadieu, F., 2008. Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements. J. Geophys. Res. Solid Earth 113, 1–17. Gouhier, M., et al., 2019. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Sci. Rep. 9, 1449. Gurioli, L., Cioni, R., Sbrana, A., Zanella, E., 2002. Transport and deposition from pyroclastic flows over densely inhabited areas: Herculaneum (Italy). Sedimentology 49, 929–953. Gurioli, L., Pareschi, M.T., Zanella, E., Lanza, R., Deluca, E., Bisson, M., 2005a. Interaction of pyroclastic currents with human settlements: evidences from ancient Pompeii. Geology 33 (6), 441–444. Gurioli, L., Houghton, B., Cashman, K., Cioni, R., 2005b. Complex changes in eruption dynamics and the transition between Plinian and phreatomagmatic activity during the 79AD eruption of Vesuvius. Bull. Volcanol. 67, 144–159. https://doi.org/ 10.1007/s00445-004-0368-4. Gurioli, L., Zanella, E., Pareschi, M.T., Lanza, R., 2007. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): flow direction and deposition (part I). J. Geophys. Res. 112 (B5) https://doi.org/10.1029/2006JB004444. Gurioli, L., Sulpizio, R., Cioni, R., Sbrana, A., Luperini, W., Santacroce, R., Andronico, D., 2010. Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record. Bull. Volcanol. 72 (9), 1021–1038. https://doi.org/10.1007/ s00445-010-0379-2. Hannah, R., 2013. Greek and Roman Calendars. A&C Black. Hannah, R., 2016. Roman Calendars. A Companion to Science, Technology & Medicine in Ancient Greece and Rome, pp. 906–922. Harper, K., 2017. The Fate of Rome. Climate, Disease and the End of an Empire. Princeton University. Herzog, M., Oberhuber, J.M., Graf, H.-F., 2003. A Prognostic Turbulence Scheme for the Nonhydrostatic Plume Model ATHAM. J. Atmos. Sci. 2783–2796. Hildreth, W., Fierstein, J., 2012. The Novarupta-Katmai eruption of 1912—largest eruption of the twentieth century; centennial perspectives: U.S. Geological Survey Professional Paper 1791, p. 259. Insinga, D., Molisso, F., Lubritto, C., Sacchi, M., Passariello, I., Morra, V., 2008. The proximal marine record of Somma-Vesuvius volcanic activity in the Naples and Salerno bays, Eastern Tyrrhenian Sea, during the last 3 kyrs. J. Volcanol. Geotherm. Res. 177, 170–186. Jalali, B., Sicre, M.-A., Bassetti, M.-A., Kallel, N., 2016. Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions). Clim. Past 12, 91–101. Jalali, B., Sicre, M.-A., Klein, V., Schmidt, S., Maselli, V., Lirer, F., Bassetti, M., Toucanne, S., Jorry, S.J., Insinga, D.D., Petrosino, P., Chales, ˆ F., 2018. Deltaic and coastal sediments as recorders of mediterranean regional climate and human impact over the past three millennia. Paleoceanogr. Paleoclimatol. 33, 579–593. Jenkins, S., Komorowski, J.C., Baxter, P.J., Spence, R., Picquout, A., Lavigne, F., Surono, 2013. The Merapi 2010 eruption: an interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics. J. Volcanol. Geotherm. Res. 261, 316–329. Keenan-Jones, D., 2015. Somma-vesuvian ground movements and the water supply of pompeii and the bay of Naples. Am. J. Archaeol. 119, 191–215. https://doi.org/ 10.3764/AJA.119.2.0191. Keller, J., Ryan, W.B.F., Ninkovich, D., Altherr, R., 1978. Explosive volcanic activity in the Mediterranean over the past 200,000 yrs as recorded in deep-sea sediments. Geol. Soc. Am. Bull. 89, 591–604. Kent, D.V., Ninkovich, D., Pescatore, T., Sparks, R.S.J., 1981. Palaeomagnetic determination of emplacement temperature of Vesuvius AD 79 pyroclastic deposits. Nature 290, 393–396. Koyaguchi, T., Suzuki, Y.J., 2018. The condition of eruption column collapse: 1. A reference model based on analytical solutions. J. Geophys. Res. Solid Earth 123, 7461–7482. Koyaguchi, T., Suzuki, Y.J., Takeda, K., Inagawa, S., 2018. The condition of eruption column collapse: 2. Three-dimensional numerical simulations of eruption column dynamics. J. Geophys. Res. Solid Earth 123, 7483–7508. Lamb, H.H., 1995. Climate History and the Modern World, Second edition. Routledge, London, p. 433. Lanari, R., De Natale, G., Berardino, P., Sansosti, E., Ricciardi, G.P., Borgstrom, S., Capuano, P., Pingue, F., Troise, C., 2002. Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano. Geophys. Res. Lett. 29 https://doi.org/ 10.1029/2001gl014571, 6-1-6–4. Lanphere, M., et al., 2007. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy. Bull. Volcanol. 69, 259–263. Lirer, L., Pescatore, T., Booth, B., Walker, G.P.L., 1973. Two Plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol. Soc. Am. Bull. 84, 759–772. Lomax, A., Zollo, A., Capuano, P., Virieux, J., 2001. Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophys. J. Int. 146, 313–331. https://doi.org/10.1046/j.0956-540X.2001.01444.x. Luongo, G., Perrotta, A., Scarpati, C., 2003a. Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events. J. Volcanol. Geotherm. Res. 126, 201–223. Luongo, G., Perrotta, A., Scarpati, C., De Carolis, E., Patricelli, G., Ciarallo, A., 2003b. Impact of the AD 79 explosiv eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties. J. Volcanol. Geotherm. Res. 126, 169–200. Macedonio, G., Pareschi, M.T., Santacroce, R., 1988. A numerical simulation of the plinian fall phase of 79 AD eruption of Vesuvius. J. Geophys. Res. B: Solid Earth 93 (B12), 14817–14827. https://doi.org/10.1029/JB093iB12p14817. Macedonio, G., Pareschi, M.T., Santacroce, R., 1990. Renewal of explosive activity at Vesuvius: models for the expected tephra fallout. J. Volcanol. Geotherm. Res. 40, 327–342. Maiuri, A., 1958. Pompeii. Sci. Am. 198 (4), 68–82. Malin, M.C., Sheridan, M.F., 1982. Computer assisted mapping of pyroclastic surges. Science 217, 637–639. Manville, V., N´emeth, K., Kano, K., 2009. Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment. Geol. 220, 136–161. Marcaida, I., Maguregui, M., Morillas, H., Perez-Diez, S., Madariaga, J.M., 2019. Raman imaging to quantify the thermal transformation degree of Pompeian yellow ochre caused by the 79 AD Mount Vesuvius eruption. Anal. Bioanal. Chem. 411 (28), 7585–7593. Margaritelli, G., Vallefuoco, M., Di Rita, F., Capotondi, L., Bellucci, L.G., Insinga, D.D., Petrosino, P., Bonomo, S., Cacho, I., Cascella, A., Ferraro, L., Florindo, F., Lubritto, C., Lubritto, C., Lurcock, P.C., Magri, D., Pelosi, N., Rettori, R., Lirer, F., 2016. Marine response to climate changes during the last five millennia in the Central Mediterranean Sea. Glob. Planet. Chang. 142, 53–72. Marianelli, P., M´etrich, N., Santacroce, R., Sbrana, A., 1995. Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolocanoes. Contrib. Mineral. Petrol. 120, 159–169. Martí, J., Groppelli, G., da Silveira, A.B., 2018. Volcanic stratigraphy: a review. J. Volcanol. Geotherm. Res. 357, 68–91. Martí, J., Doronzo, D.M., Pedrazzi, D., Colombo, F., 2019. Topographical controls on small-volume pyroclastic flows. Sedimentology 66, 2297–2317. Martí, J., Zafrilla, S., Andujar, J., Jimenez-Mejias, M., Scaillet, B., Pedrazzi, D., Doronzo, D.M., Scaillet, S., 2020. Controls of magma chamber zonation on eruption dynamics and deposits stratigraphy: the case of El Palomar fallout succession (Tenerife, Canary Islands). J. Volcanol. Geotherm. Res. 399, 106908. Marturano, A., 2008. Sources of ground movement at Vesuvius before the AD 79 eruption: evidence from contemporary accounts and archaeological studies. J. Volcanol. Geotherm. Res. 177, 959–970. https://doi.org/10.1016/J. JVOLGEORES.2008.07.017. Marturano, A., Varone, A., 1997. L’eruzione vesuviana del 24 agosto del 79 dC attraverso le lettere di Plinio il Giovane e le nuove evidenze archeologiche, pp. 57–72. Marturano, A., Varone, A., 2005. The AD 79 eruption: seismic activity and effects of the eruption on Pompeii. In: Cultural responses to the volcanic landscape: the Mediterranean and beyond. Archaeological Institute of America, AIA colloquia and conference papers, Vol. 8, pp. 241–260. Marturano, A., Aiello, G., Barra, D., 2011. Evidence for Late Pleistocene uplift at the Somma-Vesuvius apron near Pompeii. J. Volcanol. Geotherm. Res. 202, 211–227. https://doi.org/10.1016/j.jvolgeores.2011.02.010. Marturano, A., Aiello, G., Barra, D., 2013. Somma-Vesuvius ground deformation over the last glacial cycle. J. Volcanol. Geotherm. Res. 255, 90–97. https://doi.org/10.1016/ j.jvolgeores.2013.02.007. Marzano, F.S., Mereu, L., Scollo, S., Donnadieu, F., Bonadonna, C., 2020. Tephra mass eruption rate from ground-based x-band and l-band microwave radars during the November 23, 2013, Etna Paroxysm. IEEE Trans. Geosci. Remote Sens. 58, 3314–3327. Matoza, R.S., Fee, D., Green, D., Mialle, P., 2019. Volcano Infrasound and the International Monitoring System. In Infrasound Monitoring for Atmospheric Studies, vol. 5. (Springer International Publishing, pp. 1023–1077. McCormick, M., Büntgen, U., Cane, M.A., Cook, E.R., Harper, K., Huybers, P., Litt, T., Manning, S.W., Mayewski, P.A., More, A.F.M., Nicolussi, K., Tegel, W., 2012. Climate Change during and after the Roman Empire: Reconstructing the past from Scientific and Historical evidence. J. Interdiscip. Hist. 43 (2), 169–220. Mensing, S.A., et al., 2015. 2700 years of Mediterranean environmental change in central Italy: a synthesis of sedimentary and cultural records to interpret past impacts of climate on society. Quat. Sci. Rev. 116, 72–94. Meo, M., Tammaro, U., Capuano, P., 2008. Influence of topography on ground deformation at Mt. Vesuvius (Italy) by finite element modelling. Int. J. Non. Linear. Mech. 43, 178–186. https://doi.org/10.1016/J.IJNONLINMEC.2007.12.005. Merlin, A., 1962. Ann´ee Epigraphique, 288. http://db.edcs.eu/epigr/epi_einzel.php?s_ sprache=it&p_belegstelle=AE+1962,+00288&r_sortierung=Belegstelle. Moin, P., Squires, K.D., Cabot, W.H., Lee, S., 1991. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3, 2746. Moitra, P., Sonder, I., Valentine, G.A., 2018. Effects of size and temperature-dependent thermal conductivity on the cooling of pyroclasts in air. Geochem. Geophys. Geosyst. 19, 3623–3636. Montone, P., Amato, A., Chiarabba, C., Buonasorte, G., Fiordelisi, A., 1995. Evidence of active extension in Quaternary volcanoes of Central Italy from breakout analysis and seismicity. Geophys. Res. Lett. 22, 1909–1912. https://doi.org/10.1029/ 95GL01326. Morgan, D.J., Blake, S., Rogers, N.W., De Vivo, B., Rolandi, G., Davidson, J.P., 2006. Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology 34, 845–848. Munno, R., Petrosino, P., 2004. New constraints on the occurrence of Y-3 Upper Pleistocene tephra marker layer in the Tyrrhenian Sea. Italian J. Quat. Sci. 17, 11–20. Muschitiello, F., Pausata, F.S.R., Lea, J.M., Mair, D.W.F., Wohlfarth, B., 2017. Enhanced ice sheet 351 melting driven by volcanic eruptions during the last deglaciation. Nat. Commun. 8 (1) https://doi.org/10.1038/s41467-017-01273-1, 352 1–9. N´emeth, K., Cronin, S.J., 2009. Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu. J. Volcanol. Geotherm. Res. 180 (2–4), 246–258. N´emeth, K., Palmer, J., 2019. Geological mapping of volcanic terrains: discussion on concepts, facies models, scales, and resolutions from New Zealand perspective. J. Volcanol. Geotherm. Res. 385, 27–45. Neri, A., Dobran, F., 1994. Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns. J. Geophys. Res. 99, 11833. Neri, A., Macedonio, G., 1996. Numerical simulation of collapsing volcanic columns with particles of two sizes. J. Geophys. Res. 101, 8153–8174. Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flow. J. Geophys. Res. 108, 2202. Neri, A., Esposti Ongaro, T., Menconi, G., de Michieli Vitturi, M., Cavazzoni, C., Erbacci, G., Baxter, P.J., 2007. 4D simulation of explosive eruption dynamics at Vesuvius. GRL 34. https://doi.org/10.1029/2006GL028597. Neri, A., Esposti, Ongaro T., de Michieli Vitturi, M., Cerminara, M., 2022. Multiphase Flow Modeling of Explosive Volcanic Eruptions. In: Transport Phenomena in Multiphase Systems. Mechanical Engineering Series. Springer, Cham. Osanna, M., 2021. Le impronte della morte: l’invenzione dei calchi dei pompeiani. In: Studi e ricerche del Parco archeologico di Pompei, vol. 46, pp. 45–65. Ed. L’Erma di Bretschneider. Osores, S., Ruiz, J., Folch, A., Collini, E., 2020. Volcanic ash forecast using ensemble based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF-FALL3D version 1.0). Geosci. Model Dev. 13, 1–22. Palladino, D.M., 2017. Simply pyroclastic currents. Bull. Volcanol. 79, 53. Papale, P., Dobran, F., 1993. Modeling of the ascent of magma during the plinian eruption of Vesuvius in A.D. 79. J. Volcanol. Geotherm. Res. 58 (1–4), 101–132. https://doi.org/10.1016/0377-0273(93)90104-Y. Pardini, F., et al., 2020. Ensemble-based data assimilation of volcanic ash clouds from satellite observations: application to the 24 december 2018 Mt. Etna explosive eruption. Atmosphere (Basel). 11, 1–31. Pepe, F., Di Donato, V., Insinga, D., Molisso, F., Faraci, C., Sacchi, M., Dera, R., Ferranti, L., Passaro, S., 2018. Seismic stratigraphy of upper Quaternary shallow water contourite drifts in the Gulf of Taranto (Ionian Sea, southern Italy). Mar. Geol. 397, 79–92. Pfeiffer, T., Costa, A., Macedonio, G., 2005. A model for the numerical simulation of tephra fall deposits. J. Volcanol. Geotherm. Res. 140, 273–294. Plunkett, G., Sigl, M., Schwaiger, H.F., Tomlinson, E.L., Toohey, M., McConnell, J.R., Pilcher, J.R., Hasegawa, T., Siebe, C., 2022. No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology. Clim. Past 18, 45–65. Prata, A.J., Grant, I.F., 2001. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: application to Mt Ruapehu, New Zealand. Q. J. R. Meteorol. Soc. 127, 2153–2179. Prata, A.J., Kerkmann, J., 2007. Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements. Geophys. Res. Lett. 34, L05813. Prata, G.S., Ventress, L.J., Carboni, E., Mather, T.A., Grainger, R.G., Pyle, D.M., 2019. A new parameterization of volcanic ash complex refractive index based on NBO/T and SiO2 content. J. Geophys. Res.-Atmos. 124, 1779–1797. https://doi.org/ 10.1029/2018JD028679. Principe, C., Rosi, M., Santacroce, R., Sbrana, A., 1987. Explanatory Notes to the Geological Map of Vesuvius, Quaderni de “La Ricerca Scientifica”. CNR, Roma. Pyle, D.M., 1989. The thickness, volume and grainsize of tephra fall deposits. Bull. Volcanol. 51, 1–15. Pyle, D.M., 2000. Sizes of Volcanic Eruptions. In: Encyclopedia of Volcanoes. Academic Press. Radiotelevisione Italiana, 2020. Pompei - Ultima Scoperta. Rai Documentari. Regattieri, E., Giaccio, B., Zanchetta, G., Drysdale, R.N., Galli, P., Nomade, S., Peronace, E., Wulf, S., 2015. Hydrological variability over Apennine during the Early Last Glacial precession minimum, as revealed by a stable isotope record from Sulmona basin, Central Italy. J. Quat. Sci. 30, 19–31. Ricciardi, G.P., 2009. Diario del Monte Vesuvio. Edizioni Scientifiche e Artistiche. Ricco, C., Petrosino, S., Aquino, I., Cusano, P., Madonia, P., 2021. Tracking the recent dynamics of Mt. Vesuvius from joint investigations of ground deformation, seismicity and geofluid circulation. Sci. Report. 1–14, 2021 111 11. doi:10.1038/ s41598-020-79636-w. Ripepe, M., De Angelis, S., Lacanna, G., Voight, B., 2010. Observation of infrasonic and gravity waves at Soufri`ere Hills Volcano, Montserrat. Geophys. Res. Lett. 37, L00E14. Rivista di Studi Pompeiani - vol. XXXII, 2021 (L’Erma di Bretschneider). Roche, O., 2015. Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts. Earth Planet. Sci. Lett. 418, 115–125. Rolandi, G., Paone, A., Di Lascio, M., Stefani, G., 2007. The 79 AD eruption of Somma: the relationship between the date of the eruption and the southeast tephra dispersion. J. Volcanol. Geotherm. Res. 169, 87–98. Rose, W.I., Wunderman, R.L., Hoffman, M.F., Gale, L., 1983. Atmospheric hazards of volcanic activity from a volcanologist’s point of view: Fuego and Mount St. Helens. J. Volcanol. Geotherm. Res. 17, 133–157. Rossi, E., Bonadonna, C., 2021. SCARLET-1.0: SpheriCal Approximation for viRtuaL aggrEgaTes. Geosci. Model Dev. 14, 4379–4400. Ruggieri, N., Galassi, S., Tempesta, G., 2020. The effect of pyroclastic flows of the 79 AD eruption of Mount Vesuvius on the Pompeii’s city walls. The case study of the sector near the Tower XI. J. Cult. Herit. 43, 235–241. Russo, G., Giberti, G., 2004. Numerical modeling of surface deformations on Mt. Vesuvius volcano (Italy) in presence of asymmmetric elastic heterogeneities. J. Volcanol. Geotherm. Res. 133, 41–54. Russo, G., Giberti, G., Sartoris, G., 1997. Numerical modeling of surface deformation and mechanical stability of Vesuvius volcano, Italy. J. Geophys. Res. Solid Earth 102, 24785–24800. https://doi.org/10.1029/97JB01776. Sacchi, M., Insinga, D., Milia, A., Molisso, F., Raspini, A., Torrente, M.M., Conforti, A., 2005. Stratigraphic signature of the Vesuvius 79 AD event off the Sarno prodelta system, Naples Bay. Mar. Geol. 222-223, 443–469. Sacchi, M., Molisso, F., Violante, C., Esposito, E., Insinga, D., Lubritto, C., Porfido, S., Toth, T., 2009. Insights into the flood-dominated fan-deltas: very high-resolution seismic examples off the Amalfi cliffed coasts, eastern Tyrrhenian Sea. Geol. Soc. Lond. Spec. Publ. 322, 33–71. Samartin, S., Heiri, O., Joos, F., Renssen, H., Franke, J., Bronnimann, ¨ S., Tinner, W., 2017. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 10, 207–212. Santacroce, R., 1987. Somma-Vesuvius. Quaderni de “La Ricerca Scientifica”. CNR, Roma. Scaillet, B., Pichavant, M., Cioni, R., 2008. Upward migration of Vesuvius magma chamber over the past 20,000 years. Nat. 216–219. https://doi.org/10.1038/ nature07232, 2008 4557210 455. Scandone, R., Giacomelli, L., 2001. The slow boiling of magma chambers and the dynamics of explosive eruptions. J. Volcanol. Geotherm. Res. 110, 121–136. Scandone, R., Giacomelli, L., Rosi, M., 2019. Death, survival and damaga during the 79 AD eruption of Vesuvius which destroyed Pompeii and Herculaneum. J. Res. Didactics Geogr. 2, 5–30. Scarpa, R., Tronca, F., Bianco, F., Del Pezzo, E., 2002. High resolution velocity structure beneath Mount Vesuvius from seismic array data. Geophys. Res. Lett. 29 https://doi. org/10.1029/2002GL015576, 36–1. Scarpati, C., Perrotta, A., Martellone, A., Osanna, M., 2020. Pompeian hiatuses: new stratigraphic data highlight pauses in the course of the AD 79 eruption at Pompeii. Geol. Mag. 157, 695–700. Sevink, J., De Neef, W., Di Vito, M.A., Arienzo, I., Attema, P.A.J., Van Loon, E.E., Ullrich, B., Den Haan, M., Ippolito, F., Noorda, N., 2020. A multidisciplinary study of an exceptional prehistoric waste dump in the mountainous inland of Calabria (Italy): implications for reconstructions of prehistoric land use and vegetation in Southern Italy. The Holocene. https://doi.org/10.1177/0959683620919974, 9/30 (2020). Shea, T., Gurioli, L., Houghton, B.F., Cioni, R., Cashman, K.V., 2011. Transition from stable to collapsing column during the 79AD eruption of Vesuvius: the role of pyroclats density. Geology 39 (7), 695–698. https://doi.org/10.1130/G32092.1. Shea, T., Gurioli, L., Houghton, B.F., 2012. Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull. Volcanol. 74, 2363–2381. https://doi.org/10.1007/s00445-012-0668-z. Sheridan, M.F., Malin, M.C., 1983. Application of computer assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari and Vesuvius. J. Volcanol. Geotherm. Res. 17, 187–202. Sheridan, M.F., Barberi, F., Rosi, M., Santacroce, R., 1981. A model of plinian eruptions of Vesuvius. Nature 289, 282–285. Shimizu, H.A., et al., 2021. Validation of a two-layer depth-averaged model by comparison with an experimental dilute stratified pyroclastic density current. Bull. Volcanol. 83, 1–12. Sicre, M.A., Jalali, B., Martrat, B., Schmidt, S., Bassetti, M.A., Kallel, N., 2016. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era. Earth Planet. Sc. Lett. 456, 124–133. Siebe, C., Abrams, M., Macias, J.L., Obenholzner, J., 1996. Repeated volcanic distasters in Prehispanic time at Popocat´epetl, Central Mexico: past key to the future? Geology 24, 399–402. Sigl, M., Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., et al., 2015. Timing and 397 climate forcing of volcanic eruptions for the past 2,500 years. Nature 523 (7562). https://doi.org/10.1038/nature14565, 543–549. 398. Sigurdsson, H., Carey, S., Cornell, W., Pescatore, T., 1985. The eruption of Vesuvius in a. D. 79, Natl. Geogr. Res. 3, 332–397. Sigurdsson, H., Cornell, W., Carey, S., 1990. Influence of magma withdrawal on compositional gradients during the AD 79 Vesuvius eruption. Nature 345, 519–521. Sohn, Y.K., Cronin, S.J., Brenna, M., Smith, I.E.M., N´emeth, K., White, J.D.L., Murtagh, R. M., Jeon, Y.M., Kwon, C.W., 2011. Ilchulbong tuff cone, Jeju Island, Korea, revisited; a compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases. Geol. Soc. Am. Bull. 124 (3–4), 259–274. Sparks, R.S.J., et al., 1997. Volcanic Plumes. Wiley, p. 574. Stefani, G., 2006. La vera data dell’eruzione. Archeo n. 10 (260) pagg. 10-13. Sulpizio, et al., 2008. Discriminating the long distance dispersal of fine ash from sustained columns or near ground ash clouds: the example of the Pomici di Avellino eruption (Somma-Vesuvius, Italy). J. Volcanol. Geotherm. Res. 177, 263–276. Sulpizio, et al., 2012. Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull. Volcanol. 74, 2205–2218.Sulpizio, R., Dellino, P., Doronzo, D.M., Sarocchi, D., 2014. Pyroclastic density currents: state of the art and perspectives. J. Volcanol. Geotherm. Res. 283, 36–65. Suzuki, T., 1983. A theoretical model for dispersion of tephra. In: Shimozuru, D., Yokoyama, I. (Eds.), Volcanism: Physics and Tectonics. Arc, Tokyo, pp. 95–113. Suzuki, Y.J., Koyaguchi, T., Ogawa, M., Hachisu, I., 2005. A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model. J. Geophys. Res. 110, B08201. Suzuki, Y.J., et al., 2016a. Inter-comparison of three-dimensional models of volcanic plumes. J. Volcanol. Geotherm. Res. 326, 26–42. Suzuki, Y.J., Costa, A., Koyaguchi, T., 2016b. On the relationship between eruption intensity and volcanic plume height: Insights from three-dimensional numerical simulations. J. Volcanol. Geotherm. Res. 326, 120–126. Tadini, A., Bevilacqua, A., Neri, A., Cioni, R., Biagioli, G., de Michieli Vitturi, M., Esposti Ongaro, T., 2021. Reproducing pyroclastic density current deposits of the 79CE eruption of the Somma–Vesuvius volcano using the box-model approach. Solid Earth 12, 119–139. https://doi.org/10.5194/se-12-119-2021. Tammaro, U., Riccardi, U., Romano, V., Meo, M., Capuano, P., 2021. Topography and structural heterogeneities in surface ground deformation: a simulation test for Somma-Vesuvius volcano. Adv. Geosci. 52, 145–152. https://doi.org/10.5194/ ADGEO-52-145-2021. Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., Pedergnana, M., Arellano, S., Galle, B., Fernandez, D., et al., 2019. Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor. Sci. Rep. 9, 1–10. Tierz, P., Stefanescu, E.R., Sandri, L., Sulpizio, R., Valentine, G.A., Marzocchi, W., Patra, A.K., 2018. Towards quantitative volcanic risk of pyroclastic density currents: Probabilistic hazard curves and maps around Somma-Vesuvius (Italy). J. Geophys. Res. Solid Earth 123, 6299–6317. https://doi.org/10.1029/2017JB015383. Todesco, M., Neri, A., Esposti, Ongaro T., Papale, P., Macedonio, G., Santacroce, R., Longo, A., 2002. Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical models. I. Large-scale dynamics. Bull. Volcanol. 64, 155–177. Toniolo, L., Amoretti, V., Gravina, E., Martinelli, R., Scala, P., Sparice, D., 2021. Da Mumia alle ultime vittime di Pompei: nuove ricerche nella villa di Civita Giuliana. Rivist. Studi Pomp. XXXII, 123–130. Tramparulo, F.D.A., Vitale, S., Isaia, R., Tadini, A., Bisson, M., Prinzi, E.P., 2018. Relation between alternating open/closed-conduit conditions and deformation patterns: an example from the Somma-Vesuvius volcano (southern Italy). J. Struct. Geol. 112, 138–153. https://doi.org/10.1016/J.JSG.2018.05.008. Trolese, M., Cerminara, M., Esposti Ongaro, T., Giordano, G., 2019. The footprint of column collapse regimes on pyroclastic flow temperatures and plume heights. Nat. Commun. 10. Valentine, G.A., 1987. Stratified flow in pyroclastic surges. Bull. Volcanol. 49, 616–630. Valentine, G.A., Doronzo, D.M., Dellino, P., de Tullio, M.D., 2011. Effects of volcano profile on dilute pyroclastic density currents: numerical simulations. Geology 39, 947–950. Vazquez, J.A., Ort, M.H., 2006. Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J. Volcanol. Geotherm. Res. 154, 222–236. Wilson, L., Walker, G.P.L., 1987. Explosive volcanic eruptions - VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys. J.R. Astron.Astron. Soc. 89, 657–679. Wulf, S., 2000. Das tephrochronologische Referenzprofil des Lago Grande di Monticchio - Eine detaillierte Stratigraphie des suditalienischen explosiven Vulkanismus der letzten 100.000 Jahre. Ph.D. Thesis, University of Potsdam, Germany, Scientific Technical. Report STR01/03, p. 124. Zanchetta, G., Sulpizio, R., Roberts, N., Cioni, R., Eastwood, W.J., Siani, G., Caron, B., Paterne, M., Santacroce, R., 2011. Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: an overview. The Holocene 21, 33–52. Zanchetta, G., Giraudi, C., Sulpizio, R., Magny, M., Drysdale, R.N., Sadori, L., 2012a. Constraining the onset of the Holocene “Neoglacial” over the Central Italy using tephra layers. Quat. Res. 78, 236–247. Zanchetta, G., van Welden, A., Baneschi, I., Drysdale, R.N., Sadori, L., Roberts, N., Giardini, M., Beck, C., Pascucci, V., 2012b. Multiproxy record for the last 4500 years from Lake Shkodra (Albania/Montenegro). J. Quat. Sci. 27, 780–789. Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R.N., Bini, M., Baneschi, I., Hellstrom, J. C., 2016. The so-called “4.2 event” in the Central Mediterranean and its climatic teleconnections. Alpine Medit. Quat. 29 (1), 5–17. Zanchetta, G., Bini, M., Di Vito, M.A., Sulpizio, R., Sadori, L., 2019. Tephrostratigraphy of paleoclimatic archives in Central Mediterranean during the Bronze Age. Quat. Int. 499, 186–194. Zanchetta, G., et al., 2020. I livelli vulcanoclastici: analisi chimica e considerazioni deposizionali. Il Musteriano di Grotta del Cavallo nel Salento (Scavi 1986-2005). Cultura e ambienti. Zanella, E., Gurioli, L., Pareschi, M.T., Lanza, R., 2007. Urban fabric influences on pyroclastic density currents at Pompeii (Italy): deposit temperature (part II). J. Geophys. Res. 112 (B5) https://doi.org/10.1029/2006JB004775. Zanella, E., Sulpizio, R., Gurioli, L., Lanza, R., 2014. Temperatures of the pyroclastic density currents deposits emplaced in the last 22 kyr at Somma-Vesuvius (Italy) Geological Society special Publications. In: Ort, M.H., Porreca, M., Geissman, J.W. (Eds.), The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, 396. Special Publications, Geological Society, London, pp. 13–33. Zollo, A., Gasparini, P., Virieux, J., Le Meur, H., De Natale, G., Biella, G., Boschi, E., Capuano, P., De Franco, R., Dell’Aversana, P., De Matteis, R., Guerra, I., Iannaccone, G., Mirabile, L., Vilardo, G., 1996a. Seismic evidence for a low-velocity zone in the upper crust beneath mount vesuvius. Science (80). 274, 592–594. https://doi.org/10.1126/science.274.5287.592. Zollo, A., Gasparini, P., Biella, G., De Franco, R., Buonocore, B., Mirabile, L., De Natale, G., Milano, G., Pingue, F., Vilardo, G., Bruno, P., De Matteis, R., Le Meur, H., Iannaccone, G., Deschamps, A., Virieux, J., Nardi, A., Frepoli, A., Hunstad, I., Guerra, I., 1996b. 2D seismic tomography of Somma-Vesuvius: description of the experiment and preliminary results. Ann. Geofis. 39, 471–486. https://doi.org/ 10.4401/ag-3983. Zollo, A., Marzocchi, W., Capuano, P., Lomax, A., Iannaccone, G., 2002. Space and Time Behavior of Seismic activity at Mt. Vesuvius Volcano, Southern Italy. Bull. Seismol. Soc. Am. 92, 625–640. https://doi.org/10.1785/0120000287. Zuccaro, G., Ianniello, D., 2004. Interaction of pyroclastic flows with building structures in an urban settlement: a fluid-dynamic simulation impact model. J. Volcanol. Geotherm. Res. 133, 345–352.
-
17Academic Journal
المؤلفون: Fabbrocino, Silvia, Bellucci Sessa, Eliana, de Vita, Sandro, Di Vito, Mauro Antonio, Avino, Rosario, Marotta, Enrica
المساهمون: 1 Department of Earth, Environment and Resources Science (DiSTAR), University of Naples Federico II, Naples, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia
مصطلحات موضوعية: groundwater map, hydrothermal system, conceptual model, volcanic island hydrogeology, spatial interpolation, GIS, Ischia Island
وصف الملف: application/pdf
Relation: Frontiers in Earth Science; /10(2022); Abdalla, F., Moubark, K., and Abdelkareem, M. (2020). Groundwater Potential Mapping Using GIS, Linear Weighted Combination Techniques and Geochemical Processes Identification, West of the Qena Area, Upper Egypt. J. Taibah Univ. Sci. 14 (1), 1350–1362. doi:10.1080/16583655.2020.1822646 Acocella, V., and Funiciello, R. (1999). The Interaction between Regional and Local Tectonics during Resurgent Doming: the Case of the Island of Ischia, Italy. J. Volcanol. Geotherm. Res. 88, 109–123. doi:10.1016/S0377-0273(98)00109-7 Aiuppa, A., Avino, R., Brusca, L., Caliro, S., Chiodini, G., D’Alessandro, W., et al. (2006). Mineral Control of Arsenic Content in Thermal Waters from Volcano Hosted Hydrothermal Systems: Insights from Island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem. Geol. 229, 313–330. doi:10. 1016/j.chemgeo.2005.11.004 Alessio, G., Esposito, E., Ferranti, L., Mastrolorenzo, G., and Porfido, S. (1996). Correlazione tra sismicità ed elementi strutturali nell’isola d’Ischia. Il Quat. 9, 303–308. Atkinson, T. C., and Davison, R. M. (2002). Is the Water Still Hot? Sustainability and the Thermal Springs at Bath, 193. England: Geological Society, London, Special Publications, 15–40. doi:10.1144/GSL.SP.2002.193.01.02 Bear, J. (20071979). Hydraulics of Groundwater. Republishing of the edition published by. New York: McGraw-Hill Book Co.Dover Publication, 592. Bellucci Sessa, E., Castellano, M., and Ricciolino, P. (2021). GIS Applications in Volcano Monitoring: the Study of Seismic Swarms at the Campi Flegrei Volcanic Complex, Italy. Adv. Geosci. 52, 131–144. doi:10.5194/adgeo-52- 131-2021 Bense, V. F., Shipton, Z. K., Kremer, Y., and Kampman, N. (2016). Fault Zone Hydrogeology: Introduction to the Special Issue. Geofluids 16, 655–657. doi:10. 1111/gfl.12205 Berrino, G., Vajda, P., Zahorec, P., Camacho, A. G., De Novellis, V., Carlino, S., et al. (2021). Interpretation of Spatiotemporal Gravity Changes Accompanying the Earthquake of 21 August 2017 on Ischia (Italy). Contrib. Geophys. Geod. 51 (4), 345–371. doi:10.31577/congeo.2021.51.4.3 Bourgine, B., Saltel, M., Pedron, N., and Lavie, E. (2017). “Building Piezometric Maps: Contribution of Geostatistical Tools,” in Geostatistics Valencia 2016. Quantitative Geology and Geostatistics. Editors J. Gómez-Hernández, J. Rodrigo-Ilarri, M. Rodrigo-Clavero, E. Cassiraga, and J. Vargas-Guzmán (Cham: Springer), 19, 761–776. doi:10.1007/978-3-319-46819-8_52 Brown, R. J., Orsi, G., and de Vita, S. (2008). New Insights into Late Pleistocene Explosive Volcanic Activity and Caldera Formation on Ischia (Southern Italy). Bull. Volcanol. 70, 583–603. doi:10.1007/s00445-007-0155-0 Bruno, P. P. G., de Alteriis, G., and Florio, G. (2002). The Western Undersea Section of the Ischia Volcanic Complex (Italy, Tyrrhenian Sea) Inferred by Marine Geophysical Data. Geophys. Res. Lett. 29, 57–61. doi:10.1029/ 2001GL013904 Burrough, P. A., and McDonnell, R. A. (1998). Principles of Geographical Information Systems. 2nd ed. Oxford: Oxford University Press, 352. Caliro, S., Panichi, C., and Stanzione, D. (1999). Variation in the Total Dissolved Carbon Isotope Composition of Thermal Waters of the Island of Ischia (Italy) and its Implications for Volcanic Surveillance. J. Volcanol. Geotherm. Res. 90, 219–240. doi:10.1016/S0377-0273(99)00027-X Carapezza, M., Hauser, S., Parello, F., Scelsi, E., Valenza, M., Favara, R., et al. (1988). Preliminary Studies on the Geothermal Fluids of the Island of Ischia: Gas Geochemistry. Rendiconti della Soc. Ital. Mineral. Petrol. 43, 967–974. Available at: http://hdl.handle.net/2122/14010. Carlino, S., Cubellis, E., Luongo, G., and Obrizzo, F. (2006). On the Mechanics of Caldera Resurgence of Ischia Island (Southern Italy), 269. London: Geological Society, London, Special Publication, 181–193. doi:10.1144/gsl.sp.2006.269. 01.12 Carlino, S., Sbrana, A., Pino, N. A., Marianelli, P., Pasquini, G., De Martino, P., et al. (2022). The Volcano-Tectonics of the Northern Sector of Ischia Island Caldera (Southern Italy): Resurgence, Subsidence and Earthquakes. Front. Earth Sci. 10, 1–16. doi:10.3389/feart.2022.730023 Carlino, S., Somma, R., Troiano, A., Di Giuseppe, M. G., Troise, C., and De Natale, G. (2014). The Geothermal System of Ischia Island (Southern Italy): Critical Review and Sustainability Analysis of Geothermal Resource for Electricity Generation. Renew. Energy 62, 177–196. doi:10.1016/j.renene.2013.06.052 Celico, P., Stanzione, D., Esposito, L., Formica, F., Piscopo, V., and De Rosa, B. M. (1999). La complessità idrogeologica di un’area vulcanica attiva: l’Isola d’Ischia (Napoli-Campania). Boll. Soc. Geol. Ital. 118, 485–504. Chiodini, G., Avino, R., Brombach, T., Caliro, S., Cardellini, C., De Vita, S., et al. (2004). Fumarolic and Diffuse Soil Degassing West of Mount Epomeo, Ischia, Italy. J. Volcanol. Geotherm. Res. 133, 291–309. doi:10.1016/S0377-0273(03)00403-7 De Gennaro, M., Ferreri, M., Ghiara, M. R., and Stanzione, D. (1984). Geochemistry of Thermal Waters on the Island of Ischia (Campania, Italy). Geothermics 13, 361–374. doi:10.1016/0375-6505(84)90050-6 De Novellis, V., Carlino, S., Castaldo, R., Tramelli, A., De Luca, C., Pino, N. A., et al. (2018). The 21 August 2017 Ischia (Italy) Earthquake Source Model Inferred from Seismological, GPS, and DInSAR Measurements. Geophys. Res. Lett. 45 (5), 2193–2202. doi:10.1002/2017GL076336 de Vita, S., Sansivero, F., Orsi, G., and Marotta, E. (2006). Cyclical Slope Instability and Volcanism Related to Volcano-Tectonism in Resurgent Calderas: the Ischia Island (Italy) Case Study. Eng. Geol. 86, 148–165. doi:10.1016/j.enggeo.2006.02.013 de Vita, S., Sansivero, F., Orsi, G., Marotta, E., and Piochi, M. (2010). Volcanological and Structural Evolution of the Ischia Resurgent Caldera (Italy) over the Past 10 Ky, 464. USA: The Geological Society of America, Special Paper, 193–239. doi:10.1130/2010.2464(10) Della Seta, M., Esposito, C., Fiorucci, M., Marmoni, G. M., Martino, S., Sottili, G., et al. (2021). “Thermal Monitoring to Infer Possible Interactions between Shallow Hydrothermal System and Slope-Scale Gravitational Deformation of Mt Epomeo (Ischia Island, Italy),” in Volcanic Island: From Hazard Assessment to Risk Mitigation. Editors E. Marotta, L. D’Auria, F. Zaniboni, and R. Nave (London: Geological Society, London, Special Publications), 519, SP519–2020. doi:10.1144/SP519-2020-131 Della Seta, M., Marotta, E., Orsi, G., de Vita, S., Sansivero, F., and Fredi, P. (2012). Slope Instability Induced by Volcano-Tectonics as an Additional Source of Hazard in Active Volcanic Areas: The Case of Ischia Island (Italy). Bull. Volcanol. 74, 79–106. doi:10.1007/s00445-011-0501-0 Di Napoli, R., Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., Candela, E. G., et al. (2009). A Model for Ischia Hydrothermal System: Evidences from the Chemistry of Thermal Groundwaters. J. Volcanol. Geotherm. Res. 186, 133–159. doi:10.1016/j.jvolgeores.2009.06.005 Di Napoli, R., Martorana, R., Orsi, G., Aiuppa, A., Camarda, M., De Gregorio, S., et al. (2011). The Structure of a Hydrothermal System from an Integrated Geochemical, Geophysical, and Geological Approach: the Ischia Island Case Study. Geochem. Geophys. Geosyst. 12, 1–25. doi:10.1029/2010GC003476 Díaz-Alcaide, S., and Martínez-Santos, P. (2019). Review: Advances in Groundwater Potential Mapping. Hydrogeol. J. 27, 2307–2324. doi:10.1007/ s10040-019-02001-3 Domenico, P. A., and Schwartz, F. W. (1998). in Physical and Chemical Hydrogeology. 2nd ed (NY: John Wiley & Sons), 506. ESRI (2011). ArcGIS Desktop: Release 10. Redlands, CA, USA: Environmental Systems Research Institute, Inc. Etherington, T. R. (2020). Discrete Natural Neighbour Interpolation with Uncertainty Using Cross-Validation Error-Distance Fields. PeerJ Comput. Sci. 6, e282. doi:10.7717/peerj-cs.282 Felpeto, A., Martí, J., and Ortiz, R. (2007). Automatic GIS-Based System for Volcanic Hazard Assessment. J. Volcanol. Geotherm. Res. 166 (2), 106–116. doi:10.1016/j.jvolgeores.2007.07.008 Frisbee, M. D., Tolley, D. G., and Wilson, J. L. (2017). Field Estimates of Groundwater Circulation Depths in Two Mountainous Watersheds in the Western U.S. And the Effect of Deep Circulation on Solute Concentrations in Streamflow. Water Resour. Res. 53, 2693–2715. doi:10.1002/2016WR019553 Herrera, C., and Custodio, E. (2008). Conceptual Hydrogeological Model of Volcanic Easter Island (Chile) after Chemical and Isotopic Surveys. Hydrogeol. J. 16, 1329–1348. doi:10.1007/s10040-008-0316-z Inguaggiato, S., Pecoraino, G., and D’Amore, F. (2000). Chemical and Isotopical Characterisation of Fluid Manifestations of Ischia Island (Italy). J. Volcanol. Geotherm. Res. 99, 151–178. doi:10.1016/S0377-0273(00)00158-X Isaaks, E. H., and Srivastava, R. M. (1989). Applied Geostatistics. New York: Oxford University Press, 561. Izquierdo, T. (2014). Conceptual Hydrogeological Model and Aquifer System Classification of a Small Volcanic Island (La Gomera; Canary Islands). Catena 114, 119–128. doi:10.1016/j.catena.2013.11.006 Join, J.-L., Folio, J.-L., and Robineau, B. (2005). Aquifers and groundwater within active shield volcanoes. Evolution of conceptual models in the Piton de la Fournaise volcano. J. Volcanol. Geotherm. Res. 147, 187–201. doi:10.1016/j. jvolgeores.2005.03.013 Kamińska, A., and Grzywna, A. (2014). Comparison of Deteministic Interpolation Methods for the Estimation of Groundwater Level. J. Ecol. Eng. 15/4, 55–60. doi:10.12911/22998993.1125458 Kicsiny, R., Piscopo, V., Scarelli, A., and Varga, Z. (2021). Game-theoretical Model for the Sustainable Use of Thermal Water Resources: the Case of Ischia Volcanic Island (Italy). Environ. Geochem Health 44, 2021. doi:10.1007/ s10653-021-00871-9(0123456789 Li, J., and Heap, A. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Australia: Geoscience Australia, 137. Record 2008/23. Li, J., and Heap, A. D. (2014). Spatial Interpolation Methods Applied in the Environmental Sciences: A Review. Environ. Model. Softw. 53, 173–189. doi:10. 1016/j.envsoft.2013.12.008 Marotta, E., and de Vita, S. (2014). The Role of Pre-existing Tectonic Structures and Magma Chamber Shape on the Geometry of Resurgent Blocks: Analogue Models. J. Volcanol. Geotherm. Res. 272, 23–38. doi:10.1016/j.jvolgeores.2013. 12.005 Molin, P., Acocella, V., and Funiciello, R. (2003). Structural, Seismic and Hydrothermal Features at the Border of an Active Intermittent Resurgent Block: Ischia Island (Italy). J. Volcanol. Geotherm. Res. 121, 65–81. doi:10.1016/ S0377-0273(02)00412-2 Morell, I., Pulido-Bosch, A., Daniele, L., and Cruz, J. V. (2008). Chemical and Isotopic Assessment in Volcanic Thermal Waters: Cases of Ischia (Italy) and São Miguel (Azores, Portugal). Hydrol. Process. 22, 4386–4399. Hydrological Processes Published online in Wiley InterScience ()Available at: www. interscience.wiley.com. doi:10.1002/hyp.7042 Musashi, J. P., Pramoedyo, H., and Fitriani, R. (2018). Comparison of Inverse Distance Weighted and Natural Neighbor Interpolation Method at Air Temperature Data in Malang Region. Cauchy 5 (2), 48–54. doi:10.18860/ca. v5i2.4722 Myers, D. E. (1994). Spatial Interpolation: an Overview. Geoderma 62, 17–28. doi:10.1016/0016-7061(94)90025-6 Nappi, R., Alessio, G., Gaudiosi, G., Nave, R., Marotta, E., Siniscalchi, V., et al. (2018). The 21 August 2017 Md 4.0 Casamicciola Earthquake: First Evidence of Coseismic Normal Surface Faulting at the Ischia Volcanic Island. Seismol. Res. Lett. 89 (4), 1323–1334. doi:10.1785/0220180063 Nappi, R., Porfido, S., Paganini, E., Vezzoli, L., Ferrario, M. F., Gaudiosi, G., et al. (2021). The 2017, MD = 4.0, Casamicciola Earthquake: ESI-07 Scale Evaluation and Implications for the Source Model. Geosciences 11 (2), 44. doi:10.3390/ geosciences11020044 Nistor, M. M., Rahardjo, H., Satyanaga, A., Hao, K. Z., Xiaosheng, Q., and Sham, A. W. L. (2020). Investigation of Groundwater Table Distribution Using Borehole Piezometer Data Interpolation: Case Study of Singapore. Eng. Geol. 271, 105590. ISSN 0013-7952. doi:10.1016/j.enggeo.2020.105590 O’Sullivan, D., and Unwin, D. J. (2010). Geographic Information Analysis. 2nd ed. NY: John Wiley & Sons, 432. Ochoa-González, G. H., Carreón-Freyre, D., Cerca, M., and López-Martínez, M. (2015). Assessment of Groundwater Flow in Volcanic Faulted Areas. A Study Case in Queretaro, Mexico. Geofísica Int. 54 (3), 199–220. doi:10.1016/j.gi.2015. 04.016 Orsi, G., Patella, D., Piochi, M., and Tramacere, A. (1999). Magnetic Modelling of the Phlegrean Volcanic District with Extension to the Ponza Archipelago, Italy. J. Volcanol. Geotherm. Res. 91 (2-4), 345–360. doi:10.1016/S0377-0273(99)00043-8 Orsi, G., Gallo, G., and Zanchi, A. (1991). Simple-shearing Block Resurgence in Caldera Depressions. A Model from Pantelleria and Ischia. J. Volcanol. Geotherm. Res. 47, 1–11. doi:10.1016/0377-0273(91)90097-J Panichi, C., Bolognesi, L., Ghiara, M. R., Noto, P., and Stanzione, D. (1992). Geothermal Assessment of the Island of Ischia (Southern Italy) from Isotopic and Chemical Composition of the Delivered Fluids. J. Volcanol. Geotherm. Res. 49, 329–348. doi:10.1016/0377-0273(92)90021-5 Pareschi, M. T., Cavarra, L., Favalli, M., Giannini, F., and Meriggi, A. (2000). GIS and Volcanic Risk Management. Nat. Hazards 21, 361–379. doi:10.1023/A: 1008016304797 Piscopo, V., Formica, F., Lana, L., Lotti, F., Pianese, L., and Trifuoggi, M. (2020a). Relationship between Aquifer Pumping Response and Quality of Water Extracted from Wells in an Active Hydrothermal System: The Case of the Island of Ischia (Southern Italy). Water 12, 2576. doi:10.3390/w12092576 Piscopo, V., Lotti, F., Formica, F., Lana, L., and Pianese, L. (2020b). Groundwater Flow in the Ischia Volcanic Island (Italy) and its Implications for Thermal Water Abstraction. Hydrogeol. J. 28 (28), 579–601. doi:10.1007/s10040-019-02070-4 Rad, S. D., Allègre, C. J., and Louvat, P. (2007). Hidden Erosion on Volcanic Islands. Earth Planet. Sci. Lett. 262, 109–124. doi:10.1016/j.epsl.2007.07.019 Sbrana, A., Marianelli, P., and Pasquini, G. (2018). Volcanology of Ischia (Italy). J. Maps 14 (2), 494–503. doi:10.1080/17445647.2018.1498811 Sbrana, A., and Toccaceli, R. M. (2011). Carta Geologica della regione Campania in scala 1:10.000 – Foglio 464, Isola di Ischia. Note illustrative.Regione Campania, Assessorato Difesa del Suolo. Firenze: Litografia artistica cartografica. Selva, J., Acocella, V., Bisson, M., Caliro, S., Costa, A., Della Seta, M., et al. (2019). Multiple Natural Hazards at Volcanic Islands: a Review for the Ischia Volcano (Italy). J. Appl. Volcanol. 8 (5), 1–43. doi:10.1186/s13617-019-0086-4 Sepe, V., Atzori, S., and Ventura, G. (2007). Subsidence Due to Crack Closure and Depressurization of Hydrothermal Systems: a Case Study from Mt Epomeo (Ischia Island, Italy). Terra nova. 19, 127–132. doi:10.1111/j.1365-3121.2006. 00727 Servizio Geologico d’Italia (2018). Geological Map of Italy, F 464 Isola d’Ischia. 1: 25000. ISPRA Roma: ISPRA Geological Survey of Italy. Sibson, R. (1981). “A Brief Description of Natural Neighbor Interpolation (Chapter 2),” in Interpreting Multivariate Data. Editor V. Barnett (Chichester: John Wiley), 21–36. Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H. H. (2014). Thematic Cartography and Geovisualization. Harlow: Pearson Education Limited. Soulios, G. (2010). Springs (Classification, Function, Capturing). geosociety 43, 196–2015. doi:10.12681/bgsg.11174 Spinoni, J., Naumann, G., Vogt, J. V., and Barbosa, P. (2015). The Biggest Drought Events in Europe from 1950 to 2012. J. Hydrology Regional Stud. 3, 509–524. doi:10.1016/j.ejrh.2015.01.001 Trasatti, E., Acocella, V., Di Vito, M. A., Del Gaudio, C., Weber, G., Aquino, I., et al. (2019). Magma Degassing as a Source of Long-Term Seismicity at Volcanoes: The Ischia Island (Italy) Case. Geophys. Res. Lett. 46, 14421–14429. doi:10.1029/ 2019GL085371 Tsidaev, A. (2016). Parallel Algorithm for Natural Neighbor Interpolation. CEUR Workshop Proc. 1729, 78–83. http://ceur-ws.org/Vol-1729/paper-10.pdf. Varisco, S., Beretta, G. P., Raffaelli, L., Raimondi, P., and Pedretti, D. (2021). Model-Based Analysis of the Link between Groundwater Table Rising and the Formation of Solute Plumes in a Shallow Stratified Aquifer. Pollutants 1, 66–86. doi:10.3390/pollutants1020007 Vezzoli, L. (1988). “Island of Ischia,” in CNR Quaderni de “La ricerca scientifica”. Editor L. Vezzoli, 122. 114–10. Vezzoli, L., Principe, C., Malfatti, J., Arrighi, S., Tanguy, J.-C., and Le Goff, M. (2009). Modes and Times of Caldera Resurgence: The. J. Volcanol. Geotherm. Res. 186, 305–319. doi:10.1016/j.jvolgeores.2009.07.008 Vittecoq, B., Reninger, P. A., Violette, S., Martelet, G., Dewandel, B., and Audru, J. C. (2015). Heterogeneity of Hydrodynamic Properties and Groundwater Circulation of a Coastal Andesitic Volcanic Aquifer Controlled by Tectonic Induced Faults and Rock Fracturing - Martinique Island (Lesser Antilles - FWI). J. Hydrology 529, 1041–1059. doi:10.1016/j.jhydrol.2015.09.022 Webster, R., and Oliver, M. (2001). Geostatistics for Environmental Scientists Statistics in Practice. Chichester: Wiley, 271
-
18Book
المؤلفون: Della Seta, M., Esposito, C, Fiorucci, M, Marmoni, Gian Marco, Martino, S., Sottili, Gianluca, Belviso, Pasquale, Carandente, Antonio, de Vita, Sandro, Marotta, Enrica, Peluso, Rosario
المساهمون: Earth Sciences Department of Sapienza, University of Rome and CERI – Research Centre for Geological Risk, P.le Aldo Moro 5, I-00185 Rome, Italy, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia
مصطلحات موضوعية: Thermal monitoring, interactions, hydrothermal system, slope-scale gravitational deformation, Mt Epomeo, Ischia Island, Italy
وصف الملف: application/pdf
Relation: Volcanic Island: from Hazard Assessment to Risk Mitigation; Acocella, V. and Funiciello, R. 1999. The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. Journal of Volcanology and Geothermal Research, 88, 109–123, https://doi.org/10.1016/S0377-0273(98) 00109-7 AGIP 1987. Geologia e geofisica del sistema geotermico dei Campi Flegrei. Technical report. Settore Esplorazione e Ricerca Geotermica – Metodologie per l’Esplorazione Geotermica. San Donato Milanese, Italy. Altaner, S., Demosthenous, C., Pozzuoli, A. and Rolandi, G. 2013. Alteration history of Mount Epomeo Green Tuff and a related polymictic breccia, Ischia Island, Italy: evidence for debris avalanche. Bulletin of Volcanology, 75, https://doi.org/10.1007/s00445-013- 0718-1 Baron, I., Beckovsky, D. and Mıca, L. 2012. Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides, 11, 15–27, https://doi.org/10.1007/s10346-012- 0367-z Becerril, L., Galve, J.P., Morales, J.M., Romero, C., Sánchez, N., Martí, J. and Galindo, I. 2016. Volcano-structure of El Hierro (Canary Islands). Journal of Maps, 12, 43–52, https://doi.org/10.1080/17445647.2016. 1157767 Bonaccorso, A., Bonforte, A. and Gambino, S. 2010. Thermal expansion-contraction and slope instability of a fumaroles field inferred from geodetic measurements at Vulcano. Bulletin of Volcanology, 72, 791–801, https://doi.org/10.1007/s00445-010-0366-7 Bonaccorso, A., Currenti, G. and Del Negro, C. 2013. Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability: a thirty years study at Mt Etna volcano. Journal of Volcanology and Geothermal Research, 251, 127–136, https://doi.org/10. 1016/j.jvolgeores.2012.06.002 Borselli, L., Capra, L., Sarocchi, D. and De la Cruz-Reyna, S. 2011. Flank collapse scenarios at Volcán de Colima, Mexico: a relative instability analysis. Journal of Volcanology and Geothermal Research, 208, 51–65, https://doi.org/10.1016/j.jvolgeores.2011.08.004 Bozzano, F., Gaeta, M., Lenti, L., Martino, S., Paciello, A., Palladino, D.M. and Sottili, G. 2013. Modeling the effects of eruptive and seismic activities on flank instability at Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 118, 5252–5273, https://doi. org/10.1002/jgrb.50377 Brantut, N., Heap, M.J., Meredith, P.G. and Baud, P. 2013. Time-dependent cracking and brittle creep in crustal rocks: a review. Journal of Structural Geology, 52, 17–43, https://doi.org/10.1016/j.jsg.2013.03.007 Brown, R.J., Orsi, G. and de Vita, S. 2008. New insights into late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bulletin of Volcanology, 70, 583–603, https://doi.org/10.1007/ s00445-007-0155-0 Browne, P.R.L. 1978. Hydrothermal alteration in active geothermal fields. Annual Review of Earth and Planetary Sciences, 6, 229–250, https://doi.org/10.1146/ annurev.ea.06.050178.001305 Buchner, G., Italiano, A. and Vita-Finzi, C. 1996. Recent uplift of Ischia, southern Italy. Geological Society, London, Special Publications, 110, 249–252, https://doi. org/10.1144/GSL.SP.1996.110.01.19 Calvari, S., Spampinato, L. et al. 2005. Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. Journal of Geophysical Research: Solid Earth, 110, 1–23, https://doi.org/10. 1029/2004JB003129 Cannata, A., Diliberto, I.S. et al. 2012. Multiparametric approach in investigating volcano-hydrothermal systems: the case study of Vulcano (Aeolian Islands, Italy). Pure and Applied Geophysics, 169, 167–182, https://doi.org/10.1007/s00024-011-0297-z Carlino, S. 2012. The process of resurgence for Ischia Island (southern Italy) since 55 ka: the laccolith model and implications for eruption forecasting. Bulletin of Volcanology, 74, 947–961, https://doi.org/10. 1007/s00445-012-0578-0 Carlino, S. 2018. Heat flow and geothermal gradients of the Campania region (Southern Italy) and their relationship to volcanism and tectonics. Journal of Volcanology and Geothermal Research, 365, 23–37, https://doi.org/10. 1016/j.jvolgeores.2018.10.015 Carlino, S., Somma, R., Troiano, A., Di Giuseppe, M.G., Troise, C. and De Natale, G. 2014. The geothermal system of Ischia Island (southern Italy): critical review and sustainability analysis of geothermal resource for electricity generation. Renewable Energy, 62, 177–196, https://doi.org/10.1016/j.renene.2013.06. 052 Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G. and Calore, C. 1991. Geothermal ranking of Italian territory. Geothermics, 24, 115–129, https://doi.org/10.1016/ 0375-6505(94)00026-9 Chen, L., Wang, C.P., Liu, J.F., Liu, Y.M., Liu, J., Su, R. and Wang, J. 2014. A damage-mechanism-based creep model considering temperature effect in granite. Mechanics Research Communications, 56, 76–82, https://doi.org/10.1016/j.mechrescom.2013.11.009 Chiocci, F.L. and de Alteriis, G. 2006. The ischia debris avalanche: first clear submarine evidence in the Mediterranean of a volcanic island prehistorical collapse. Terra Nova, 18, 202–209, https://doi.org/10.1111/j. 1365-3121.2006.00680.x Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L. and Ventura, G. 2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. Journal of Geophysical Research: Solid Earth, 106, 16213–11622, https://doi.org/10.1029/2001JB 000246 Chiodini, G., Avino, R. et al. 2004. Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia (Italy). Journal of Volcanology and Geothermal Research, 133, 291–309, https://doi.org/10.1016/S0377-0273 (03)00403-7 Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A. and Werner, C. 2005. Carbon dioxide diffuse degassing: implications on the energetic state of a volcanic hydrothermal systems. Journal of Geophysical Research: Solid Earth, 110, B08204, https://doi.org/ 10.1029/2004JB003542 Civetta, L., De Vivo, A., Orsi, G. and Polara, G. 1999. Il vulcanismo a Ischia in età greco-romana secondo le evidenze geologiche e le testimonianze storico-letterarie. Vichiana: Rass. Stu. Filolog. Stor., 4a serie, Anno I, 1, 15–32. Coppola, D., Staudacher, T. and Cigolini, C. 2007. Field thermal monitoring during the August 2003 eruption at Piton de la Fournaise (La Réunion). Journal of Geophysical Research: Solid Earth, 112, 1–15, https://doi. org/10.1029/2006JB004659 Costa, A., Dell’Erba, F., Di Vito, M.A., Isaia, R., Macedonio, G., Orsi, G. and Pfeiffer, T. 2009. Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bulletin of Volcanology, 71, 259, https://doi. org/10.1007/s00445-008-0220-3 Cubellis, E., Luongo, G., Obrizzo, F., Sepe, V. and Tammaro, U. 2020. Contribution to knowledge regarding the sources of earthquakes on the island of Ischia (Southern Italy). Natural Hazards, 100, 955–994, https://doi.org/10.1007/s11069-019-03833-8 Currenti, G., Napoli, R., Coco, A. and Privitera, E. 2017. Effects of hydrothermal unrest on stress and deformation: insights from numerical modeling and application to Vulcano Island (Italy). Bulletin of Volcanology, 79, 28, https://doi.org/10.1007/s00445-017-1110-3 D’Auria, L., Giudicepietro, F. et al. 2018. The seismicity of Ischia island. Seismological Research Letters, 89, 1750–1760, https://doi.org/10.1785/0220180084 Day, S.J. 1996. Hydrothermal pore fluid pressure and the stability of porous, permeable volcanoes. Geological Society, London, Special Publications, 110, 77–93, https://doi.org/10.1144/GSL.SP.1996.110.01.06 de Alteriis, G. and Violante, C. 2009. Catastrophic landslides off Ischia volcanic island (Italy) during prehistory. Geological Society, London, Special Publications, 322, 73–104, https://doi.org/10.1144/SP322.3 de Alteriis, G., Insinga, D. et al. 2010. Age of submarine debris avalanches and tephrostratigraphy offshore Ischia Island, Tyrrhenian Sea, Italy. Marine Geology, 278, 1–18, https://doi.org/10.1016/j.margeo.2010. 08.004 De Gennaro, M., Ferreri, M., Ghiara, M.R. and Stanzione, D. 1984. Geochemistry of thermal waters on the Island of Ischia (Campania, Italy). Geothermics, 13, 361–374, https://doi.org/10.1016/0375-6505(84)90050-6 Della Seta, M., Marotta, E., Orsi, G., de Vita, S., Sansivero, F. and Fredi, P. 2012. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy). Bulletin of Volcanology, 74, 79–106, https://doi.org/ 10.1007/s00445-011-0501-0 Della Seta, M., Esposito, C., Marmoni, G.M., Martino, S., Paciello, A., Perinelli, C. and Sottili, G. 2015. Geological constraints for a conceptual evolutionary model of the slope deformations affecting Mt Nuovo at Ischia (Italy). Italian Journal of Engineering Geology and Environment, 2, 15–29, https://doi.org/10.4408/ IJEGE.2015-02.O-02 del Potro, R. and Hürlimann, M. 2009. The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife. Engineering Geology, 104, 135–143, https://doi.org/10.1016/j.enggeo. 2008.09.005 Del Prete, S. and Mele, R. 2006. Il contributo delle informazioni storiche per la valutazione della propensione al dissesto nell’Isola d’Ischia. Rendiconti Società Geologica Italiana, 2, 29–47. De Novellis, V., Carlino, S. et al. 2018. The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophysical Research Letters, 45, 2193–2202, https:// doi.org/10.1002/2017GL076336 de Vita, S., Sansivero, F., Orsi, G. and Marotta, E. 2006. Cyclical slope instability and volcanism related to volcano-tectonism in resurgent calderas: the Ischia island (Italy) case study. Engineering Geology, 86, 148–165, https://doi.org/10.1016/j.enggeo.2006.02.013 de Vita, S., Sansivero, F., Orsi, G., Marotta, E. and Piochi, M. 2010. Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 ky. The Geological Society of America, Special Papers, 464, 193–239, https://doi.org/10.1130/2010.2464(10) Di Napoli, R., Aiuppa, A. et al. 2009. A model for Ischia hydrothermal system: evidences from the chemistry of thermal groundwaters. Journal of Volcanology and Geothermal Research, 186, 133–159, https://doi.org/ 10.1016/j.jvolgeores.2009.06.005 Di Napoli, R., Martorana, R. et al. 2011. The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: the Ischia Island case study. Geochemistry, Geophysics, Geosystems, 12, 1–25, https://doi.org/10.1029/2010GC003476 Di Napoli, R., Federico, C., Aiuppa, A., D’Antonio, M. and Valenza, M. 2013. Quantitative models of hydrothermal fluid–mineral reaction: the Ischia case. Geochimica et Cosmochimica Acta, 105, 108–129, https://doi.org/ 10.1016/j.gca.2012.11.039 Donnadieu, F., Merle, O. and Besson, J.C. 2001. Volcanic edifice stability during cryptodome intrusion. Bulletin of Volcanology, 63, 61–72, https://doi.org/10.1007/ s004450000122 Farquharson, J., Heap, M.J., Baud, P., Reuschlé, T. and Varley, N.R. 2016. Pore pressure embrittlement in a volcanic edifice. Bulletin of Volcanology, 78, 6, https://doi.org/10.1007/s00445-015-0997-9 Flynn, L.P., Mouginis-Mark, P.J., Gradie, J.C. and Lucey, P.G. 1993. Radiative temperature measurements at Kupaianaha Lava Lake, Kilauea Volcano, Hawaii. Journal of Geophysical Research: Solid Earth, 98, 6461–6476, https://doi.org/10.1029/92JB02698 Frolova, J., Ladygin, V., Rychagov, S. and Zukhubaya, D. 2014. Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril–Kamchatka island arc. Engineering Geology, 183, 80–95, https://doi.org/10.1016/j.enggeo.2014.10.011 Furukawa, Y. 2010. Infrared thermography of the fumarole area in the active crater of the Aso volcano, Japan, using a consumer digital camera. Journal of Asian Earth Sciences, 38, 283–288, https://doi.org/10.1016/j.jseaes. 2010.02.001 Gaudin, D., Beauducel, F., Coutant, O., Delacourt, C., Richon, P., de Chabalier, J.B. and Hammouya, G. 2016. Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging. Journal of Volcanology and Geothermal Research, 320, 107–116, https://doi.org/10.1016/j.jvolgeores.2016.04.007 Glicken, H. 1998. Rockslide-debris avalanche of May 18, 1980, Mount St Helens volcano, Washington. Bulletin of the Geological Survey of Japan, 49, 55–106. Gonzales, K., Finizola, A. et al. 2014. Asymmetrical structure, hydrothermal system and edifice stability: the case of Ubinas volcano, Peru, revealed by geophysical surveys. Journal of Volcanology and Geothermal Research, 276, 132–144, https://doi.org/10.1016/j. jvolgeores.2014.02.020 Group on Earth Observations Committee. 2011. The Geohazard Supersites Partnership White Paper and implementation Plan (pdf, October, 2011), http://geogsnl.org/wp-content/Documents/General/Main_docs/ Legacy_docs/20111011_GSNL_White_Paper_draft.pdf. Guadagno, F.M. and Mele, R. 1992. Earthquake-induced landslides in the Island of Ischia (Southern Italy). Proceedings of the Sixth International Symposium on Landslides (ISL), 10–14 February 1992, New Zealand. Harris, A., Dehn, J., Patrick, M., Calvari, S., Ripepe, M. and Lodato, L. 2005. Lava effusion rates from handheld thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli. Bulletin of Volcanology, 68, 107–117, https://doi.org/10.1007/ s00445-005-0425-7 Harris, A., Alparone, S., Bonforte, A., Dehn, J., Gambino, S., Lodato, L. and Spampinato, L. 2012. Vent temperature trends at the Vulcano Fossa fumarole field: the role of permeability. Bulletin of Volcanology, 74, 1293–1311, https://doi.org/10.1007/s00445-012-0593-1 Harvey, M.C., Rowland, J.V. and Luketina, K.M. 2016. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand. Journal of Volcanology and Geothermal Research, 325, 61–69, https://doi.org/ 10.1016/j.jvolgeores.2016.06.014 Heap, M.J. and Kennedy, B.M. 2016. Exploring the scaledependent permeability of fractured andesite. Earth and Planetary Science Letters, 447, 139–150, https://doi. org/10.1016/j.epsl.2016.05.004 Heap, M.J. and Wadsworth, F.B. 2016. Closing an open system: pore pressure changes in permeable edifice rock at high strain rates. Journal of Volcanology and Geothermal Research, 315, 40–50, https://doi.org/ 10.1016/j.jvolgeores.2016.02.011 Heap, M.J., Baud, P. and Meredith, P.G. 2009. Influence of temperature on brittle creep in sandstones. Geophysical Research Letters, 36, L19305, https://doi.org/10. 1029/2009GL039373 Heap, M.J., Baud, P., Meredith, P.G., Vinciguerra, S. and Reuschlé, T. 2014. The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling. Solid Earth, 5, 25–44, https://doi.org/10.5194/se-5-25-2014 Heap, M.J., Farquharson, J.I., Baud, P., Lavallée, Y. and Reuschlé, T. 2015a. Fracture and compaction of andesite in a volcanic edifice. Bulletin of Volcanology, 77, 5, https://doi.org/10.1007/s00445-015-0938-7 Heap, M.J., Kennedy, B.M. et al. 2015b. Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. Journal of Volcanology and Geothermal Research, 295, 26–42, https://doi.org/10.1016/j.jvolgeores. 2015.02.012 Heap, M.J., Kushnir, A. et al. 2018. Fire resistance of the Mt Epomeo Green Tuff, a widely-used building stone on Ischia Island (Italy). Volcanica, 1, 33–48, https:// doi.org/10.30909/vol.01.01.3348 Hunt, J.E., Cassidy, M. and Talling, P.J. 2018. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions. Scientific Reports, 8, 1146, https://doi.org/10.1038/s41598-018-19285-2 Hurwitz, S. and Johnston, M.J. 2003. Groundwater level changesin a deep well in response to a magma intrusion event on Kilauea Volcano, Hawaii. Geophysical Research Letters, 30, 2173, https://doi.org/10.1029/ 2003GL018676 Inguaggiato, S., Pecoraino, G. and D’Amore, F. 2000. Chemical and isotopic characterization of fluid manifestations of Ischia Island. Journal of Volcanology and Geothermal Research, 99, 151–178, https://doi. org/10.1016/S0377-0273(00)00158-X John, D.A., Sisson, T.W., Breit, G.N., Rye, R.O. and Vallance, J.W. 2008. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: implications for debris-flow hazards and mineral deposits. Journal of Volcanology and Geothermal Research, 175, 289–314, https://doi. org/10.1016/j.jvolgeores.2008.04.004 Johnston-Lavis, H.J. 1885. Monograph of the Earthquakes of Ischia. Dulau, London Kennedy, B.M., Farquhar, A. et al. 2020. Pressure controlled permeability in a conduit filled with fractured hydrothermal Breccia reconstructed from ballistics from Whakaari (White Island), New Zealand. Geosciences, 10, 138, https://doi.org/10.3390/geosciences10040138 Kiryukhin, A. 2016. Modeling and observations of geyser activity in relation to catastrophic landslides–mudflows (Kronotsky Nature Reserve, Kamchatka, Russia). Journal of Volcanology and Geothermal Research, 323, 129–147, https://doi.org/10.1016/j.jvolgeores.2016. 05.008 Kiryukhin, A., Rychkova, T.V. and Dubrovskaya, I.K. 2012. Formation of the hydrothermal system in Geysers Valley (Kronotsky Nature Reserve, Kamchatka) and triggers of the Giant Landslide. Applied Geochemistry, 27, 1753–1766, https://doi.org/10.1016/j.apgeo chem.2012.02.011 Lavigne, F., Thouret, J.C., Voight, B., Suwa, H. and Sumaryono, A. 2000. Lahars at Merapi volcano, Central Java: an overview. Journal of Volcanology and Geothermal Research, 100, 423–456, https://doi.org/10.1016/ S0377-0273(00)00150-5 Lénat, J.-F., Bachèlery, P. and Peltier, A. 2012. The interplay between collapse structures, hydrothermal systems, and magma intrusions: the case of the central area of Piton de la Fournaise volcano. Bulletin of Volcanology, 74, 407–421, https://doi.org/10.1007/ s00445-011-0535-3 Lenti, L. and Martino, S. 2013. A parametric numerical study of the interaction between seismic waves and landslides for the evaluation of the susceptibility to seismically induced displacements. Bulletin of the Seismological Society of America, 103, 33–56, https://doi. org/10.1785/0120120019 Lenti, L., Martino, S., Paciello, A., Prestininzi, A. and Rivellino, S. 2015. Recorded displacements in a landslide slope due to regional and teleseismic earthquakes. Geophysical Journal International, 201, 1335–1345, https://doi.org/10.1093/gji/ggv063 Lopez, D.L. and Williams, N.S. 1993. Catastrophic volcanic collapse: relation to hydrothermal processes. Science (New York), 20, 1974–1976, https://doi.org/10. 1126/science.260.5115.1794 Madonia, P., Cangemi, M., Costa, M. and Madonia, I. 2016. Mapping fumarolic fields in volcanic areas: a methodological approach based on the case study of La Fossa cone, Vulcano island (Italy). Journal of Volcanology and Geothermal Research, 324, 1–7, https:// doi.org/10.1016/j.jvolgeores.2016.05.014 Madonia, P., Cangemi, M., Olivares, L., Oliveri, Y., Speziale, S. and Tommasi, P. 2019. Shallow landslide generation at La Fossa cone, Vulcano island (Italy): a multidisciplinary perspective. Landslides, 16, 921– 935, https://doi.org/10.1007/s10346-019-01149-z Marmoni, G.M., Martino, S., Heap, M.J. and Reuschlé, T. 2017a. Gravitational slope-deformation of a resurgent caldera: new insights from the mechanical behaviour of Mt Nuovo tuffs (Ischia Island, Italy). Journal of Volcanology and Geothermal Research, 345, 1–20, https://doi.org/10.1016/j.jvolgeores.2017.07.019 Marmoni, G.M., Martino, S., Heap, M.J. and Reuschlé, T. 2017b. Multiphysics laboratory tests for modelling gravity-driven instabilities at slope scale. Procedia Engineering, 191, 142–149, https://doi.org/10.1016/ j.proeng.2017.05.165 Marotta, E. and de Vita, S. 2014. The role of pre-existing tectonic structures and magma chamber shape on the geometry of resurgent blocks: analogue models. Journal of volcanology and geothermal research, 272, 23– 38, https://doi.org/10.1016/j.jvolgeores.2013.12.005 Marotta, E., Calvari, S. et al. 2015. Reactivation of Stromboli’ssummit craters at the end of the 2007 effusive eruption detected by thermal surveys and seismicity. Journal of Geophysical Research: Solid Earth, 120, 7376–7395, https://doi.org/10.1002/2015JB012288 Marotta, E., Peluso, R. et al. 2019. Thermal energy release measurement with thermal camera: the case of La Solfatara Volcano (Italy). Remote Sensing, 11, 167, https://doi.org/10.3390/rs11020167 Mayer, K., Scheu, B. et al. 2015. Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano). Journal of Volcanology and Geothermal Research, 302, 150–162, https://doi.org/10. 1016/j.jvolgeores.2015.06.014 Mia, M., Fujimitsu, Y. and Nishijima, J. 2018. Monitoring thermal activity of the Beppu geothermal area in Japan using multisource satellite thermal infrared data. Geosciences, 8, 306, https://doi.org/10.3390/ geosciences8080306 Molin, P., Acocella, V. and Funiciello, R. 2003. Structural, seismic and hydrothermal features at the border of an active intermittent resurgent block: Ischia Island (Italy). Journal of Volcanology and Geothermal Research, 121, 65–81, https://doi.org/10.1016/ S0377-0273(02)00412-2 Molina, F. and Martí, J. 2016. The Borinquen geothermal system (Cañas Dulces caldera, Costa Rica). Geothermics, 64, 410–425, https://doi.org/10.1016/j.geother mics.2016.07.001 Mordensky, S.P., Heap, M.J., Kennedy, B.M., Gilg, H.A., Villeneuve, M.C., Farquharson, J.I. and Gravley, D.M. 2019. Influence of alteration on the mechanical behavior and failure mode of Andesitic Lavas: implications for shallow seismicity and volcano monitoring. Bulletin of Volcanology, 88, 1–12, https://doi.org/10. 1007/s00445-019-1306-9 Newhall, C.G., Albano, S.E., Matsumoto, N. and Sandoval, T. 2001. Roles of groundwater in volcanic unrest. Journal of the Geological Society of the Philippines, 56, 69–84. Nishar, A., Richards, S., Breen, D., Robertson, J. and Breen, B. 2016. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): a case study of the Wairakei–Tauhara geothermal field, Taupo, New Zealand. Renewable Energy, 86, 1256–1264, https://doi.org/10.1016/j.renene.2015. 09.042 Norini, G., Bustos, E., Arnosio, M., Baez, W., Zuluaga, M.C. and Roverato, M. 2020. Unusual volcanic instability and sector collapse configuration at Chimpa volcano, central Andes. Journal of Volcanology and Geothermal Research, 393, 106807, https://doi.org/ 10.1016/j.jvolgeores.2020.106807 Orsi, G., Gallo, G. and Zanchi, A. 1991. Simple-shearing block resurgence in caldera depression. A model from Pantelleria and Ischia. Journal of Volcanology and Geothermal Research, 47, 1–11, https://doi.org/10. 1016/0377-0273(91)90097-J Orsi, G., de Vita, S. and di Vito, M. 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research, 74, 179–214, https://doi.org/10.1016/S0377-0273(96)00063-7 Panichi, C., Bolognesi, L., Ghiara, M.R., Noto, P. and Stanzione, D. 1992. Geothermal assessment of the island of Ischia (southern Italy) from isotopic and chemical composition of the delivered fluids. Journal of Volcanology and Geothermal Research, 49, 329–348, https://doi. org/10.1016/0377-0273(92)90021-5 Peltier, A., Finizola, A., Douillet, G.A., Brothelande, E. and Garaebiti, E. 2012. Structure of an active volcano associated with a resurgent block inferred from thermal mapping: the Yasur–Yenkahe volcanic complex (Vanuatu). Journal of Volcanology and Geothermal Research, 243, 59–68, https://doi.org/10.1016/j.jvol geores.2012.06.022 Petrillo, Z., Chiodini, G. et al. 2013. Defining a 3D physical model for the hydrothermal circulation at Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research, 264, 172–182, https://doi.org/10.1016/j. jvolgeores.2013.08.008 Petrillo, Z., D’Auria, L., Mangiacapra, A., Chiodini, G., Caliro, S. and Scippacercola, S. 2019. A perturbative approach for modeling short-term fluid-driven ground deformation episodes on volcanoes: a case study in the Campi Flegrei caldera (Italy). Journal of Geophysical Research: Solid Earth, 124, 1036–1056, https:// doi.org/10.1029/2018JB015844 Pinkerton, H., James, M. and Jones, A. 2002. Surface temperature measurements of active lava flows on Kilauea volcano, Hawai’i. Journal of Volcanology and Geothermal Research, 113, 159–176, https://doi.org/10. 1016/S0377-0273(01)00257-8 Piochi,M.,Mormone, A. and Balassone, G. 2019. Hydrothermal alteration environments and recent dynamics of the Ischia volcanic island (southern Italy): insights from repeated field, mineralogical and geochemical surveys before and after the 2017 Casamicciola earthquake. Journal of Volcanology and Geothermal Research, 376, 104– 124, https://doi.org/10.1016/j.jvolgeores.2019.03.018 Piscopo, V., Lotti, F., Formica, F., Lana, L. and Pianese, L. 2020. Groundwater flow in the Ischia volcanic island (Italy) and its implications for thermal water abstraction. Hydrogeology Journal, 28, 579–601, https:// doi.org/10.1007/s10040-019-02070-4 Pola, A., Crosta, G.B.F., Fusi, N., Barberini, V. and Norini, G. 2012. Influence of alteration on physical properties of volcanic rocks. Tectonophysics, 566–567, 67–86, https://doi.org/10.1016/j.tecto.2012.07.017 Pola, A., Crosta, G.B., Fusi, N. and Castellanza, R. 2014. General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration. Engineering Geology, 169, 1–13, https://doi.org/10. 1016/j.enggeo.2013.11.011 Procter, J.N., Cronin, S.J., Zernack, A.V., Lube, G., Stewart, R.B., Nemeth, K. and Keys, H. 2014. Debris flow evolution and the activation of an explosive hydrothermal system; Te Maari, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 286, 303–316, https://doi.org/10.1016/j.jvolgeores.2014.07.006 Reid, M.E. 2004. Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology, 32, 373–376, https://doi.org/10.1130/G20300.1 Reid, M.E., Sisson, T.W. and Brien, D.L. 2001. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology, 29, 779–782, https://doi.org/10.1130/0091-7613(2001) 029,0779:VCPBHA.2.0.CO;2 Roverato, M., Di Traglia, F., Procter, J., Paguican, E. and Dufresne, A. 2020. Factors contributing to volcano lateral collapse. In: Roverato, M., Dufresne, A. and Procter, J. (eds) Volcanic Debris Avalanches. Springer, Cham, 91–119. Sanchez-Alfaro, P., Reich, M. et al. 2016. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: insights into the interplay between hydrothermal alteration and brittle deformation. Journal of Volcanology and Geothermal Research, 324, 88–104, https://doi.org/10.1016/ j.jvolgeores.2016.05.009 Sansivero, F. and Vilardo, G. 2019. Processing thermal infrared imagery time-series from volcano permanent ground-based monitoring network. Latest methodological improvements to characterize surface temperatures behavior of thermal anomaly areas. Remote Sensing, 11, 553, https://doi.org/10.3390/rs11050553 Sansivero, F., de Vita, S., Marotta, E., Della Seta, M., Martino, S. and Marmoni, G.M. 2018. Field trip to the Ischia resurgent caldera, a journey across an active volcano in the Gulf of Naples. Geological Field Trips and Maps, 10, 2, https://doi.org/10.3301/GFT.2018.03 Sbrana, A. and Toccaceli, R.M. 2011. Carta Geologica della regione Campania – Foglio 464, Isola di Ischia. Litografia artistica cartografica, Firenze. Sbrana, A., Fulignati, P., Marianelli, P., Boyce, A.J. and Cecchetti, A. 2009. Exhumation of an active magmatic–hydrothermal system in a resurgent caldera environment: the example of Ischia (Italy). Journal of the Geological Society, 166, 1061–1073, https://doi.org/ 10.1144/0016-76492009-030 Schöpa, A., Pantaleo, M. and Walter, T.R. 2011. Scaledependent location of hydrothermal vents: stress field models and infrared field observations on the Fossa Cone, Vulcano Island, Italy. Journal of Volcanology and Geothermal Research, 203, 133–145, https://doi. org/10.1016/j.jvolgeores.2011.03.008 Selva, J., Acocella, V. et al. 2019. Multiple natural hazards at volcanic islands: a review for the Ischia Volcano (Italy). Journal of Applied Volcanology, 81, 5, https://doi.org/10.1186/s13617-019-0086-4 Siebert, L. 1984. Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. Journal of Volcanology and Geothermal Research, 22, 163–197, https://doi.org/10.1016/ 0377-0273(84)90002-7 Siebert, L. and Roverato, M. 2020. A historical perspective on lateral collapse and debris avalanches. In: Roverato, M., Dufresne, A. and Procter, J. (eds) Volcanic Dedris Avalanches: From Collapse to Hazard, Advances in Volcanology. Springer, London. Silvestri, M., Diaz, J.A. et al. 2015. Use of Multiple in situ and remote sensing instruments and techniques at Solfatara field campaign for measurements of CO2, H2S and SO2 emissions: special demonstration on unmanned aerial system. Quaderni di Geofisica, 129. Silvestri, M., Diaz, J.A. et al. 2017. The 2016 field campaign of La Solfatara Volcano: monitoring methods and instruments for volcanic surveillance. Rapporti Tecnici INGV, 380, 1–42, http://editoria.rm.ingv.it/ rapporti/2017/rapporto380/ Sottili, G., Martino, S., Palladino, D.M., Paciello, A. and Bozzano, F. 2007. Effects of tidal stresses on volcanic activity at Mount Etna, Italy. Geophysical Research Letters, 34, https://doi.org/10.1029/2006GL028190 Spampinato, L., Calvari, S., Oppenheimer, C. and Boschi, E. 2011. Volcano surveillance using infrared cameras. Earth-Science Reviews, 106, 63–91, https://doi.org/ 10.1016/j.earscirev.2011.01.003 Stelling, P., Shevenell, L., Hinz, N., Coolbaugh, M., Melosh, G. and Cumming, W. 2016. Geothermal systems in volcanic arcs: volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide. Journal of Volcanology and Geothermal Research, 324, 57–72, https:// doi.org/10.1016/j.jvolgeores.2016.05.018 Stevenson, J.A. and Varley, N. 2008. Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007. Journal of Volcanology and Geothermal Research, 177, 911–924, https://doi.org/10. 1016/j.jvolgeores.2008.07.003 Tedesco, D. 1996. Chemical and isotopic investigations of fumarolic gases from Ischia island southern Italy: evidences of magmatic and crustal contribution. Journal of Volcanology and Geothermal Research, 74, 233–242, https://doi.org/10.1016/S0377-0273(96)00030-3 Tibaldi, A. and Vezzoli, L. 1998. The space problem of caldera resurgence: an example from Ischia Island, Italy. Geologische Rundschau, 87, 53–66, https://doi.org/ 10.1007/s005310050189 Tibaldi, A. and Vezzoli, L. 2004. A new type of volcano flank failure: the resurgent caldera sector collapse, Ischia, Italy. Geophysical Research Letters, 31, L14605, https://doi.org/10.1029/2004GL020419 Tomlinson, E.L., Albert, P.G. et al. 2014. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal–distal correlations with Lago Grande di Monticchio. Journal of Volcanology and Geothermal Research, 287, 22–39, https://doi.org/10.1016/j.jvol geores.2014.09.006 Trasatti, E., Acocella, V. et al. 2019. Magma degassing as a source of long-term seismicity at volcanoes: the Ischia island (Italy) case. Geophysical research letters, 46, 14421–14429, https://doi.org/10.1029/2019GL0 85371 Vergara, M.R. and Triantafyllidis, T. 2015. Swelling behaviour of volcanic rocks under cyclic wetting and drying. International Journal of Rock Mechanics and Mining Sciences, 80, 231–240, https://doi.org/10. 1016/j.ijrmms.2015.08.021 Vezzoli, L. 1988. Island of Ischia. CNR Quaderni de ‘La ricerca scientifica’, Progetto Finalizzato “Geodinamica”, Monografie Finali, 114-10, 122, Consiglio Nazionale delle Ricerche, Roma. Voight, B. and Elsworth, D. 1997. Failure of volcano slopes. Geotechnique, 47, 1–31, https://doi.org/10. 1680/geot.1997.47.1.1 Wohletz, K. and Heiken, G. 1992. Volcanology and Geothermal Energy. University of California Press, Berkeley, http://ark.cdlib.org/ark:/13030/ft6v19p151/ Wyering, L.D., Villeneuve, M.C., Wallis, I.C., Siratovich, P.A., Kennedy, B.M., Gravley, D.M. and Cant, J.L. 2014. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 288, 76–93, https://doi.org/10.1016/j.jvol geores.2014.10.008 Ye, G.L., Nishimura, T. and Zhang, F. 2015. Experimental study on shear and creep behaviour of green tuff at high temperatures. International Journal of Rock Mechanics and Mining Sciences, 79, 19–28, https://doi.org/10. 1016/j.ijrmms.2015.08.005 Zaniboni, F., Pagnoni, G., Tinti, S., Della Seta, M., Fredi, P., Marotta, E. and Orsi, G. 2013. The potential failure of Monte Nuovo at Ischia Island (southern Italy): numerical assessment of a likely induced tsunami and its effects on a densely inhabited area. Bulletin of Volcanology, 75, 763, https://doi.org/10.1007/s00445-013- 0763
-
19Book
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, Università di Bari - Dipartimento Geomineralogico, Università di Torino - Dipartimento di Scienze della Terra, Albore Livadie, Claude, Vecchio, Giuseppe, #PLACEHOLDER_PARENT_METADATA_VALUE#
مصطلحات موضوعية: eruzione Pomici di Avellino, Nola - Croce del Papa
وصف الملف: application/pdf
Relation: Nola - Croce del Papa : un villaggio sepolto dall’eruzione vesuviana delle Pomici di Avellino; http://hdl.handle.net/2122/14958
الاتاحة: http://hdl.handle.net/2122/14958
-
20Academic Journal
المؤلفون: Speciale, Claudia, Mentesana, Roberta Bruna, Montana, Giuseppe, Forgia, Vincenza, Mantia, Filippo, Battaglia, Giuseppina, Di Vito, Mauro Antonio, Vassallo, Stefano, de Vita, Sandro
المساهمون: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, ARQUB, Departamento d'Història i Arqueologia Universitat de Barcelona, Spain Dipartimento di Scienze della Terra e del Mare, Università di Palermo, Italy, Dipartimento Culture e Società, Università di Palermo, Italy, Soprintendenza Beni Culturali e Ambientali di Palermo, Italy
مصطلحات موضوعية: Neolithic, Chert, Obsidian, Ceramics, Volcanic tools
وصف الملف: application/pdf
Relation: Annals of Geophysics; 5/64(2021); Barberi, F., S. Borsi, G. Ferrara and F. Innocenti (1969). Strontium isotopic composition of some recent basic volcanites from southern Tyrrhenian sea and Sicily Channel, Contr. Mineral. And Petrol., 23, 157-172. Barberi, F. and F. Innocenti (1980). Volcanisme Neogéne et Quaternaire. Guide a l’excursion 122-A, Soc. It. Miner. Petrol., 99-104. Bracchitta, D. (2015). Chap. 6. The stone artefacts from the settlement at Borġ in-Nadur, in Tanasi, D. and N.C. Vella (eds.), The late prehistory of Malta: essays on Borg in-Nadur and other sites, Archaeopress Archaeology series, 115-120. Brunelli, D., S.T. Levi, P. Fragnoli, A. Renzulli, P. Santi, E. Paganelli and M.C. Martinelli (2013). Bronze Age pottery from the Aeolian Islands: definition of temper compositional reference units by an integrated mineralogical and microchemical approach, Applied Physics A, 113, 855-863. Cannavò, V., A. Di Renzoni, S.T. Levi and D. Brunelli (2019). Protohistoric Italian Ceramics: Towards a General Fabrics Classification and Interpretation, Origini, 43, 209-234. Cinque, A., L. Civetta, G. Orsi and A. Peccerillo (1988). Geology and geochemistry of the island of Ustica (Southern Tyrrhenian sea), Rend. Soc. It. Min. e Petr., 43, 987-1002. Clarkson, C.J. (2008). Lithics in the landscape. Handbook of landscape archaeology, B. David and J. Thomas (eds.), Walnut Creek, CA, U.S.A.: Left Coast Press, 490-501. Clement, C.R. and M.F. Cassino (2018). Landscape Domestication and Archaeology. In: C. Smith (ed.), Encyclopedia of Global Archaeology. Springer, Cham. de Vita, S. (1993). Assetto geologico-strutturale ed evoluzione vulcanologica dell’isola di Ustica (stratigrafia, tettonica e meccanismi eruttivi), PhD Thesis, Napoli, 162. de Vita, S. and G. Orsi (1994). I terrazzi marini dell’isola di Ustica (Mar Tirreno Meridionale, Italia), Mem. Descr. Carta Geol. D’It., 52, 405-406. de Vita, S., G. Guzzetta and G. Orsi (1995). Deformational features of the Ustica volcanic area in the Southern Tyrrhenian Sea (Italy), Terra Nova, 7, 623-629. de Vita, S., M.A. Laurenzi, G. Orsi and M. Voltaggio (1998). Application of 40Ar/39Ar and 230Th dating methods to the chronostratigraphy of Quaternary basaltic volcanic areas: the Ustica island case history, Quaternary International, 47/48, 117-127. de Vita, S. and F. Foresta Martin (2017). The palaeogeographic setting and the local environmental impact of the 130 ka Falconiera tuff-cone eruption (Ustica island, Italy), Ann. Geophys., 60, 2, S0224. Di Renzoni, A., G. Ayala, D. Brunelli, S.T. Levi, S. Lugli, E. Photos Jones, A. Renzulli, and P. Santi (2016). Aiding and abetting the archaeological enquiry: geochemical work-in-progress at the site of San Vincenzo, Stromboli, Aeolian Islands, Italy, in E., Photo-Jones et al. (eds.), Proceedings of the 6th Symposium of the Hellenic Society for Archaeometry, British Archaeological Reports. - International Series 2780, 167-174. Dawson, H. (2014). Mediterranean Voyages: The Archaeology of Island Colonisation and Abandonment, Routledge, New York. Dietrich, L., J. Meister, O. Dietrich, J. Notroff, J. Kiep, J. Heeb, A. Beuger and B. Schütt (2019). Cereal processing at Early Neolithic Göbekli Tepe, southeastern Turkey, PLoS ONE, 14, 5, e0215214. DiNapoli, R.J., T.M. Rieth, C.P. Lipo and T.L. Hunt (2020). A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island), J. Archaeological Sci., 116, 105094. Di Vito, M.A., E. Zanella, L. Gurioli, R. Lanza, R. Sulpizio, J. Bishop, E. Tema, G. Boenzi and E. Laforgia (2009). The Afragola settlement near Vesuvius, Italy: The destruction and abandonment of a Bronze Age village revealed by archaeology, volcanology and rock-magnetism, Earth Planet. Sci. Lett., 277, 3–4, 408-421. Fitzhugh B., E.W. Gjesfjeld, W.A. Brown, M.J. Hudson and J.D. Shaw (2016). Resilience and the population history of the Kuril Islands, Northwest Pacific: A study in complex human ecodynamic, Quaternary International, 419, 165-193. Fitzpatrick, S.M., Thompson V.D., Poteate A.S., Napolitano M.F. and J.M. Erlandson (2016). Marginalization of the Margins: The Importance of Smaller Islands in Human Prehistory, The J. Island Coastal Archaeol., 11:2, 155-170. Gliozzo, E. (2020). Ceramic technology. How to reconstruct the firing process, Archaeol. Anthropol. Sci., 12, 260. Gurova, M., P. Andreeva, E. Stefanova, A. Aladzhova, and C. Bonsall (2021). Petrographic and geochemical analyses of flint raw materials from Bulgaria: A reliable combination for provenance studies of archaeological flint, Quaternary International, In Press, DOI:10.1016/j.quaint.2021.03.023 Hamon, C. (2008). Functional analysis of stone grinding and polishing tools from the earliest Neolithic of northwestern Europe, J. Archaeological Sci., 35(6), 1502-1520. Horowitz R., and G. McCall (2019). Lithics in Sedentary Societies: Themes, Methods, and Directions. In Horowitz R. and G. McCall (Eds.), Lithic Technologies in Sedentary Societies. Louisville: University Press of Colorado, 3-35. Horsburgh, K.A. and M.D. McCoy (2017). Dispersal, Isolation, and Interaction in the Islands of Polynesia: A Critical Review of Archaeological and Genetic Evidence, Diversity 9, 3, 37. Hunt, A.M.W. (2016). The Oxford Handbook of Archaeological Ceramic Analysis. Oxford University Press, Oxford (UK), p. 600 (ISBN: 9780199681532). Kadowaki, S. (2021). Neolithic ground stone typology and technology at Göytepe, Edited by Yoshihiro Nishiaki and Farhad Guliyev, Göytepe Neolithic Excavations in The Middle Kura Valley, Azerbaijan, Archaeopress, 223-260. Lemonnier, P. (1993). Introduction. In: Lemonnier, P. (Ed.), Technological Choices: transformations in material cultures since the Neolithic. Routledge, London, 1–35. Levi, S.T., V. Cannavò, D. Brunelli (2019). Atlas of Ceramic Fabrics 2. Italy: Southern Tyrrhenian - Neolithic-Bronze Age, Archaeopress, Oxford. Lucarini, G. and A. Radini (2020). First direct evidence of wild plant grinding process from the Holocene Sahara: Usewear and plant micro-residue analysis on ground stone tools from the Farafra Oasis, Egypt, Quaternary International, 555, 66-84. Mannino, G. (1979). Ustica: risultati di esplorazioni archeologiche, Sicilia Archeologica, 12, 41, 7-40. Mannino, G. (1998). Il Neolitico nel palermitano e la nuova scoperta nell’isola di Ustica, in Quaderno del Museo Archeologico Regionale “Antonino Salinas”, 4, 45-80. Mannino, G. and V. Ailara (2014). Le grotte di Ustica. Centro studi e documentazione isola di Ustica, Palermo. Mannino, G. and V. Ailara (2016). Carta Archeologica di Ustica, Centro Studi e Documentazione Isola di Ustica, Palermo. Martinelli, M.C., R.H. Tykot and A. Vianello (2019). Lipari (Aeolian Islands) Obsidian in the Late Neolithic. Artifacts, Supply and Function, Open Archaeology, 5, 46-64. Mathew, A.J., A.J. Woods and C. Oliver (1991). Spots before your eyes: new comparison charts for visual percentage estimation in archaeological material. In: Middleton, A.P., Freestone, I.C., (eds.) Recent developments in ceramic petrology. British Museum Occasional Paper 81, The British Museum, London, 211–263. Mohr, M. (2019). Forschungen auf dem Monte Iato 2018, Antike Kunst, 62, 121–134. McLaughlin, T.R., S. Stoddart and C. Malone (2018). Island risks and the resilience of a prehistoric civilization, World Archaeology, 50, 4, 570-600. Mentesana, R. and P. Fragnoli (2020). The role of ceramic analyses in shaping our understanding of the cultural landscapes of protohistoric Sicily and the Aeolian islands. Journal of Archaeological Science: Reports, 30,102205. Mercuri, A.M. (2014). Genesis and evolution of the cultural landscape in central Mediterranean: the ‘where, when and how’ through the palynological approach, Landscape Ecology, 29, 1799–1810. Mercuri, A.M., L. Sadori and C. Blasi (2010). Editorial: Archaeobotany for cultural landscape and human impact reconstructions, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 144, 4, 860-864. Montana, G. (2020). Ceramic raw materials: how to recognize them and locate the supply basins—mineralogy, petrography. Archaeol. Anthropol. Sci., 12, 175. Muntoni, I. M., E. Delluniversità, I. Allegretta, R. Terzano and G. Eramo (2021), Chert sources and Early to MiddleNeolithic exploitation in the Tavoliere (Northern Apulia, Italy), Quaternary International, In Press, https://doi.org/10.1016/j.quaint.2021.01.016 Neall, V.E. (2006). Volcanic soils. Encyclopedia of Life Support Systems (EOLSS), Land use and land cover VII, 1-24. Plieninger, T., and C. Bieling (Eds.) (2012). Resilience and the Cultural Landscape: Understanding and Managing Change in Human-Shaped Environments. Cambridge: Cambridge University Press. Quinn, P.S. (2010). Interpreting silent artefacts: petrographic approaches to archaeological ceramics, Archaeopress, Oxford (UK), 297. Rackham, O. (2012). Island landscapes: Some preliminary questions, J. Marine Island Cultur., 1, 2, 87-90. Renzulli, A., P. Santi, T. Gambin, and P. Bueno Serrano (2019). Pantelleria Island as a centre of production for the Archaic Phoenician trade in basaltic millstones: New evidence recovered and sampled from a shipwreck off Gozo (Malta) and a terrestrial site at Cádiz (Spain), J. Archaeol. Sci.: Reports, 24, 338-349. Riede, F., G.L. Barnes, M.D. Elson, G.A. Oetelaar, K.G. Holmberg and P. Sheets (2020). Prospects and pitfalls in integrating volcanology and archaeology: A review, J. Volcanol. Geotherm. Res., 401, 106977. Romano, R., and C. Sturiale (1971). Carta geologica dell’Isola di Ustica. Istituto internazionale di ricerche vulcanologiche; Istituto Internazionale di vulcanologia, Catania, Italy. Santi, P., A. Renzulli, and M. Bell III (2015). The volcanic millstones from the archaeological site of Morgantina (Sicily): provenance and evolution of the milling techniques in the Mediterranean area, Archaeometry, 57, 5, 803-821. Sauer, C.O. (1925). The morphology of landscape, Univ. Calif. Publ. Geogr., 2, 2, 19–53. Spatafora, F. (2009). Ustica tra il Tirreno e la Sicilia. Storia del popolamento dell’isola dalla Preistoria all’età tardoromana. In Ampolo, C. (Ed.), Immagine e immagini della Sicilia e di altre isole del Mediterraneo antico. Vol. I, Scuola Normale Superiore Pisa, Pisa. Spatafora, F. (2016). Tra mare e terra: la preistoria di Ustica e il Villaggio dei Faraglioni, in Cazzella, A., A., Guidi, and F., Nomi (eds.), Ubi minor… Le isole minori del Mediterraneo centrale dal Neolitico ai primi contatti coloniali, Scienze dell’Antichità, 22, 2, 315-326. Shackleton, N., and N.D. Opdyke (1973). Oxygen isotope and palaeomagnetic stratigraphy of Euquatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 10’ year and 10’ year scale, Quaternary Res. 3, 1, 39-55. Speciale, C., N. Larosa, G. Battaglia and S. Vassallo (2019). Piano dei Cardoni, Ustica (Palermo), Notiziario Istituto di Preistoria e Protostoria, 6.2, 62-64. Speciale C., K. Freund, V. Forgia, S. de Vita, N. Larosa, G. Battaglia, R.H. Tykot and S. Vassallo (2021a). Obsidian from the Site of Piano dei Cardoni, Ustica (Palermo, Italy): Preliminary Results on the First Occupation of the Island, Open Archaeology, 7, 1, 273-290. Speciale, C., N. Larosa, F. Spatafora, A.M.G. Calascibetta, G.P. Di Sansebastiano, G. Battaglia and S. Pasta (2021b). Archaeobotanical and historical insights on some steps of forest cover disruption at Ustica Island (Sicily, Italy) from prehistory until present day, Environ. Archaeol., doi:10.1080/14614103.2021.1962578. Speciale, C., N. Larosa, A. Magrì and G. Battaglia, Piano dei Cardoni, Ustica (Palermo), Notiziario Istituto di Preistoria e Protostoria, submitted. Van der Geest, H., J. Vellekoop, P. Kaskes, M. Sinnesael, J. Jagt, P. Degryse and P. Claeys (2021). Petrographic and geochemical fingerprinting of flints from the type-Maastrichtian (SE Netherlands and NE Belgium): implications for flint formation and provenance, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21- 2335. Walter, R.K. and R.J. Hamilton (2014). A cultural landscape approach to community-based conservation in Solomon Islands, Ecology and Society 19, 4, 41. Whitbread, I.K. (1995). Greek transport amphorae: a petrological and archaeological study. London: British School at Athens. Williams, J.Ll. (1980). A Petrological Examination of The Prehistoric Pottery from the Excavations in the Castello and Diana Plain of Lipari. In Bernabò Brea, L. and M., Cavalier. (Eds), Meligunìs Lipára, IV. L’acropoli di Lipari nella preistoria. Palermo, 847-868. Williams, J.Ll. and S.T. Levi (2008). The Ausonian Pottery of Lipari (Aeolian Islands, Sicily) - a Typological and Petrological assessment, PPS 74, 141-170.