يعرض 1 - 20 نتائج من 3,986 نتيجة بحث عن '"De Palma"', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Urdiroz Urricelqui, Uxue

    المساهمون: University/Department: Universitat de Barcelona. Facultat de Farmàcia i Ciències de l'Alimentació

    Thesis Advisors: Aznar Benitah, Salvador, Martín Perez, Miguel, Zorzano Olarte, Antonio

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Abad Valarezo, Vanessa Maribel

    المساهمون: University/Department: Universitat de Barcelona. Departament de Bioquímica i Biologia Molecular (Farmàcia)

    Thesis Advisors: Grifoll Ruiz, Magdalena, Flores Flor, Francisco

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis
  4. 4
    Dissertation/ Thesis

    المؤلفون: Cifuentes Utrero, Francisco

    المساهمون: University/Department: Universitat Politècnica de Catalunya. Departament de Projectes Arquitectònics

    Thesis Advisors: Quetglas, Josep, 1946-, Armesto, Antonio

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  5. 5
    Dissertation/ Thesis

    المؤلفون: Dilmé Bejarano, Enric

    المساهمون: University/Department: Universitat Politècnica de Catalunya. Departament de Construccions Arquitectòniques I

    Thesis Advisors: Domenge i Mesquida, Joan, González Moreno-Navarro, José Luis

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  6. 6
    Dissertation/ Thesis

    المؤلفون: Amengual Quevedo, Irene

    المساهمون: University/Department: Universitat de Barcelona. Departament de Dibuix

    Thesis Advisors: Padró Puig, Carla

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  7. 7
    Periodical

    Alternate Title: ETERNAL INSTANTS: Rossy de Palma is the guest of honor at the 25th edition of Paris Photo.

    المؤلفون: Vicent, Ada

    المصدر: Tendencias del Mercado del Arte. nov2022, Issue 156, p40-43. 4p.

    مصطلحات موضوعية: PHOTOGRAPHY festivals

    People: DE Palma, Rossy

  8. 8
    Review
  9. 9
    Academic Journal

    المصدر: Revista Ibero-Americana de Humanidades, Ciências e Educação; Vol. 10 No. 6 (2024): Revista Ibero-Americana de Humanidades, Ciências e Educação- REASE; 819-827 ; Revista Ibero-Americana de Humanidades, Ciências e Educação; v. 10 n. 6 (2024): Revista Ibero-Americana de Humanidades, Ciências e Educação- REASE; 819-827 ; 2675-3375 ; 10.51891/rease.v10i6

    وصف الملف: application/pdf

  10. 10
    Periodical

    المؤلفون: HANKS, ROBERT

    المصدر: Sight & Sound. Sep2024, Vol. 34 Issue 7, p84-84. 1/2p. 1 Color Photograph.

    Reviews & Products: OBSESSION (Film)

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المصدر: Grasas y Aceites; Vol. 75 No. 2 (2024); 2084 ; Grasas y Aceites; Vol. 75 Núm. 2 (2024); 2084 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2024.v75.i2

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2084/3206; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2084/3207; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2084/3208; AOCS (2003). Official Methods and Recommended Practices of the American Oil Chemists, Vol. AOCS Official methods Ca 5a- 40, AOCS, Cd 8b-90, Champaign, USA: AOCS. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf; Basyuni M, Amri N, Putri LAP, Syahputra I, Arifiyanto D.2017. Characteristics of fresh fruit bunch yield and the physicochemical qualities of palm oil during storage in North Sumatra, Indonesia. Indones J. Chem. 17, 182-190.; Cardoso LA, Greiner R, Silva CDS, Maciel LF, Santos LFP, De Almeida DT. 2022. Small scale market survey on the preparation and physico-chemical characterstics of moin-moin: a traditional ready-to-eat cowpea food from Brazil. Food Sci. Technol. (Brazil). 42, 1–8.; Chiew CL, Low LE, Chia WY, Chew KW, Liew ZK, Chan Eng-Seng, Chan YJ, Kong PS, Show PL. 2022. Prospects of Palm Fruit Extraction Technology: Palm Oil Recovery Processes and Quality Enhancement. Food Rev. Int. 38, 893–920.; Codex Alimentarius2023. Standard for Named Vegetable Oils. Codex Stan 210. Revised in 2001, 2003, 2009, 2017, 2019. Amended in 2005, 2011, 2013, 2015, 2019, 2021, 2022, last updated 01/02/2023.[Online]. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B210-1999%252FCXS_210e.pdf; De Almeida DT., Curvelo FM, Costa MM, Viana TV, de Lima PC. 2018. Oxidative stability of crude palm oil after deep frying akara (Fried bean paste). Food Sci. Technol. (Brazil) 38, 142–147.; De Almeida DT, Nunes IL, Conde PL, Rosa RPS, Rogério WF, Machado ER. 2013. A quality assessment of crude palm oil marketed in Bahia, Brazil. Grasas Aceites 64, 387–394.; De Almeida DT, Viana TV, Costa MM, Silva CS, Feitosa S. 2019. Effects of different storage conditions on the oxidative stability of crude and refined palm oil, olein and stearin (Elaeis guineensis). Food Sci. Technol. (Brazil) 39, 211–217.; Dobarganes MC, Velasco J, Dieffenbacher A. 2000. Determination of polar compounds, polymerized and oxidized triacylglycerols, and diacylglycerols in oils and fats: results of collaborative studies and the standardized method (Technical report). Pure Appl Chem. 72, 1563–1575.; Feitosa S, Boffo EF, Batista CSC, Velasco J, Silva CS, Bonfim R, Almeida, DT. 2019. A real case study on the physicochemical changes in crude palm oil (Elaeis guineensis) during the deep-frying of akara, traditional cowpea-paste balls, in Brazil. Grasas Aceites 70 (2), e305.; Gee PT. 1999. Use of the deterioration of bleachability index (DOBI) to characterise the quality of crude palm oil Masai, Malaysia. http://www.innoleague.com/Deterioration_Of_Bleachability.pdf; Gonzalez-Diaz A, Pataquiva-Mateus, A, García-Núñez JA. 2021. Recovery of palm phytonutrients as a potential market for the by-products generated by palm oil mills and refineries‒A review. Food Biosci. 41, 100919–100933.; Kheang LS, Foon CS, May CY, Ngan MA. 2006. A Study of Residual Oils Recovered from Spent Bleaching Earth: Their Characteristics and Applications. Am. J. Appl. Sci. 3, 2063–2067.; Khor YP., Hew KS., Abas F, Lai OM, Cheong LZ, Nehdi IA., Sbihi HM, Gewik MM, Tan CP. 2019. Oxidation and polymerization of triacylglycerols: In-depth investigations towards the impact of heating profiles. Foods 8, 1–15.; Lai JW, Ramli HR, Ismail LI, Hasan WZW. 2023. Oil Palm Fresh Fruit Bunch Ripeness Detection Methods: A Systematic Review. Agriculture 13, 156.; Nchanji YK, Tataw O, Nkongho RN, Levang P. 2013. Artisanal Milling of Palm Oil in Cameroon. Working Paper 128. Bogor, Indonesia: CIFOR.; Nizam AFA, Mahmud MS. 2021. Food quality assurance of crude palm oil: A review on toxic ester feedstock. OCL - Oilseeds and fats, Crops and Lipids 28, 23.; Nwakodo CS, Chukwu MN, Udensi ES. 2020. Effect of Processing Methods and Storage Time on Physical Characteristics of Palm Oil. SSRN Electronic Journal.; Robins JE.2018. Smallholders and machines in the West African palm oil industry, 1850–1950. Afr. Econ. Hist. 46, 69–103.; Ruswanto A, Ramelan AH, Praseptiangga D, Partha IBB. 2020. Effects of ripening level and processing delay on the characteristics of oil palm fruit bunches. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 389–394.; Taiwo KA, Owolarafe OK, Sanni LA, Jeje JO, Adeloye K, Ajibola OO. 2000. Technological assessment of palm oil production in Osun and Ondo states of Nigeria. Technovation 20, 215–223.; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2084

  14. 14
  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 74 No. 355 (2024); e351 ; Materiales de Construcción; Vol. 74 Núm. 355 (2024); e351 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2024.v74.i355

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723/4352; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723/4353; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723/4354; Gagg CR. 2014. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 40: 114-140.; Schaefer CE, Kupwade-Patil K, Ortega M, Soriano C, Büyüköztürk O, White AE, Short MP. 2018. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint. Waste. Manag. 71:426-439.; Yap SP, Alengaram UJ, Mo KH, Jumaat MZ. 2017. High strength oil palm shell concrete beams reinforced with steel fibres. Mater. Construcc. 67(328): e142.; Suoware T, Edelugo S, Ugwu B, Amula E, DigitemieI. 2019. Development of flame retarded composite fiberboard for building applications using oil palm residue. Mater. Construcc. 69(335): e197.; Safiuddin M, Abdus Salam M, Jumaat MZ. 2011. Utilization of palm oil fuel ash in concrete: a review. J. Civ. Eng. Manag. 17(2): 234-247.; Office of the Agricultural Economics [OAE]. 2022. Agricultural Statistics of Thailand crop, Palm oil product statistics year 2019. Retrieved From http://www.oae.go.th. (AccessedDecember,15 2023).; Tangchirapat W, Jaturapitakkul C, Kiattikomol K. 2009. Compressive strength and expansion of blended cement mortar containing palm oil fuel ash. J. Mater. Civ. Eng. 21(8): 426-431.; Jaturapitakkul C, Tangpagasit J, Songmue S, Kiattikomol K. 2011. Filler effect and pozzolanic reaction of ground palm oil fuel ash. Constr. Build. Mater. 25(11): 4287-4293.; Zeyad AM, Johari MM, Tayeh BA, Yusuf MO. 2016. Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete. Constr. Build. Mater. 125: 1066-1079.; Mujedu KA, Ab-Kadir MA, Ismail M. 2020. A review on self-compacting concrete incorporating palm oil fuel ash as a cement replacement. Constr. Build. Mater. 258: 119541.; Chalee W, Cheewaket T, Jaturapitakkul C. 2021. Enhanced durability of concrete with palm oil fuel ash in a marine environment. J. Mater. Res. Technol. 13: 128-137.; Hamada HM, Thomas BS, Yahaya FM, Muthusamy K, Yang J, Abdalla JA, Hawileh RA. 2021. Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review. J. Build. Eng. 40: 102286.; Liu S, Yan P, 2010. Effect of limestone powder on microstructure of concreteJ. Wuhan. Univ. Technol. Mater. Sci. Ed. 25(2):328-331.; Wang D, Shi C, Farzadnia N, Shi Z, Jia H. 2018. A review on effects of limestone powder on the properties of concrete. Constr. Build. Mater.192:153-166.; Zhao L, He T, Niu M, Chang X, Wang L, Wang Y. 2024. Effect of Limestone Powder Mixing Methods on the Performance of Mass Concrete.Mater. 17(3): 617.; Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. 2018. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater.181: 659-672.; Han K, Shu X, Ran Q, Shi J, Zhang Z. 2023. Understanding the mechanisms behind the effects of limestone powder on microstructure evolution of cement paste. J. Sustain. Cem. Based Mater. 12(8): 995-1008.; Ramezanianpour AA, Ghiasvand E, Nickseresht I, Mahdikhani M. Moodi F. 2009. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos.31(10): 715-720.; Bentz DP, Ardani A, Barrett T, Jones SZ, Lootens D, Peltz MA, Sato T, Stutzman PE, Tanesi J, Weiss WJ. 2015. Multi-scale investigation of the performance of limestone in concrete. Constr. Build. Mater. 75:1-10.; Wang X-Y. 2018. Analysis of hydration and strength optimization of cement-fly ash-limestone ternary blended concrete. Constr. Build. Mater. 166: 130-140.; Li C, Jiang L. 2020. Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Constr. Build. Mater. 253: 119257.; Kathirvel P, Saraswathy V, Karthik S, Sekar A. 2013. Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 38 (3): 589-598.; TIS 2888-18. 2018. Palm oil ash for use as an admixture in concrete. Thai Industrial Standards Institute. Bangkok; Thailand.; Bernal SA, Juenger MC, Ke X, Matthes W, Lothenbach B, De Belie N, Provis JL. 2017. Characterization of supplementary cementitious materials by thermal analysis. Mater. Struct. 50 (1):1-13.; ACI 363R. 2010. Report on High-Strength Concrete, ACI Committee. American Concrete Institute & International Organization for Standardization, Farmington Hills; Michigan.; ASTM C39-16. 2016. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken; PA.; ASTM C469-14. 2014. Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression, ASTM International, West Conshohocken; PA.; ASTM C157-17. 2017. Standard test method for length change of hardened cement mortar and concrete, ASTM International, West Conshohocken; PA.; Cordeiro GC, Toledo Filho RD, Tavares LM, and Fairbairn EMR. 2009. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39(2): 110-115.; TGO. 2022. Greenhouse gas emission factor: Emission factor. Thailand greenhouse gas management organization. Bangkok; Thailand.; Braga AM, Silvestre JD, de Brito J. 2017. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. J. Clean. Prod. 162: 529-543.; Turner LK, Collins FG. 2013. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concreteConstr. Build. Mater. 43: 125-130.; Kim Y-J, Leeuwen RV, Cho B-Y, Sriraman V, Torres A. 2018. Evaluation of the Efficiency of Limestone Powder in Concrete and the Effects on the Environment. Sustain. 10(2): 550.; Sripan T, Haruehansapong S, Kroehong W, Senawang W, Namarak C, Jaturapitakkul C, Tangchirapat W. 2024. Assessment of bonding strength of steel bar in recycled aggregate concrete containing ground palm oil fuel ash. Innov. Infrastruct. Solut. 9(3): 59.; Herath C, Gunasekara C, Law DW, Setunge S. 2020. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Constr. Build. Mater. 258: 120606.; Chindaprasirt P, Kroehong W, Damrongwiriyanupap N, Suriyo W, Jaturapitakkul C. (2020) Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. J. Build. Eng. 31:101415.; Klathae T, Tran TNH, Men S, Jaturapitakkul C, Tangchirapat W. 2021. Strength, chloride resistance, and water permeability of high volume sugarcane bagasse ash high strength concrete incorporating limestone powder. Constr. Build. Mater. 311: 125326.; Siddique R. 2004. Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 34(3): 487-493.; Chen H-J, Shih N-H, Wu C-H, Lin S-K. 2019. Effects of the loss on ignition of fly ash on the properties of high-volume fly ash concrete. Sustain. 11(9): 2704.; Meddah MS, Lmbachiya MC, Dhir RK. 2014. Potential use of binary and composite limestone cements in concrete production. Constr. Build. Mater. 58: 193-205.; Huang C-H, Lin S-K, Chang C-S, Chen H-J. 2013. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 46: 71-78.; Dinakar P, Babu K, Santhanam M. 2008. Mechanical properties of high-volume fly ash self-compacting concrete mixtures. Struct. Concr. 9(2): 109-116.; Rerkpiboon A, Tangchirapat W, Jaturapitakkul C. 2015. Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr. Build. Mater. 101(1): 983-989.; Meenyut B, Tanchirapat W, Jaturapitakkul C. 2019. High-strength concrete containing high volume of ground bottom ash. J. Thai. Conc. Assoc. 7(2): 14-24.; ACI 318M. 2014. Building code requirements for structural concrete (ACI 318M-14) and commentary: ACI Committee. American Concrete Institute & International Organization for Standardization, Farmington Hills; Michigan.; Aıtcin P. 2003. The durability characteristics of high performance concrete: a review. Cem Concr Compos. 25(4-5):409-420.; Kristiawan SA, Aditya MTM. 2015. Effect of high volume fly ash on shrinkage of self-compacting concrete. Procedia. Eng. 125: 705-712.; Kumar B, Tike G, Nanda P. 2007. Evaluation of properties of high-volume fly-ash concrete for pavements. J. Mater. Civ. Eng. 19(10):906-911.; De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41(3): 279-291.; Amnadnua K, Tangchirapat W, Jaturapitakkul C. 2013. Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash. Mater. Des. 51:894-901.; Atiş CD. 2002. Heat evolution of high-volume fly ash concrete. Cem. Concr. Res. 32(5): 751-756.; Djenaoucine L, Picazo Á, de la Rubia MÁ, Moragues A, Gálvez JC. 2024. Influence of graphene oxide on mechanical properties and durability of cement mortar. Mater. 17(6): 1445.; Piasta W, Góra J, Budzyński W. 2017. Stress-strain relationships and modulus of elasticity of rocks and of ordinary and high performance concretes. Constr. Build. Mater. 153: 728-739.; Limbachiya M, Meddah MS, Ouchagour Y. 2012. Performance of Portland/Silica Fume Cement Concrete Produced with Recycled Concrete Aggregate. ACI Mater. J. 109(1): 91-100.; Amin M, Abu el-Hassan K. 2015. Effect of using different types of nano materials on mechanical properties of high strength concrete. Constr. Build. Mater. 80:116-124.; Ridzuan A, Ibrahim A, Ismail A, Diah A. 2005. Durablity performance of recycled aggregate concrete. Achieving Sustainability in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UKon 5–6 July 2005. Thomas Telford Publishing: 193-202.; Donza H, Cabrera O, Irassar E. 2002. High-strength concrete with different fine aggregate. Cem. Concr. Res. 32(11):1755-1761.; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/3723

  18. 18
  19. 19
  20. 20
    Academic Journal

    المصدر: Questionar: Investigación Específica; Vol. 6 No. 1 (2018); 9-24 ; Questionar: Investigación Específica; Vol. 6 Núm. 1 (2018); 9-24 ; 2590-5600 ; 2346-1098

    وصف الملف: application/pdf

    Relation: https://revistas.uamerica.edu.co/index.php/rques/article/view/245/345; Acevedo, P., Martínez, D., Jaimes, W., y Kafarov, V. (2009). Evaluación de los impactos ambientales en la producción de biodiesel de palma africana mediante análisis de ciclo de vida "de la cuna a la cuna". En Universidad de Quindío, IV Simposio de Química Aplicada-SIQUIA 2009. Ponencia presentada en Armenia, Colombia.; Alí, A., Mohd, N., y Salleh, M. (2017). Recent trend in residual pal oil recovery in a solid state fermentation. Jurnal Tecknologi, 80(3), 9-21. https://doi.org/10.11113/jt.v80.10831; Althausen, M. (2017). Tratamiento de efluentes de la planta de beneficio-convertir un residuo en un recurso. Revista Palmas, 37(especial, t. II), 31-37.; Alzate-Ibañez, A., Ramírez, J., y Alzate-Ibañez, S. (2018). El modelo de gestión ambiental ISO 14001: evolución y aporte a la sostenibilidad. Revista Chilena de Economía y Sociedad, 12(1), 74-85.; Andarani, P., Dwi, W., Sawitri, D., y Budiawan, W. (2018). Life-cycle assessment of crude palm oil produced at mill J, PT XYZ, Sumatera Island using eco-indicator 99. Recuperado dehttps://www.matec-conferences.org/articles/matecconf/pdf/2018/18/matecconf_ijcaet- isampe2018_01028.pdf. https://doi.org/10.1051/matecconf/201815902016; Ayala, A. (2015). Propuesta para el mejoramiento del sistema de gestión ambiental para el sector de palma de aceite en la empresa Guaicaramo S. A. (trabajo de grado). Programa de Ingenieria Ambiental y Sanitaria, Facultad de Ingeniería, Universidad de la Salle, Bogotá, Colombia.; Conesa, V. (2010). Guía metodológica para la evaluación del impacto ambiental (4a ed.). Madrid, España: Ediciones Mundi-Prensa.; Fedepalma. (2002). La palma de aceite: un producto con historia. Recuperado de https://publica- ciones.fedepalma.org/index.php/palmicultor/article/download/7275/7266; Fedepalma y Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2011). Guía ambiental de la agroindustria de la palma de aceite en Colombia. Recuperado de http://cultivopalma.tripod. com/guiambiental.pdf; Fedepalma. (2016). La palma de aceite en Colombia. Recuperado de http://www.palmadeaceite.org/ palma-deaceite-en-colombia; García, J., y Yañez, E. (2010). Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia. Revista Palmas, 31(2), 41-48.; Gónzalez, A., Jiménez, I., Rodríguez, M., Restrepo, S., y Gómez, J. (2008). Biocombustibles de segunda generación y biodiesel: una mirada a la contribución de la Universidad de los Andes. Revista de Ingeniería, 28, 70-82. https://doi.org/10.16924/riua.v0i28.268; Heras-Saizarbitoria, I., y Boiral, O. (2013). ISO 9001 and ISO 14001: towards a research agenda on management system standards. International Journal of Management System Standards, 15(1), 47-65. https://doi.org/10.1111/j.1468-2370.2012.00334.x; Islam, M., Yousuf, A., Karim, A., Pirozzi, D., Khan, M., y Wahid, Z. (2018). Bioremediation of palm oil mill effluent and lipid production by Lipomyces starkeyi: a combined approach. Journal of Cleaner Production, 172, 1779-1787. https://doi.org/10.1016/j.jclepro.2017.12.012; Lee, K., y Ofori-Boateng, C. (2013). Oil Palm Biomass as Feedstock for Biofuel Production. En Sustainability of Biofuel Production from Oil Palm Biomass (pp. 77-106). Singapure: Springer. https://doi.org/10.1007/978-981-4451-70-3_3; Peñafiel, R., Moreno, C., y Ochoa-Herrera, V. (2016). Eliminación de nitrógeno y contaminación orgánica de agua residual industrial pretratada en lagunas anaeróbicas mediante un biofiltro de arena. ACI Avances en Ciencias e Ingenierías, 8(4), 86-97. https://doi.org/10.18272/aci.v8i14.299; Rodriguez, D., Ramírez, N., y García, C. (2015). Evaluación de la incidencia de la producción de compost, usando biomasa de la planta de beneficio, en la huella de carbono del aceite de palma. Revista Palmas, 36(1), 27-39.; Toro, J. (2009). Análisis constructivo del proceso de evaluación de impacto ambiental en Colombia. Propuestas de mejora (tesis doctoral). Área de Tecnologías del Medio Ambiente, Departamento de Ingeniería Civil, Universidad de Granada, Granada, España.; https://revistas.uamerica.edu.co/index.php/rques/article/view/245