-
1Academic Journal
المؤلفون: Cembranel, Priscila, Gewehr, Luiza, Dal Moro, Leila, Fuchs, Paulo Guilherme, Birch, Robert Samuel, Andrade Guerra, José Baltazar Salgueirinho Osório de
المصدر: International Journal of Sustainability in Higher Education, 2024, Vol. 25, Issue 7, pp. 1385-1411.
-
2Academic JournalBarriers and possible drivers for the implementation of sustainability in Brazilian business schools
المؤلفون: Guadagnin, Alana, Pauli, Jandir, Ruffatto, Juliane, Dal Moro, Leila
المصدر: International Journal of Sustainability in Higher Education, 2023, Vol. 25, Issue 3, pp. 577-595.
-
3Academic Journal
المؤلفون: Oliveira, Marcos, Oliveira Valença, Gabriela, Pinto, Diana, Dal Moro, Leila, William Bodah, Brian, de Vargas Mores, Giana, Grub, Julian, Adelodun, Bashir, Neckel, Alcindo
مصطلحات موضوعية: Rare carbon compounds, Spontaneous coal combustion, Multi-analytical approach, Sustainable macroscale
جغرافية الموضوع: Colombia
وصف الملف: 18 páginas; application/pdf
Relation: Sustainability; 1. Wu, M.; Qi, C.; Chen, Q.; Liu, H. Evaluating the metal recovery potential of coal fly ash based on sequential extraction and machine learning. Environ. Res. 2013, 224, 115546. [CrossRef] [PubMed]; 2. Sandeep, P.; Maity, S.; Mishra, S.; Chaudhary, D.K.; Dusane, C.; Pillai, A.S.; Kumar, A.V. Estimation of rare earth elements in Indian coal fly ashes for recovery feasibility as a secondary source. J. Hazard. Mater. 2023, 10, 100257. [CrossRef]; 3. Tang, Y.; Hu, S.; Wang, H. Using P–Cl inorganic ultrafine aerosol particles to prevent spontaneous combustion of low-rank coal in an underground coal mine. Fire Saf. J. 2020, 115, 103140. [CrossRef]; 4. Moghadam, M.J.; Ajalloeian, R.; Hajiannia, A. Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review. Constr. Build. Mater. 2019, 221, 84–98. [CrossRef]; 5. Dong, Z.; Ye, X.; Jiang, J.; Li, C. Life cycle assessment of coal-fired solar-assisted carbon capture power generation system integrated with organic Rankine cycle. J. Clean. Prod. 2022, 356, 131888. [CrossRef]; 6. Li, Z.; Miao, Z.; Shen, X. Combined effects of water content and primary air volume on performance of lignite-fired boiler. Fuel 2019, 244, 580–591. [CrossRef]; 7. Ayaz, M.; Jehan, N.; Nakonieczny, J.; Mentel, U.; Uz Zaman, Q. Health costs of environmental pollution faced by underground coal miners: Evidence from Balochistan, Pakistan. Resour. Policy 2022, 76, 102536. [CrossRef]; 8. Finkelman, R.B. Potential health impacts of burning coal beds and waste banks. Int. J. Coal Geol. 2004, 59, 19–24. [CrossRef]; 9. Golik, V.I.; Razorenov, I.I.; Vagin, V.S.; Liashenko, V.I. Study and development of hardening mixture composition based on unconventional industrial waste. Izvestiya Vysshikh Uchebnykh Zavedenii. Gorn. Zh. 2021, 1, 13–27. [CrossRef]; 11. Neckel, A.; Osorio-Martinez, J.; Pinto, D.; Bodah, B.W.; Adelodun, B.; Silva, L.F. Hazardous elements present in coal nanoparticles in a Caribbean port region in Colombia. Sci. Total Environ. 2022, 838, 156363. [CrossRef] [PubMed]; 12. Zhang, W.; Wang, H.; Ma, Y.; You, C. Sulfur fixation for raw coal with combined microwave irradiation and ultrafine Ca(OH)2 method. Fuel 2022, 330, 125570. [CrossRef]; 13. Wang, G.; Bai, X.; Wu, C.; Li, W.; Liu, K.; Kiani, A. Recent advances in the beneficiation of ultrafine coal particles. Fuel Process. Technol. 2018, 178, 104–125. [CrossRef]; 14. Khayrutdinov, M.M.; Golik, V.I.; Aleksakhin, A.V.; Trushina, E.V.; Lazareva, N.V.; Aleksakhina, Y.V. Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining. Resources 2022, 11, 88. [CrossRef]; 15. Neckel, A.; Pinto, D.; Adelodun, B.; Dotto, G.L. An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete. Sustainability 2022, 14, 3943. [CrossRef]; 16. Zhao, Y.; Zhang, J.; Chou, C.L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int. J. Coal Geol. 2008, 73, 52–62. [CrossRef]; 17. Ciesielczuk, J.; Misz-Kennan, M.; Hower, J.C.; Fabia ´nska, M.J. Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (Upper Silesia, Poland). Int. J. Coal Geol. 2014, 127, 42–55. [CrossRef]; 18. Silva, L.F.; Pinto, D.; Dotto, G.L. A tool for realistic study of nanoparticulate coal rejects. J. Clean. Prod. 2021, 278, 121916. [CrossRef]; 19. Yuan, B.; Cao, H.; Du, P.; Ren, J.; Chen, J.; Zhang, H.; Zhang, Y.; Luo, H. Source-oriented probabilistic health risk assessment of soil potentially toxic elements in a typical mining city. J. Hazard. Mater. 2023, 443, 130222. [CrossRef]; 20. Padhye, L.P.; Jasemizad, T.; Bolan, S.; Tsyusko, O.V.; Unrine, J.M.; Biswal, B.K.; Balasubramanian, R.; Zhang, Y.; Zhang, T.; Zhao, J.; et al. Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. Sci. Total Environ. 2023, 871, 161926. [CrossRef]; 21. Tretyakova, M.; Vardavas, A.; Vardavas, C.; Iatrou, E.; Stivaktakis, P.; Burykina, T.; Mezhuev, Y.; Tsatsakis, A.; Golokhvast, K. Effects of coal microparticles on marine organisms: A review. Toxicol. Rep. 2021, 8, 1207–1219. [CrossRef] [PubMed]; 22. Onifade, M.; Genc, B. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 2020, 30, 303–311. [CrossRef]; 23. Neckel, A.; Oliveira, M.L.; Castro Bolaño, L.J.; Maculan, L.S.; Moro, L.D.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. [CrossRef]; 24. Hower, J.C.; Finkelman, R.B.; Eble, C.F.; Arnold, B.J. Understanding coal quality and the critical importance of comprehensive coal analyses. Int. J. Coal Geol. 2022, 263, 104120. [CrossRef]; 25. Hodson, M.E.; Islam, M.; Metcalf, M.; Wright, A.C. Amendments of waste ochre from former coal mines can potentially be used to increase soil carbon persistence. Appl. Geochem. 2023, 151, 105618. [CrossRef]; 26. Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [CrossRef]; 27. Harris, P.; McManus, P.; Sainsbury, P.; Viliani, F.; Riley, E. The institutional dynamics behind limited human health considerations in environmental assessments of coal mining projects in New South Wales, Australia. Environ. Impact Assess. Rev. 2021, 86, 106473. [CrossRef]; 28. Hossen, M.A.; Chowdhury, A.I.H.; Mullick, M.R.A.; Hoque, A. Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Nanotechnol. Monit. Manag. 2021, 16, 100469. [CrossRef]; 29. Cardoso, A.; Turhan, E. Examining new geographies of coal: Dissenting energyscapes in Colombia and Turkey. Appl. Energy 2018, 224, 398–408. [CrossRef]; 30. Huang, Q.; Talan, D.; Restrepo, J.H.; Baena, O.J.R.; Kecojevic, V.; Noble, A. Characterization study of rare earths, yttrium, and scandium from various Colombian coal samples and non-coal lithologies. Int. J. Coal Geol. 2019, 209, 14–26. [CrossRef]; 31. López, I.C.; Ward, C.R. Composition and mode of occurrence of mineral matter in some Colombian coals. Int. J. Coal Geol. 2008, 73, 3–18. [CrossRef]; 32. Blandón, A.; Gorin, G. Combining palynofacies and petrography in the study of sub-bituminous tropical coals: A case history from Lower Tertiary coals in Colombia. Int. J. Coal Geol. 2013, 108, 65–82. [CrossRef]; 33. Moore, T.A.; Dai, S.; Huguet, C.; Pearse, J.; Liu, J.; Esterle, J.S.; Jia, R. Petrographic and geochemical characteristics of selected coal seams from the Late Cretaceous-Paleocene Guaduas Formation, Eastern Cordillera Basin, Colombia. Int. J. Coal Geol. 2022, 259, 104042. [CrossRef]; 34. Silva, L.F.; Crissien, T.J.; Sampaio, C.H.; Hower, J.C.; Dai, S. Occurrence of carbon nanotubes and implication for the siting of elements in selected anthracites. Fuel 2020, 263, 116740. [CrossRef]; 35. Dane. National Administrative Department of Statistics. Results National Census of Población of Vivienda. Santa Marta, Magdalena. 2019; pp. 1–46. Available online: https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentacionesterritorio/191004-CNPV-presentacion-Magdalena.pdf (accessed on 28 January 2023).; 36. Patricia, G.R.O.; Blandón, A.; Perea, C.; Mastalerz, M. Petrographic characterization, variations in chemistry, and paleoenvironmental interpretation of Colombian coals. Int. J. Coal Geol. 2020, 227, 103516. [CrossRef]; 37. Akinyemi, S.A.; Bohórquez, F.; Islam, N.; Saikia, B.K.; Sampaio, C.H.; Crissien, T.J.; Silva, L.F. Petrography and geochemistry of exported Colombian coals: Implications from correlation and regression analyses. Energy Geosci. 2021, 2, 201–210. [CrossRef]; 38. Hdx. Subnational Administrative Boundaries. This dataset is part of the Colombia. Data Grid Colombia. 2023. Available online: https://data.humdata.org/dataset/cod-ab-col? (accessed on 18 January 2023).; 39. Qgis. Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2023. Available online: http://qgis.osgeo.org (accessed on 10 January 2023).; 40. Higgitt, D.L.; Warburton, J. Applications of differential GPS in upland fluvial geomorphology. Geomorphology 1999, 29, 121–134. [CrossRef]; 41. Luedeling, E.; Siebert, S.; Buerkert, A. Filling the voids in the SRTM elevation model-A TIN-based delta surface approach. ISPRS J. Photogramm. Remote Sens. 2007, 62, 283–294. [CrossRef]; 42. Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [CrossRef]; 43. Dutta, M.; Saikia, J.; Taffarel, S.R.; Waanders, F.B.; Medeiros, D.d.; Cutruneo, C.M.; Silva, L.F.; Saikia, B.K. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geosci. Front. 2017, 8, 1285–1297. [CrossRef]; 44. Silva, L.F.O.; Izquierdo, M.; Querol, X.; Finkelman, R.B.; Oliveira, M.L.S.; Wollenschlager, M.; Towler, M.; Pérez-López, R.; Macias, F. Leaching of potential hazardous elements of coal cleaning rejects. Environ. Monit. Assess. 2010, 175, 109–126. [CrossRef] [PubMed]; 45. Ramsey, A.B.; Faiia, A.M.; Szynkiewicz, A. Eight years after the coal ash spill—Fate of trace metals in the contaminated river sediments near Kingston, eastern Tennessee. Appl. Geochem. 2019, 104, 158–167. [CrossRef]; 46. Timpano, A.J.; Taylor, Z.; Jones, J.W. Contaminated interstitial sediment is a reservoir of trace elements with exposure potential for freshwater mussels. Environ. Adv. 2023, 12, 100357. [CrossRef]; 47. Dai, S.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [CrossRef]; 48. Oliveira, M.L.; Pinto, D.; Tutikian, B.F.; Boit, K.d.; Saikia, B.K.; Silva, L.F. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mines. J. Clean. Prod. 2019, 215, 1140–1148. [CrossRef]; 49. Li, K.; Liu, Q.; Hou, D.; Wang, Z.; Zhang, S. Quantitative investigation on the structural characteristics and evolution of high-rank coals from Xinhua, Hunan Province, China. Fuel 2021, 289, 119945. [CrossRef]; 50. Sime, F.M.; Jin, J.; Wang, X.; Wick, C.D.; Miller, J.D. Characterization and simulation of graphite edge surfaces for the analysis of carbonaceous material separation from sulfide ores by flotation. Miner. Eng. 2022, 182, 107590. [CrossRef]; 51. Rehan, I.; Gondal, M.; Almessiere, M.; Dakheel, R.; Rehan, K.; Sultana, S.; Dastageer, M. Nutritional and toxic elemental analysis of dry fruits using laser induced breakdown spectroscopy (LIBS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Saudi J. Biol. Sci. 2021, 28, 408–416. [CrossRef]; 52. Galhardi, J.A.; García-Tenorio, R.; Bonotto, D.M.; Díaz Francés, I.; Motta, J.G. Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil. J. Environ. Radioact. 2017, 177, 37–47. [CrossRef]; 53. Montross, S.N.; Verba, C.A.; Chan, H.L.; Lopano, C. Advanced characterization of rare earth element minerals in coal utilization byproducts using multimodal image analysis. Int. J. Coal Geol. 2018, 195, 362–372. [CrossRef]; 54. Kwieci ´nska, B.; Pusz, S.; Valentine, B.J. Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. Int. J. Coal Geol. 2019, 211, 103203. [CrossRef]; 55. Roelandts, I.; Deblond, A. Rare-earth element composition of Devonian sediments from southern Belgium: Application of an inductively coupled plasma-atomic emission spectrometry method. Chem. Geol. 1992, 95, 167–176. [CrossRef]; 56. Wei, W.J.; Yang, Y.; Li, X.Y.; Huang, P.; Wang, Q.; Yang, P.J. Cloud point extraction (CPE) combined with single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Talanta 2022, 239, 123117. [CrossRef] [PubMed]; 57. Xiong, K.; Bu, W.; Ni, Y.; Liu, X.; Zheng, J.; Aono, T.; Yang, C.; Hu, S. Rapid monitoring of 241Am in small amount of sediment samples by combining extraction chromatography for highly efficient separation of interfering and matrix elements and ICP-MS/MS measurement. Microchem. J. 2023, 190, 108581. [CrossRef]; 58. Sanchís, J.; Božovi´c, D.; Al-Harbi, N.A.; Farré, M.; Barceló, D. Quantitative trace analysis of fullerenes in river sediment from Spain and soils from Saudi Arabia. Anal. Bioanal. Chem. 2013, 405, 5915–5923. [CrossRef]; 59. Farag, S.; Konyashin, I.; Ries, B. The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals—A review. Int. J Refract. Hard. Met. 2018, 77, 12–30. [CrossRef]; 60. Pandey, B.; Mukherjee, A.; Agrawal, M.; Singh, S. Assessment of Seasonal and Site-Specific Variations in Soil Physical, Chemical and Biological Properties Around Opencast Coal Mines. Pedosphere 2019, 29, 642–655. [CrossRef]; 61. Tang, Q.; Sheng, W.; Li, L.; Zheng, L.; Miao, C.; Sun, R. Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui, China. Environ. Pollut. 2018, 239, 768–776. [CrossRef]; 62. Park, H.; Wang, L.; Yun, J.H. Coal beneficiation technology to reduce hazardous heavy metals in fly ash. J. Hazard. Mater. 2021, 416, 125853. [CrossRef]; 63. Han, J.; Yu, D.; Wang, Q.; Yu, N.; Wu, J.; Liu, Y.; Luo, L.; Pan, H. Beneficiation of coal ash from ash silos of six Chinese power plants and its risk assessment of hazardous elements for land application. Process Saf. Environ. Prot. 2022, 160, 641–649. [CrossRef]; 64. Eskanazy, G.; Finkelman, R.B.; Chattarjee, S. Some considerations concerning the use of correlation coefficients and cluster analysis in interpreting coal geochemistry data. Int. J. Coal Geol. 2010, 83, 491–493. [CrossRef]; 65. Silva, L.F.; Crissien, T.J.; Schneider, I.L.; Blanco, R.P.; Sampaio, C.H. Nanometric particles of high economic value in coal fire region: Opportunities for social improvement. J. Clean. Prod. 2020, 256, 120480. [CrossRef]; 66. Liu, Y.; Molinari, S.; Dalconi, M.C.; Valentini, L.; Ricci, G.; Carrer, C.; Ferrari, G.; Artioli, G. The leaching behaviors of lead, zinc, and sulfate in pyrite ash contaminated soil: Mineralogical assessments and environmental implications. J. Environ. Chem. Eng. 2023, 11, 109687. [CrossRef]; 67. Salih, N.; Mansurbeg, H.; Muchez, P.; Axel, G.; Préat, A. Hydrothermal Fluids and Cold Meteoric Waters along TectonicControlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry. Water 2021, 13, 3559. [CrossRef]; 68. Salih, N. The Impact of Hydrothermal Fluids on Porosity Enhancement and Hydrocarbon Migration in Qamchuqa Formation, Lower Cretaceous, Kirkuk Oil Company. Minerals 2023, 13, 377. [CrossRef]; 69. He, X.; Wu, J.; Chen, Y.; Zhang, L.; Sheng, X. A trace amount of MXene@PDA nanosheets for low-temperature zinc phosphating coatings with superb corrosion resistance. Appl. Surf. Sci. 2022, 603, 154455. [CrossRef]; 70. Jiang, Z.; Nie, K.; Arinzechi, C.; Li, J.; Liao, Q.; Si, M.; Yang, Z.; Li, Q.; Yang, W. Cooperative effect of slow-release ferrous and phosphate for simultaneous stabilization of As, Cd and Pb in soil. J. Hazard. Mater. 2023, 452, 131232. [CrossRef]; 71. Wang, Y.; Xie, X.; Chen, X.; Huang, C.; Yang, S. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption. J. Hazard. Mater. 2020, 396, 122626. [CrossRef]; 72. Moumen, E.; Bazzi, L.; El Hankari, S. Metal-organic frameworks and their composites for the adsorption and sensing of phosphate. Coord. Chem. Rev. 2022, 455, 214376. [CrossRef]; 73. Kamal, S.; Khalid, M.; Khan, M.S.; Shahid, M. Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord. Chem. Rev. 2023, 474, 214859. [CrossRef]; 74. Ma, W.; Liu, S.; Li, Z.; Lv, J.; Yang, L. Release and transformation mechanisms of hazardous trace elements in the ash and slag during underground coal gasification. Fuel 2020, 281, 118774. [CrossRef]; 75. Marove, C.A.; Tangviroon, P.; Tabelin, C.B.; Igarashi, T. Leaching of hazardous elements from Mozambican coal and coal ash. J. Afr. Earth Sci. 2020, 168, 103861. [CrossRef]; 76. Ali, M.U.; Liu, Y.; Yousaf, B.; Wong, M.H.; Li, P.; Liu, G.; Wang, R.; Wei, Y.; Lu, M. Morphochemical investigation on the enrichment and transformation of hazardous elements in ash from waste incineration plants. Sci. Total Environ. 2022, 828, 154490. [CrossRef] [PubMed]; 77. Lahrouch, F.; Baptiste, B.; Dardenne, K.; Rothe, J.; Elkaim, E.; Descostes, M.; Gerard, M. Uranium speciation control by uranyl sulfate and phosphate in tailings subject to a Sahelian climate, Cominak, Niger. Chemosphere 2022, 287, 132139. [CrossRef] [PubMed]; 78. Wang, C.; Zhao, L.; Sun, R.; Hu, Y.; Tang, G.; Chen, W.; Du, Y.; Che, D. Effects of silicon-aluminum additives on ash mineralogy, morphology, and transformation of sodium, calcium, and iron during oxy-fuel combustion of zhundong high-alkali coal. Int. J. Greenh. Gas Control. 2019, 91, 102832. [CrossRef]; 79. Arbuzov, S.; Chekryzhov, I.; Spears, D.; Ilenok, S.; Soktoev, B.; Popov, N. Geology, geochemistry, mineralogy and genesis of the Spetsugli high-germanium coal deposit in the Pavlovsk coalfield, Russian Far East. Ore Geol. Rev. 2021, 139, 104537. [CrossRef]; 80. Yuan, Z.; Jia, G.; Cui, X.; Song, X.; Wang, C.; Zhao, P.; Ragauskas, A.J. Effects of temperature and time on supercritical methanol Co-Liquefaction of rice straw and linear low-density polyethylene wastes. Energy 2022, 245, 123315. [CrossRef]; 81. Li, B.; Zhuang, X.; Querol, X.; Moreno, N.; Córdoba, P.; Shangguan, Y.; Yang, L.; Li, J.; Zhang, F. Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in late Permian coals from the Qiandongbei Coalfield, Guizhou Province, SW China. Int. J. Coal Geol. 2022, 231, 103604. [CrossRef]; 82. Ribeiro, J.; Flores, D.; Ward, C.R.; Silva, L.F. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 2010, 408, 6032–6041. [CrossRef]; 83. Silva, L.F.; Oliveira, M.L.; Neace, E.R.; O’Keefe, J.M.; Henke, K.R.; Hower, J.C. Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA. Int. J. Coal Geol. 2011, 85, 237–245. [CrossRef]; 84. Silva, L.F.; Oliveira, M.L.; Philippi, V.; Serra, C.C.; Hower, J.C.; Xue, W.; Chen, W.; O’Keefe, J.M.; Romanek, C.S.; Hopps, S.D.; et al. Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. Int. J. Coal Geol. 2012, 94, 206–213. [CrossRef]; 85. Hower, J.C.; O’Keefe, J.M.; Henke, K.R.; Wagner, N.; Copley, G.C.; Blake, D.R.; Garrison, T.M.; Oliveira, M.L.; Kautzmann, R.M.; Silva, L.F. Gaseous emissions and sublimates from the Truman Shepherd coal fire, Floyd County, Kentucky: A re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 2013, 116–117, 63–74. [CrossRef]; 86. Wilcox, J.; Wang, B.; Rupp, E.C.; Taggart, R.K.; Hsu-Kim, H.; Oliveira, M.L.; Cutruneo, C.M.; Taffarel, S.R.; Silva, L.F.; Hopps, S.D.; et al. Observations and Assessment of Fly Ashes from High-Sulfur Bituminous Coals and Blends of High-Sulfur Bituminous and Subbituminous Coals: Environmental Processes Recorded at the Macro-and Nanometer Scale. Energy Fuels 2015, 29, 7168–7177. [CrossRef]; 87. George, A.; Shen, B.; Kang, D.; Yang, J.; Luo, J. Emission control strategies of hazardous trace elements from coal-fired power plants in China. J. Environ. Sci. 2020, 93, 66–90. [CrossRef] [PubMed]; 88. Ribeiro, J.; Suárez-Ruiz, I.; Flores, D. Coal related fires in Portugal: New occurrences and new insights on the characterization of thermally affected and non-affected coal waste piles. Int. J. Coal Geol. 2022, 252, 103941. [CrossRef]; 89. Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 2019, 191, 12–25. [CrossRef]; 90. Lieberman, N.R.; Izquierdo, M.; Muñoz-Quirós, C.; Cohen, H.; Chenery, S.R. Geochemical signature of superhigh organic sulphur Raša coals and the mobility of toxic trace elements from combustion products and polluted soils near the Plomin coal-fired power station in Croatia. Appl. Geochem. 2020, 114, 104472. [CrossRef]; 91. Xiong, X.; Liu, X.; Yu, I.K.; Wang, L.; Zhou, J.; Sun, X.; Rinklebe, J.; Shaheen, S.M.; Ok, Y.S.; Lin, Z.; et al. Potentially toxic elements in solid waste streams: Fate and management approaches. Environ. Pollut. 2019, 253, 680–707. [CrossRef]; 92. Dill, H.G.; Jolanta, K.; Andrei, B.; Sorin-Ionut, B.; Stephan, K.; Borrego, A.G. Organic debris and allochthonous coal in Quaternary landforms within a periglacial setting (Longyearbyen Mining District, Norway)—A multi-disciplinary study (coal geologygeomorphology-sedimentology). Int. J. Coal Geol. 2021, 233, 103625. [CrossRef]; 93. Zhang, B.; Shen, Z.; Sun, J.; Zou, H.; He, K.; Wang, X.; Li, J.; Cui, S.; Zhang, N.; Cao, J. Emission characteristics and formation mechanisms of PM2.5 and gases from different geological maturities coals combustion. Fuel 2022, 315, 123240. [CrossRef]; 94. Vo, T.L.; Nash, W.; Del Galdo, M.; Rezania, M.; Crane, R.; Mousavi Nezhad, M.; Ferrara, L. Coal mining wastes valorization as raw geomaterials in construction: A review with new perspectives. J. Clean. Prod. 2022, 336, 130213. [CrossRef]; 18; 10; 15; Oliveira, M.L.S.; Valença, G.O.; Pinto, D.; Moro, L.D.; Bodah, B.W.; de Vargas Mores, G.; Grub, J.; Adelodun, B.; Neckel, A. Hazardous Elements in Sediments Detected in Former Decommissioned Coal Mining Areas in Colombia: A Need for Environmental Recovery. Sustainability 2023, 15, 8361. https://doi.org/10.3390/su15108361; https://hdl.handle.net/11323/10526; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
4Academic Journal
المؤلفون: Neckel, Alcindo, Silva Oliveira, Marcos Leandro, Stolfo Maculan, Laércio, Adelodun, Bashir, Toscan , Paloma, Bodah, Brian, Dal Moro, Leila, Silva Oliveira, Luis Felipe
مصطلحات موضوعية: Satellite study, Metallic and organic pollution, Nanoparticles, Ultrafine particles, Global scale
جغرافية الموضوع: Iberian Peninsula
وصف الملف: 1 página; application/pdf
Relation: Marine Pollution Bulletin; 187; Alcindo Neckel, Marcos L.S. Oliveira, Laércio Stolfo Maculan, Bashir Adelodun, Paloma Carollo Toscan, Brian William Bodah, Leila Dal Moro, Luis F.O. Silva, Terrestrial nanoparticle contaminants and geospatial optics using the Sentinel-3B OLCI satellite in the Tinto River estuary region of the Iberian Peninsula, Marine Pollution Bulletin, Volume 187, 2023, 114525, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2022.114525.; https://hdl.handle.net/11323/10357; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.co/
-
5Academic Journal
المؤلفون: Puche, Johnny Oliver Corcho, Bodah, Brian William, Salas, Karen Esther Muñoz, Palma, Hugo Hernández, Theodoro, Suzi Huff, Neckel, Alcindo, Moreno-Ríos, Andrea Liliana, Mores, Giana, Silva, Caliane Christie Oliveira de Almeida, Dal Moro, Leila, Cardoso, Grace Tibério, Ramos, Claudete Gindri
المصدر: Sustainability (2071-1050); Nov2024, Vol. 16 Issue 22, p10076, 14p
-
6Academic Journal
Alternate Title: Female entrepreneurship: challenges and opportunities in times of crisis. (English)
Emprendimiento femenino: retos y oportunidades en tiempos de crisis. (Spanish)المؤلفون: Almeida Dias, Rosilene da Silva, Souza Rosa, Priscila, Neckel, Alcindo, Dalla Corte, Vitor Francisco, Mores, Giana, Dal Moro, Leila
المصدر: GeSec: Revista de Gestao e Secretariado; 2024, Vol. 15 Issue 9, p1-16, 16p
-
7Academic Journal
Alternate Title: The main challenges of transportation logistics in brazilian agribusiness: a systematic review of the literature. (English)
Los principales desafíos de la logística de transporte en el agronegocio brasileño: una revisión sistemática de la literatura. (Spanish)المؤلفون: de Oliveira Gonçalves, Emily Moraes, Tibola, Gleissiane, Moraes Vargas, Guilherme, Saadi Machado, Angela, Neckel, Alcindo, Dal Moro, Leila, Mores, Giana
المصدر: GeSec: Revista de Gestao e Secretariado; 2024, Vol. 15 Issue 8, p1-13, 13p
-
8Academic Journal
المؤلفون: Dal Moro , Leila, Soares, João Filipe Torres, Casagranda, Yasmin, Guadagnin , Alana, Mores, Giana de Vargas
المصدر: Ciência e Natura; Vol. 44 (2022): Continuous Publication; e42 ; Ciência e Natura; v. 44 (2022): Publicação Contínua; e42 ; 2179-460X ; 0100-8307
مصطلحات موضوعية: Strategic development plan, Regional Council, South Brazil, Sustainable development, Sustainability, Regional development, Plano estratégico de desenvolvimento, Conselho regional, Sul do Brasil, Desenvolvimento sustentável, Sustentabilidade, Desenvolvimento regional
وصف الملف: application/pdf; text/html
Relation: https://periodicos.ufsm.br/cienciaenatura/article/view/70586/49017; https://periodicos.ufsm.br/cienciaenatura/article/view/70586/49018; https://periodicos.ufsm.br/cienciaenatura/article/view/70586
-
9Academic Journal
المؤلفون: Neckel, Alcindo, Santosh, M., William Bodah, Brian, Stolfo Maculan, Laércio, Pinto, Diana, Korcelski, Cleiton, Carollo Toscan, Paloma, Pasa Cambrussi, Laura, Cezar Caino, Isadora, Dal Moro, Leila, Piccinato Junior, Dirceu, Tibério Cardoso, Grace, Oliveira de Almeida Silva, Caliane Christie, de Vargas Mores, Giana
مصطلحات موضوعية: Remote sensing, Atmospheric pollution, Aerosols, Geospatial analyses, Global scale
جغرافية الموضوع: Ukraine
وصف الملف: 14 páginas; application/pdf
Relation: Sustainability; 1. Mao, S.; Lang, J.; Chen, T.; Cheng, S. Improving source inversion performance of airborne pollutant emissions by modifying atmospheric dispersion scheme through sensitivity analysis combined with optimization model. Environ. Pollut. 2021, 284, 117186. [CrossRef] [PubMed]; 2. Leng, S.; Li, S.W.; Hu, Z.Z.; Wu, H.Y.; Li, B.B. Development of a micro-in-meso-scale framework for simulating pollutant dispersion and wind environment in building groups. J. Clean. Prod. 2022, 364, 132661. [CrossRef]; 3. Zhang, X.; Wang, J. Atmospheric dispersion of chemical, biological, and radiological hazardous pollutants: Informing risk assessment for public safety. JSSR 2022, 3, 372–397. [CrossRef]; 4. Félix, O.I.; Csavina, J.; Field, J.; Rine, K.P.; Sáez, A.E.; Betterton, E.A. Use of lead isotopes to identify sources of metal and metalloid contaminants in atmospheric aerosol from mining operations. Chemosphere 2015, 122, 219–226. [CrossRef]; 5. Bodah, B.W.; Neckel, A.; Stolfo Maculan, L.; Milanes, C.B.; Korcelski, C.; Ramírez, O.; Mendez-Espinosa, J.F.; Bodah, E.T.; Oliveira, M.L. Sentinel-5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J. Clean. Prod. 2022, 357, 131960. [CrossRef]; 6. Jiao, X.; Zeng, R.; Lan, G.; Zuo, S.; He, J.; Wang, C. Mechanistic study on photochemical generation of I•/I2•− radicals in coastal atmospheric aqueous aerosol. Sci. Total Environ. 2022, 825, 154080. [CrossRef]; 7. Wang, H.; He, C.; Modini, R.L.; Wang, W.; Lu, H.; Morawska, L. Mixing state of printer generated ultrafine particles: Implications for the complexity of indoor aerosols. Atmos. Environ. 2021, 259, 118550. [CrossRef]; 8. Chen, S.; Zhang, R.; Mao, R.; Zhang, Y.; Chen, Y.; Ji, Z.; Gong, Y.; Guan, Y. Sources, characteristics and climate impact of light-absorbing aerosols over the Tibetan Plateau. Earth-Sci. Rev. 2022, 232, 104111. [CrossRef]; 9. Yang, J.; Zhao, C.; Sun, Y.; Chi, Y.; Yang, Y. Aerosol first indirect effect over narrow longitude regions of North Pacific and same-latitude lands. Atmos. Environ. 2022, 277, 119081. [CrossRef]; 11. Moreno-Ríos, A.L.; Tejeda-Benítez, L.P.; Bustillo-Lecompte, C.F. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci. Front. 2020, 13, 101147. [CrossRef]; 12. Fan, M.Y.; Zhang, Y.L.; Lin, Y.C.; Cao, F.; Sun, Y.; Qiu, Y.; Xing, G.; Dao, X.; Fu, P. Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China. Atmos. Environ. 2021, 246, 118112. [CrossRef]; 13. Lee, M.H.; Yang, W.; Chae, N.; Choi, S. High resolution size characterization of particulate contaminants for radioactive metal waste treatment. Nucl. Eng. Technol. 2021, 53, 2277–2288. [CrossRef]; 14. Middya, A.I.; Roy, S. Pollutant specific optimal deep learning and statistical model building for air quality forecasting. Environ. Pollut. 2020, 301, 118–972. [CrossRef]; 15. Mohammadshirazi, A.; Kalkhorani, V.A.; Humes, J.; Speno, B.; Rike, J.; Ramnath, R.; Clark, J.D. Predicting airborne pollutant concentrations and events in a commercial building using low-cost pollutant sensors and machine learning: A case study. Build. Environ. 2022, 213, 108833. [CrossRef]; 16. Fernandez-Moran, R.; Gómez-Chova, L.; Alonso, L.; Mateo-García, G.; López-Puigdollers, D. Towards a novel approach for Sentinel-3 synergistic OLCI/SLSTR cloud and cloud shadow detection based on stereo cloud-top height estimation. ISPRS J. Photogramm. Remote Sens. 2021, 181, 238–253. [CrossRef]; 17. Neckel, A.; Oliveira, M.L.; Castro Bolaño, L.J.; Maculan, L.S.; Moro, L.D.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. [CrossRef]; 18. ESA. European Space Agency. Sentinel-5P Pre-Operations Data Hub–European, 2022. Available online: https://s5phub. copernicus.eu/dhus/ (accessed on 1 August 2022).; 19. Sanusi, M.; Ramli, A.; Hassan, W.; Lee, M.; Izham, A.; Said, M.; Wagiran, H.; Heryanshah, A. Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia. Environ. Int. 2017, 104, 91–101. [CrossRef]; 20. Xu, C.; Zhang, Z.; Ling, G.; Wang, G.; Wang, M. Air pollutant spatiotemporal evolution characteristics and effects on human health in North China. Chemosphere 2022, 294, 133814. [CrossRef]; 21. Pereira, P.; Baši´c, F.; Bogunovic, I.; Barcelo, D. Russian-Ukrainian war impacts the total environment. Sci. Total Environ. 2022, 837, 155865. [CrossRef]; 22. UKRCENSUS. State Statistics Service of Ukraine. All-Ukrainian Population Censos, 2021. Available online: https://www. ukrcensus.gov.ua/eng/ (accessed on 10 August 2022).; 23. Climate Change Knowledge Portal. Ukraine, 2022. Available online: https://climateknowledgeportal.worldbank.org/country/ ukraine/climate-data-historical (accessed on 10 August 2022).; 24. Simplemaps. Ukraine Cities Database, 2022. Available online: https://simplemaps.com/data/ua-cities (accessed on 18 August 2022).; 25. Racioppi, F.; Rutter, H.; Nitzan, D.; Borojevic, A.; Carr, Z.; Grygaski, T.J.; Jarosi ´nska, D.; Netanyahu, S.; Schmoll, O.; Stuetzle, K.; et al. The impact of war on the environment and health: Implications for readiness, response, and recovery in Ukraine. Lancet 2022, 400, 871–873. [CrossRef]; 26. Fletcher, K. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services; ESA Communications: Oakville, ON, Canada, 2012; ISBN 978-92-9221-419-7.; 27. Moro, L.D.; Maculan, L.S.; Pivoto, D.; Cardoso, G.T.; Pinto, D.; Adelodun, B.; Bodah, B.W.; Santosh, M.; Bortoluzzi, M.G.; Branco, E.; et al. Geospatial Analysis with Landsat Series and Sentinel-3B OLCI Satellites to Assess Changes in Land Use and Water Quality over Time in Brazil. Sustainability 2022, 14, 9733. [CrossRef]; 28. Clevis, Q.; Tucker, G.E.; Lancaster, S.T.; Desitter, A.; Gasparini, N.; Lock, G. A simple algorithm for the mapping of TIN data onto a static grid: Applied to the stratigraphic simulation of river meander deposits. Comput. Geosci. 2006, 32, 749–766. [CrossRef]; 29. Refice, A.; Giachetta, E.; Capolongo, D. SIGNUM: A Matlab, TIN-based landscape evolution model. Comput. Geosci. 2012, 45, 293–303. [CrossRef]; 30. Goellner, E.; Neckel, A.; Bodah, B.W.; Maculan, L.S.; Almeida Silva, C.C.O.D.; Piccinato, D.; Grub, J.; Cambrussi, L.P.; Korcelski, C.; Oliveira, M.L. Geospatial analysis of Ae. aegypti foci in southern Brazil. J. Environ. Chem. Eng. 2021, 9, 106645. [CrossRef]; 31. Ialongo, I.; Stepanova, N.; Hakkarainen, J.; Virta, H.; Gritsenko, D. Satellite-based estimates of nitrogen oxide and methane emissions from gas flaring and oil production activities in Sakha Republic, Russia. Atmos. Environ. X. 2021, 11, 100114. [CrossRef]; 32. Sarkar, T.; Anand, S.; Bhattacharya, A.; Sharma, A.; Venkataraman, C.; Sharma, A.; Ganguly, D.; Bhawar, R. Evaluation of the simulated aerosol optical properties over India: COALESCE model inter-comparison of three GCMs with ground and satellite observations. Sci. Total Environ. 2022, 852, 158442. [CrossRef]; 33. Trujillo-Acatitla, R.; Tuxpan-Vargas, J.; Ovando-Vázquez, C. Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach. Mar. Pollut. Bull. 2022, 184, 114132. [CrossRef]; 34. Alandihallaj, M.A.; Emami, M.R. Satellite replacement and task reallocation for multiple-payload fractionated Earth observation mission. Acta Astronaut. 2022, 196, 157–175. [CrossRef]; 35. Naghizadeh, A.; Metaxas, D.N. Condensed Silhouette: An Optimized Filtering Process for Cluster Selection in K-Means. Procedia Comput. Sci. 2020, 176, 205–214. [CrossRef]; 36. Maroni, D.; Cardoso, G.T.; Neckel, A.; Maculan, L.S.; Oliveira, M.L.; Bodah, E.T.; Bodah, B.W.; Santosh, M. Land surface temperature and vegetation index as a proxy to microclimate. J. Environ. Chem. Eng. 2021, 9, 105796. [CrossRef]; 37. Niu, G.; Ji, Y.; Zhang, Z.; Wang, W.; Chen, J.; Yu, P. Clustering analysis of typical scenarios of island power supply system by using cohesive hierarchical clustering based K-Means clustering method. Energy Rep. 2021, 7, 250–256. [CrossRef]; 38. Borlea, I.D.; Precup, R.E.; Borlea, A.B. Improvement of K-means Cluster Quality by Post Processing Resulted Clusters. Procedia Comput. Sci. 2022, 199, 63–70. [CrossRef]; 39. Ahmad, A.; Khan, S.S. initKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clustering. Expert Syst. Appl. 2021, 167, 114149. [CrossRef]; 40. Zhou, X.Y.; Lu, G.; Xu, Z.; Yan, X.; Khu, S.T.; Yang, J.; Zhao, J. Influence of Russia-Ukraine War on the Global Energy and Food Security. Resour. Conserv. Recycl. 2023, 188, 106657. [CrossRef]; 41. Rawtani, D.; Gupta, G.; Khatri, N.; Rao, P.K.; Hussain, C.M. Environmental damages due to war in Ukraine: A perspective. Sci. Total Environ. 2022, 850, 157932. [CrossRef]; 42. Khalfaoui, R.; Gozgor, G.; Goodell, J.W. Impact of Russia-Ukraine war attention on cryptocurrency: Evidence from quantile dependence analysis. Financ. Res. Lett. 2022, 49, 103365. [CrossRef]; 43. Bougias, A.; Episcopos, A.; Leledakis, G.N. Valuation of European firms during the Russia–Ukraine war. Econ. Lett. 2022, 218, 110750. [CrossRef]; 44. Umar, M.; Riaz, Y.; Yousaf, I. Impact of Russian-Ukraine war on clean energy, conventional energy, and metal markets: Evidence from event study approach. Resour. Policy 2022, 79, 102966. [CrossRef]; 45. Lo, G.D.; Marcelin, I.; Bassène, T.; Sène, B. The Russo-Ukrainian war and financial markets: The role of dependence on Russian commodities. Financ. Res. Lett. 2022, 50, 103194. [CrossRef]; 46. Adekoya, O.B.; Oliyide, J.A.; Yaya, O.S.; Al-Faryan, M.A.S. Does oil connect differently with prominent assets during war? Analysis of intra-day data during the Russia-Ukraine saga. Resour. Policy 2022, 77, 102728. [CrossRef]; 47. Silva, L.F.; Oliveira, M.L.; Milanes, C.B.; Bodah, B.W.; Cambrussi, L.P.; Dotto, G. Effects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia). Urban Clim. 2022, 41, 101046. [CrossRef]; 48. Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.S.; Sampaio, C.H. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 2020, 254, 1–14. [CrossRef]; 49. Oliveira, M.L.; Pinto, D.; Zanchett, M.R.D.; Silva, L.F. Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America. Chemosphere 2021, 277, 130286. [CrossRef] 50. Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Environmental impact and human health risks of air pollutants near a large chemical/petrochemical complex: Case study in Tarragona, Spain. Sci. Total Environ. 2021, 787, 1–12. [CrossRef]; 51. Ly, A.; Cornelisse, J. How to Train a Machine Learning Model in JASP: Clustering, 2019. Available online: https://jasp-stats.org/ 2019/11/19/how-to-train-a-machine-learning-model-in-jasp-clustering/ (accessed on 28 August 2022).; 52. Lee, Y.L.; Makam, S.; McKelvey, S.; Lu, M.W. Durability Reliability Demonstration Test Methods. Procedia Eng. 2015, 133, 31–59. [CrossRef]; 53. Moustafa, K.; Hu, Z.; Mourelatos, Z.P.; Baseski, I.; Majcher, M. System reliability analysis using component-level and system-level accelerated life testing. Reliab. Eng. Syst. 2021, 214, 107755. [CrossRef]; 54. Sánchez-Piñero, J.; Novo-Quiza, N.; Moreda-Piñeiro, J.; Turnes-Carou, I.; Muniategui-Lorenzo, S.; López-Mahía, P. Multi-class organic pollutants in atmospheric particulate matter (PM2.5) from a Southwestern Europe industrial area: Levels, sources and human health risk. Environ. Res. 2022, 214, 114195. [CrossRef] [PubMed]; 55. Tong, Y.; Zhao, X.; Li, H.; Pei, Y.; Ma, P.; You, J. Using homing pigeons to monitor atmospheric organic pollutants in a city heavily involving in coal mining industry. Chemosphere 2022, 307, 135679. [CrossRef]; 56. Cui, Y.; Zhang, G.; Wang, W.; Shen, Y.; Zhai, X.; Wu, X.; Li, R.; Wu, B.; Xue, Y. Ten-year emission characteristics of atmospheric pollutants from incineration of sacrificial offerings in China. Res. J. Environ. Sci. 2022, 114, 391–400. [CrossRef] [PubMed]; 57. Guo, X.; Li, S.; Zhang, Y.; Wu, B.; Guo, W. Applications of dynamic simulation for source analysis of soil pollutants based on atmospheric diffusion and deposition model. Sci. Total Environ. 2022, 839, 156057. [CrossRef]; 58. Dong, J.; Wang, X.; Li, J.; Hao, C.; Jiao, L. The Spatial-Temporal Differentiation of Aerosol Optical Properties and Types in the Beijing–Tianjin–Hebei Region Based on the Ecological Functional Zones. Sustainability 2022, 14, 12656. [CrossRef]; 59. Yan, C.; Wang, L.; Zhang, Q. Study on Coupled Relationship between Urban Air Quality and Land Use in Lanzhou, China. Sustainability 2021, 13, 7724. [CrossRef]; 60. Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Udała, J.; Kruzhel, B.; Ligocki, M. Content of essential and non-essential elements in wild animals from western Ukraine and the health risks associated with meat and liver consumption. Chemosphere 2020, 244, 125506. [CrossRef] [PubMed]; 61. Vystavna, Y.; Huneau, F.; Schäfer, J.; Motelica-Heino, M.; Blanc, G.; Larrose, A.; Vergeles, Y.; Diadin, D.; Le Coustumer, P. Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Appl. Geochem. 2012, 27, 2077–2087. [CrossRef]; 62. Labunska, I.; Levchuk, S.; Kashparov, V.; Holiaka, D.; Yoschenko, L.; Santillo, D.; Johnston, P. Current radiological situation in areas of Ukraine contaminated by the Chornobyl accident: Part 2. Strontium-90 transfer to culinary grains and forest woods from soils of Ivankiv district. Environ. Int. 2021, 146, 106282. [CrossRef]; 63. Maloshtan, I.; Polishchuk, S.; Kashparov, V.; Yoschenko, V. Assessment of radiological efficiency of countermeasures on peat-bog soils of Ukrainian Polissya. J. Environ. Radioact. 2017, 175–176, 52–59. [CrossRef]; 64. Poursanidis, D.; Traganos, D.; Reinartz, P.; Chrysoulakis, N. On the use of Sentinel-2 for coastal habitat mapping and satellitederived bathymetry estimation using downscaled coastal aerosol band. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 58–70. [CrossRef]; 65. Butz, A.; Galli, A.; Hasekamp, O.; Landgraf, J.; Tol, P.; Aben, I. TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote Sens. Environ. 2012, 120, 267–276. [CrossRef]; 66. Yang, Y.; Chen, Y.; Yang, K.; Cermak, J.; Chen, Y. High-resolution aerosol retrieval over urban areas using sentinel-2 data. Atmos. Res. 2021, 264, 105829. [CrossRef]; 14; 24; Neckel, A.; Santosh, M.; Bodah, B.W.; Maculan, L.S.; Pinto, D.; Korcelski, C.; Toscan, P.C.; Cambrussi, L.P.; Caino, I.C.; Moro, L.D.; et al. Using the Sentinel-3B Satellite in Geospatial Analysis of Suspended Aerosols in the Kiev, Ukraine Region. Sustainability 2022, 14, 16357. https://doi.org/10.3390/su142416357; https://hdl.handle.net/11323/12891; Corporación Universidad de la Costa; REDICUC – Repositorio CUC; https://repositorio.cuc.edu.co/
-
10Academic Journal
المؤلفون: Dal Moro, Leila, Stolfo Maculan, Laércio, Pivoto, Dieisson, Tibério Cardoso, Grace, Pinto, Diana, Adelodun, Bashir, Bodah, Brian William, Santosh, M., Guedes Bortoluzzi, Marluse, Branco, Elisiane, Neckel, Alcindo
مصطلحات موضوعية: Landscape metrics, Land use change, SDG, Food security, Remote sensing
جغرافية الموضوع: Brazil
وصف الملف: 17 páginas; application/pdf
Relation: Sustainability; 1. Yiran, G.A.B.; Ablo, A.D.; Asem, F.E. Urbanisation and domestic energy trends: Analysis of household energy consumption patterns in relation to land-use change in peri-urban Accra, Ghana. Land Use Policy 2020, 99, 105047. [CrossRef]; 2. Chowdhury, S.; Khan, S.; Sarker, M.F.H.; Islam, M.K.; Tamal, M.A.; Khan, N.A. Does Agricultural Ecology Cause Environmental Degradation? Empirical Evidence from Bangladesh. Heliyon 2022, 8, e09750. [CrossRef] [PubMed]; 3. Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [CrossRef]; 4. Parven, A.; Pal, I.; Witayangkurn, A.; Pramanik, M.; Nagai, M.; Miyazaki, H.; Wuthisakkaroon, C. Impacts of disaster and land-use change on food security and adaptation: Evidence from the delta community in Bangladesh. Int. J. Disaster Risk Reduct. 2022, 78, 103119. [CrossRef]; 5. Acuti, D.; Bellucci, M.; Manetti, G. Company disclosures concerning the resilience of cities from the Sustainable Development Goals (SDGs) perspective. Cities 2020, 99, 102608. [CrossRef]; 6. Lu, X.; Zhang, Y.; Lin, C.; Wu, F. Analysis and comprehensive evaluation of sustainable land use in China: Based on sustainable development goals framework. J. Clean. Prod. 2021, 310, 127205. [CrossRef]; 7. Dwivedi, P.P.; Sharma, D.K. Application of Shannon Entropy and COCOSO techniques to analyze performance of sustainable development goals: The case of the Indian Union Territories. Results Eng. 2022, 14, 100416. [CrossRef]; 8. United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https:// sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 28 April 2022).; 9. Dal Moro, L.; Maculan, L.S.; Neckel, A.; Mores, G.de.V.; Pivoto, D.; Bodah, E.T.; Bodah, B.W.; Oliveira, M.L. Geotechnologies applied to the analysis of buildings involved in the production of poultry and swine to the integrated food safety system and environment. J. Environ. Chem. Eng. 2021, 9, 106475. [CrossRef]; 11. Andrieu, N.; Dumas, P.; Hemmerlé, E.; Caforio, F.; Falconnier, G.N.; Blanchard, M.; Vayssières, J. Ex ante mapping of favorable zones for uptake of climate-smart agricultural practices: A case study in West Africa. Environ. Dev. 2021, 37, 100566. [CrossRef]; 12. Laufenberg, J.S.; Johnson, H.E.; Doherty, P.F.; Breck, S.W. Compounding effects of human development and a natural food shortage on a black bear population along a human development-wildland interface. Biol. Conserv. 2018, 224, 188–198. [CrossRef]; 13. Bernard, B.M.; Song, Y.; Hena, S.; Ahmad, F.; Wang, X. Assessing Africa’s Agricultural TFP for Food Security and Effects on Human Development: Evidence from 35 Countries. Sustainability 2022, 14, 6411. [CrossRef]; 14. Schürmann, A.; Kleemann, J.; Fürst, C.; Teucher, M. Assessing the relationship between land tenure issues and land cover changes around the Arabuko Sokoke Forest in Kenya. Land Use Policy 2020, 95, 104625. [CrossRef]; 15. Chen, Y.; Lu, C. A Comparative Analysis on Food Security in Bangladesh, India and Myanmar. Sustainability 2018, 10, 405. [CrossRef]; 16. Laborde, J.P.; Wortmann, C.S.; Blanco-Canqui, H.; Baigorria, G.A.; Lindquist, J.L. Identifying the drivers and predicting the outcome of conservation agriculture globally. Agric. Syst. 2020, 177, 102692. [CrossRef]; 17. Bodah, B.W.; Neckel, A.; Maculan, L.S.; Milanes, C.B.; Korcelski, C.; Ramírez, O.; Mendez-Espinosa, J.F.; Bodah, E.T.; Oliveira, M.L. Sentinel-5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J. Clean. Prod. 2022, 357, 131960. [CrossRef]; 18. Marcinko, C.L.; Samanta, S.; Basu, O.; Harfoot, A.; Hornby, D.D.; Hutton, C.W.; Pal, S.; Watmough, G.R. Earth observation and geospatial data can predict the relative distribution of village level poverty in the Sundarban Biosphere Reserve, India. J. Environ. Manag. 2022, 313, 114950. [CrossRef]; 19. Acharki, S. PlanetScope contributions compared to Sentinel-2, and Landsat-8 for LULC mapping. Remote Sens. Appl. Soc. Environ. 2022, 27, 100774. [CrossRef]; 20. Song, D.X.; Wang, Z.; He, T.; Wang, H.; Liang, S. Estimation and validation of 30 m fractional vegetation cover over China through integrated use of Landsat 8 and Gaofen 2 data. Sci. Remote Sens. 2022, 6, 100058. [CrossRef]; 21. Shang, R.; Zhu, Z.; Zhang, J.; Qiu, S.; Yang, Z.; Li, T.; Yang, X. Near-real-time monitoring of land disturbance with harmonized Landsats 7–8 and Sentinel-2 data. Remote Sens. Environ. 2022, 278, 113073. [CrossRef]; 22. Zhang, X.; Xiao, X.; Qiu, S.; Xu, X.; Wang, X.; Chang, Q.; Wu, J.; Li, B. Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images. Remote Sens. Environ. 2022, 269, 112810. [CrossRef]; 23. Song, X.P.; Huang, W.; Hansen, M.C.; Potapov, P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci. Remote Sens. 2021, 3, 100018. [CrossRef]; 24. Neckel, A.; Oliveira, M.L.S.; Bolaño, L.J.C.; Maculan, L.S.; dal Moro, L.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F.O. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. [CrossRef] [PubMed]; 25. Kusi, K.K.; Khattabi, A.; Mhammdi, N.; Lahssini, S. Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco. Land Use Policy 2020, 97, 104796. [CrossRef]; 26. Oduro Appiah, J.; Agyemang-Duah, W.; Sobeng, A.K.; Kpienbaareh, D. Analysing patterns of forest cover change and related land uses in the Tano-Offin forest reserve in Ghana: Implications for forest policy and land management. Trees For. People 2021, 5, 100105. [CrossRef]; 27. Sauer, S. Soy expansion into the agricultural frontiers of the Brazilian Amazon: The agribusiness economy and its social and environmental conflicts. Land Use Policy 2018, 79, 326–338. [CrossRef]; 28. Bin, D. Agricultural dispossessions during the 1964–1985 Brazilian dictatorship. Political Geogr. 2021, 84, 102307. [CrossRef]; 29. Roitman, I.; Vieira, L.C.G.; Jacobson, T.K.B.; Bustamante, M.M.da.C.; Silva Marcondes, N.J.; Cury, K.; Silva Estevam, L.; Ribeiro, R.J.da.C.; Ribeiro, V.; Stabile, M.C.; et al. Rural Environmental Registry: An innovative model for land-use and environmental policies. Land Use Policy 2018, 76, 95–102. [CrossRef]; 30. Preto, M.D.F.; Garcia, A.S.; Nakai, R.S.; Casarin, L.P.; Vilela, V.M.D.F.N.; Ballester, M.V.R. The role of environmental legislation and land use patterns on riparian deforestation dynamics in an Amazonian agricultural frontier (MT, Brazil). Land Use Policy 2022, 118, 106132. [CrossRef]; 31. Moraes, L.A.F.de.; Floreano, I.X. LULC zoning in the “Madeira river” settlement, legal Amazon, Brazil, before and after implementation of the rural environmental registry (CAR) (2008–2018). Environ. Dev. 2022, 43, 100725. [CrossRef]; 32. Arvor, D.; Silgueiro, V.; Manzon Nunes, G.; Nabucet, J.; Pereira Dias, A. The 2008 map of consolidated rural areas in the Brazilian Legal Amazon state of Mato Grosso: Accuracy assessment and implications for the environmental regularization of rural properties. Land Use Policy 2021, 103, 105281. [CrossRef]; 33. Leal Filho, W.; Azeiteiro, U.; Alves, F.; Pace, P.; Mifsud, M.; Brandli, L.L.; Caeiro, S.S.; Disterheft, A. Reinvigorating the sustainable development research agenda: The role of the sustainable development goals (SDG). Int. J. Sustain. Dev. World Ecol. 2017, 25, 131–142. [CrossRef]; 34. Coelho Junior, M.G.; Biju, B.P.; Silva Neto, E.C.D.; Oliveira, A.L.D.; Tavares, A.A.D.O.; Basso, V.M.; Turetta, A.P.D.; Carvalho, A.G.D.; Sansevero, J.B.B. Improving the management effectiveness and decision-making by stakeholders’ perspectives: A case study in a protected area from the Brazilian Atlantic Forest. J. Environ. Manag. 2020, 272, 111083. [CrossRef]; 35. IBGE. Brazilian Institute of Geography and Statistics, Demographic Data of 2022—Brazil. 2022. Available online: https://cidades. ibge.gov.br/brasil/rs/passo-fundo/panorama (accessed on 10 March 2022).; 36. Zafar, M.; Tiecher, T.; Capoane, V.; Troian, A.; dos Santos, D.R. Characteristics, lability and distribution of phosphorus in suspended sediment from a subtropical catchment under diverse anthropic pressure in Southern Brazil. Ecol. Eng. 2017, 100, 28–45. [CrossRef]; 37. USGS. Global Visualization Viewer. 2022. Available online: https://glovis.usgs.gov (accessed on 1 March 2022).; 38. Wang, J.; Yang, D.; Chen, S.; Zhu, X.; Wu, S.; Bogonovich, M.; Guo, Z.; Zhu, Z.; Wu, J. Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images. Remote Sens. Environ. 2021, 264, 112604. [CrossRef]; 39. Qingyun, F.; Zhaokui, W. Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery. Pattern Recognit. 2022, 130, 108786. [CrossRef]; 40. Fauvel, M.; Dechesne, C.; Zullo, A.; Ferraty, F. Fast Forward Feature Selection of Hyperspectral Images for Classification With Gaussian Mixture Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2824–2831. [CrossRef]; 41. Zhang, Y.; Balzter, H.; Zou, C.; Xu, H.; Tang, F. Characterizing bi-temporal patterns of land surface temperature using landscape metrics based on sub-pixel classifications from Landsat TM/ETM+. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 87–96. [CrossRef]; 42. Abalo, M.; Badabate, D.; Fousseni, F.; Kpérkouma, W.; Koffi, A. Landscape-based analysis of wetlands patterns in the Ogou River basin in Togo (West Africa). Environ. Chall. 2021, 2, 100013. [CrossRef]; 43. Jung, M. LecoS—A python plugin for automated landscape ecology analysis. Ecol. Inform. 2016, 31, 18–21. [CrossRef]; 44. Zatelli, P.; Gobbi, S.; Tattoni, C.; Cantiani, M.G.; La Porta, N.; Rocchini, D.; Zorzi, N.; Ciolli, M. Relevance of the Cell Neighborhood Size in Landscape Metrics Evaluation and Free or Open Source Software Implementations. ISPRS Int. J. Geo-Inf. 2019, 8, 586. [CrossRef]; 45. ESA. European Space Agency. Sentinel-5P Pre-Operations Data Hub—European. 2022. Available online: https://s5phub.copernicus. eu/dhus/ (accessed on 3 March 2022).; 46. Maroni, D.; Cardoso, G.T.; Neckel, A.; Maculan, L.S.; Oliveira, M.L.; Bodah, E.T.; Bodah, B.W.; Santosh, M. Land surface temperature and vegetation index as a proxy to microclimate. J. Environ. Chem. Eng. 2021, 9, 105796. [CrossRef]; 47. Niu, G.; Ji, Y.; Zhang, Z.; Wang, W.; Chen, J.; Yu, P. Clustering analysis of typical scenarios of island power supply system by using cohesive hierarchical clustering based K-Means clustering method. Energy Rep. 2021, 7, 250–256. [CrossRef]; 48. Borlea, I.D.; Precup, R.E.; Borlea, A.B. Improvement of K-means Cluster Quality by Post Processing Resulted Clusters. Procedia Comput. Sci. 2022, 199, 63–70. [CrossRef]; 49. Ahmad, A.; Khan, S.S. initKmix-A novel initial partition generation algorithm for clustering mixed data using k-means-based clustering. Expert Syst. Appl. 2021, 167, 114149. [CrossRef]; 50. Cusworth, G.; Garnett, T.; Lorimer, J. Agroecological break out: Legumes, crop diversification and the regenerative futures of UK agriculture. J. Rural. Stud. 2021, 88, 126–137. [CrossRef]; 51. Musyoki, M.E.; Busienei, J.R.; Gathiaka, J.K.; Karuku, G.N. Linking farmers’ risk attitudes, livelihood diversification and adoption of climate smart agriculture technologies in the Nyando basin, South-Western Kenya. Heliyon 2022, 8, e09305. [CrossRef]; 52. Burbano-Figueroa, O.; Sierra-Monroy, A.; David-Hinestroza, A.; Whitney, C.; Borgemeister, C.; Luedeling, E. Farm-planning under risk: An application of decision analysis and portfolio theory for the assessment of crop diversification strategies in horticultural systems. Agric. Syst. 2022, 199, 103409. [CrossRef]; 53. David Raj, A.; Kumar, S.; Sooryamol, K. Modelling climate change impact on soil loss and erosion vulnerability in a watershed of Shiwalik Himalayas. Catena 2022, 214, 106279. [CrossRef]; 54. Guo, Y.; Wang, J. Poverty alleviation through labor transfer in rural China: Evidence from Hualong County. Habitat Int. 2021, 116, 102402. [CrossRef]; 55. Reisman, E. Protecting provenance, abandoning agriculture? Heritage products, industrial ideals and the uprooting of a Spanish turrón. J. Rural. Stud. 2022, 89, 45–53. [CrossRef]; 56. Langewitz, T.; Wiedner, K.; Polifka, S.; Eckmeier, E. Pedological properties related to formation and functions of ancient ridge and furrow cultivation in Central and Northern Germany. Catena 2021, 198, 105049. [CrossRef]; 57. Arora, A.; Pandey, M.; Mishra, V.N.; Kumar, R.; Rai, P.K.; Costache, R.; Punia, M.; Di, L. Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics. Ecol. Indic. 2021, 128, 107810. [CrossRef]; 58. Estoque, R.C.; Ooba, M.; Togawa, T.; Hijioka, Y.; Murayama, Y. Monitoring global land-use efficiency in the context of the UN 2030 Agenda for Sustainable Development. Habitat Int. 2021, 115, 102403. [CrossRef]; 59. Vasiliev, D.; Greenwood, S. Making green pledges support biodiversity: Nature-based solution design can be informed by landscape ecology principles. Land Use Policy 2022, 117, 106129. [CrossRef]; 60. Hargis, C.D.; Bissonette, J.A.; David, J.L. The behavior of landscape metrics commonly used in the study of habitat fragmentation. Landsc. Ecol. 1998, 13, 167–186. [CrossRef]; 61. Mungai, L.M.; Messina, J.P.; Zulu, L.C.; Qi, J.; Snapp, S. Modeling Spatiotemporal Patterns of Land Use/Land Cover Change in Central Malawi Using a Neural Network Model. Remote Sens. 2022, 14, 3477. [CrossRef]; 62. Jaeger, J.A. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [CrossRef]; 63. Marine, N.; Arnaiz-Schmitz, C.; Herrero-Jáuregui, C.; Cabrera, M.R.d.L.O.; Escudero, D.; Schmitz, M.F. Protected Landscapes in Spain: Reasons for Protection and Sustainability of Conservation Management. Sustainability 2020, 12, 6913. [CrossRef]; 64. Xu, H.; Xiao, X.; Qin, Y.; Qiao, Z.; Long, S.; Tang, X.; Liu, L. Annual Maps of Built-Up Land in Guangdong from 1991 to 2020 Based on Landsat Images, Phenology, Deep Learning Algorithms, and Google Earth Engine. Remote Sens. 2022, 14, 3562. [CrossRef]; 65. Xie, Z.; Liu, J.; Huang, J.; Chen, Z.; Lu, X. Linking Land Cover Change with Landscape Pattern Dynamics Induced by Damming in a Small Watershed. Remote Sens. 2022, 14, 3580. [CrossRef]; 66. Hou, M.; Bao, X.; Ge, J.; Liang, T. Land cover pattern and habitat suitability on the global largest breeding sites for Black-necked Cranes. J. Clean. Prod. 2021, 322, 128968. [CrossRef]; 67. Tang, Y.; Wang, Q.; Tong, X.; Atkinson, P.M. Integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI images. ISPRS J. Photogramm. Remote Sens. 2021, 180, 130–150. [CrossRef]; 17; 15; 14; Moro, L.D.; Maculan, L.S.; Pivoto, D.; Cardoso, G.T.; Pinto, D.; Adelodun, B.; Bodah, B.W.; Santosh, M.; Bortoluzzi, M.G.; Branco, E.; et al. Geospatial Analysis with Landsat Series and Sentinel-3B OLCI Satellites to Assess Changes in Land Use and Water Quality over Time in Brazil. Sustainability 2022, 14, 9733. https://doi.org/10.3390/su14159733; https://hdl.handle.net/11323/10721; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
11Academic Journal
المؤلفون: Silva Oliveira, Marcos Leandro, Pinto, Diana, Nagel-Hassemer, Maria Eliza, Dal Moro, Leila, de Vargas Mores, Giana, Bodah, Brian, Neckel, Alcindo
مصطلحات موضوعية: Sustainable macroscales, Coal tailings, Analytical procedures, Brazilian coal mining
وصف الملف: 15 páginas; application/pdf
Relation: Sustainability; 1. Ma, Q.; Wu, J.; He, C.; Fang, X. The speed, scale, and environmental and economic impacts of surface coal mining in the Mongolian Plateau. Resour. Conserv. Recycl. 2021, 173, 105730. [CrossRef]; 2. Ribeiro, J.; Suárez-Ruiz, I.; Flores, D. Coal related fires in Portugal: New occurrences and new insights on the characterization of thermally affected and non-affected coal waste piles. Int. J. Coal Geol. 2022, 252, 103941. [CrossRef]; 3. Vo, T.L.; Nash, W.; Del Galdo, M.; Rezania, M.; Crane, R.; Mousavi Nezhad, M.; Ferrara, L. Coal mining wastes valorization as raw geomaterials in construction: A review with new perspectives. J. Clean. Prod. 2022, 336, 130213. [CrossRef]; 4. Wei, J.; Zhang, J.; Wu, X.; Song, Z. Governance in mining enterprises: An effective way to promote the intensification of resources—Taking coal resources as an example. Resour. Policy 2022, 76, 102623. [CrossRef]; 5. Valentim, B.; Guedes, A.; Rodrigues, S.; Flores, D. Case study of igneous intrusion effects on coal nitrogen functionalities. Int. J. Coal Geol. 2011, 86, 291–294. [CrossRef]; 6. Ciesielczuk, J.; Misz-Kennan, M.; Hower, J.C.; Fabia ´nska, M.J. Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (Upper Silesia, Poland). Int. J. Coal Geol. 2014, 127, 42–55. [CrossRef]; 7. Bondaruk, J.; Janson, E.; Wysocka, M.; Chałupnik, S. Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides. J. Sustain. Min. 2015, 14, 179–187. [CrossRef]; 8. Patra, K.; Ansari, S.A.; Mohapatra, P.K. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. J. Chromatogr. A 2021, 1655, 462491. [CrossRef]; 9. Zhao, B.; Chen, G.; Qin, L.; Han, Y.; Zhang, Q.; Chen, W.; Han, J. Effect of coal blending on arsenic and fine particles emission during coal combustion. J. Clean. Prod. 2021, 311, 127645. [CrossRef]; 11. Wang, X.; Garrabrants, A.C.; Chen, Z.; Van Der Sloot, H.A.; Brown, K.G.; Qiu, Q.; Delapp, R.C.; Hensel, B.; Kosson, D.S. The influence of redox conditions on aqueous-solid partitioning of arsenic and selenium in a closed coal ash impoundment. J. Hazard. Mater. 2022, 428, 128255. [CrossRef] [PubMed]; 12. Wiero ´nska-Wi´sniewska, F.; Makowska, D.; Strugała, A. Arsenic in polish coals: Content, mode of occurrence, and distribution during coal combustion process. Fuel 2022, 312, 122992. [CrossRef]; 13. Xu, F.; Chu, M.; Hao, C.; Zhou, L.; Sun, X.; Gu, Z. Volatilization characteristics and relationship of arsenic and sulfur during coal pyrolysis. Fuel 2022, 315, 123223. [CrossRef]; 14. Zhao, Y.; Zhang, J.; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int. J. Coal Geol. 2008, 73, 52–62. [CrossRef]; 15. Saikia, B.K.; Saikia, J.; Rabha, S.; Silva, L.F.; Finkelman, R. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 2018, 9, 863–875. [CrossRef]; 16. Hu, G.; Liu, G.; Wu, D.; Fu, B. Geochemical behavior of hazardous volatile elements in coals with different geological origin during combustion. Fuel 2018, 233, 361–376. [CrossRef]; 17. George, A.; Shen, B.; Kang, D.; Yang, J.; Luo, J. Emission control strategies of hazardous trace elements from coal-fired power plants in China. Res. J. Environ. Sci. 2020, 93, 66–90. [CrossRef]; 18. Guo, Y.; Zhang, Y.; Zhao, X.; Xu, J.; Qiu, G.; Jia, W.; Wu, J.; Guo, F. Multifaceted evaluation of distribution, occurrence, and leaching features of typical heavy metals in different-sized coal gasification fine slag from Ningdong region, China: A case study. Sci. Total Environ. 2022, 831, 154726. [CrossRef]; 19. Singer, D.M.; Herndon, E.; Cole, K.; Koval, J.; Perdrial, N. Formation of secondary mineral coatings and the persistence of reduced metal-bearing phases in soils developing on historic coal mine spoil. Appl. Geochem. 2020, 121, 104711. [CrossRef]; 20. Fu, Y.; Li, H.; Mei, H.; Feng, Z.; Chen, R.; Li, J.; Wang, Y.; Fu, W. Organic contaminant removal with no adsorbent recycling based on microstructure modification in coal slime filtration. Fuel 2021, 288, 119630. [CrossRef]; 21. Petrovi´c, M.; Fiket, E. Environmental damage caused by coal combustion residue disposal: A critical review of risk assessment methodologies. Chemosphere 2022, 299, 134410. [CrossRef] [PubMed]; 22. Ribeiro, J.; Machado, G.; Moreira, N.; Suárez-Ruiz, I.; Flores, D. Petrographic and geochemical characterization of coal from Santa Susana Basin, Portugal. Int. J. Coal Geol. 2019, 203, 36–51. [CrossRef]; 23. Trechera, P.; Moreno, T.; Córdoba, P.; Moreno, N.; Zhuang, X.; Li, B.; Li, J.; Shangguan, Y.; Dominguez, A.O.; Kelly, F.; et al. Comprehensive evaluation of potential coal mine dust emissions in an open-pit coal mine in Northwest China. Int. J. Coal Geol. 2021, 235, 103677. [CrossRef]; 24. Marove, C.A.; Sotozono, R.; Tangviroon, P.; Tabelin, C.B.; Igarashi, T. Assessment of soil, sediment and water contaminations around open-pit coal mines in Moatize, Tete province, Mozambique. Environ. Adv. 2022, 8, 100215. [CrossRef]; 25. Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H. Depositional setting, petrology and chemistry of Permian coals from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil. Int. J. Coal Geol. 2010, 84, 213–236. [CrossRef]; 26. De Souza, M.R.; Garcia, A.L.H.; Dalberto, D.; Nicolau, C.; Gazzineu, A.L.; Grivicich, I.; Boaretto, F.; Picada, J.N.; De Souza, G.M.S.; Chytry, P.; et al. Evaluation of soils under the influence of coal mining and a thermoelectric plant in the city of Candiota and vicinity, Brazil. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 866, 503350. [CrossRef]; 27. Silva, L.F.O.; Pinto, D.; Dotto, G.L.; Hower, J.C. Nanomineralogy of evaporative precipitation of efflorescent compounds from coal mine drainage. Geosci. Front. 2021, 12, 101003. [CrossRef]; 28. Neckel, A.; Pinto, D.; Adelodun, B.; Dotto, G.L. An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete. Sustainability 2022, 14, 3943. [CrossRef]; 29. Pereira, Z.; Mendes, M.; Souza, P.; Rodrigues, C.; Fernandes, P.; Ade, M.; Araújo, C.; Almeida, J.; Santos, E.; Rocha, H.; et al. Palynology of Bonito and Barro Branco coal seams from Rio Bonito Formation (Lower Permian of Paraná Basin) in the Criciúma coal region, southernmost Brazil. J. S. Am. Earth Sci. 2019, 91, 27–35. [CrossRef]; 30. Fdez-Ortiz De Vallejuelo, S.; Gredilla, A.; Da Boit, K.; Teixeira, E.C.; Sampaio, C.H.; Madariaga, J.M.; Silva, L.F. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 2017, 169, 725–733. [CrossRef]; 31. Gonçalves, P.A.; Pinheiro, S.; Mendonça Filho, J.G.; Mendonça, J.O.; Flores, D. Study of a Silurian sequence of Dornes region (Central Iberian Zone, Portugal): The contribution of organic petrology and palynofacies. Int. J. Coal Geol. 2020, 225, 103501. [CrossRef]; 32. Lieberman, N.R.; Izquierdo, M.; Muñoz-Quirós, C.; Cohen, H.; Chenery, S.R. Geochemical signature of superhigh organic sulphur Raša coals and the mobility of toxic trace elements from combustion products and polluted soils near the Plomin coal-fired power station in Croatia. J. Appl. Geochem. 2020, 114, 104472. [CrossRef]; 33. Rodríguez, J.; Frías, M.; Tobón, J.I. Eco-efficient cement based on activated coal washing rejects with low content of kaolinite. Constr. Build. Mater. 2021, 274, 122118. [CrossRef]; 34. Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [CrossRef]; 35. Xie, P.; Liu, J.; Fu, B.; Newmaster, T.; Hower, J.C. Resources from coal beneficiation waste: Chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana. Fuel 2022, 313, 123054. [CrossRef]; 36. Oliveira, M.L.; Da Boit, K.; Schneider, I.L.; Teixeira, E.C.; Crissien Borrero, T.J.; Silva, L.F. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. J. Clean. Prod. 2018, 188, 662–669. [CrossRef]; 37. Borah, S.N.; Goswami, L.; Sen, S.; Sachan, D.; Sarma, H.; Montes, M.; Peralta-Videa, J.R.; Pakshirajan, K.; Narayan, M. Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. Environ. Pollut. 2021, 285, 117519. [CrossRef]; 38. Liao, Y.; An, M.; Hao, X.; Song, X.; Yang, Z.; Ren, H.; Liu, Z. Enhanced floatability of low rank coal using surface functionalized polystyrene nanoparticles as collectors. J. Clean. Prod. 2021, 284, 124763. [CrossRef]; 39. Singh, S.; Ghorai, M.K.; Kar, K.K. Extraction of silicon in the form of nanoparticles and nanorods from coal fly ash. In Handbook of Fly Ash; Elsevier: Amsterdam, The Netherlands, 2022; pp. 451–474. [CrossRef]; 40. Ju, Y.; Huang, C.; Sun, Y.; Wan, Q.; Lu, X.; Lu, S.; He, H.; Wang, X.; Zou, C.; Wu, J.; et al. Nanogeosciences: Research History, Current Status, and Development Trends. J. Nanosci. Nanotechnol. 2017, 17, 5930–5965. [CrossRef]; 41. Karayigit, A.I.; Oskay, R.G.; Çelik, Y. Mineralogy, petrography, and Rock-Eval pyrolysis of late Oligocene coal seams in the Malkara coal field from the Thrace Basin (NW Turkey). Int. J. Coal Geol. 2021, 244, 103814. [CrossRef]; 42. Filonchyk, M.; Peterson, M.P. An integrated analysis of air pollution from US coal-fired power plants. Geosci. Front. 2022, 14, 101498. [CrossRef]; 43. Chen, Z.; Shi, Z.; Ni, S.; Cheng, L. Characteristics of soil pollution and element migration associated with the use of coal in Hutou Village, Yunnan Province, China. Ecol. Indic. 2022, 139, 108976. [CrossRef]; 44. Nunes, L.E.; Lima, M.V.A.D.; Davison, M.; Leite, A.L.D.S. Switch and defer option in renewable energy projects: Evidences from Brazil. Energy 2021, 231, 120972. [CrossRef]; 45. Rocha, D.H.; Siqueira, D.S.; Silva, R.J. Effects of coal compositions on the environment and economic feasibility of coal generation technologies. Sustain. Energy Technol. Assess. 2021, 47, 101500. [CrossRef]; 46. Lima, P.R.; Pereira, A.A.M.; Chaves, G.D.L.D.; Meneguelo, A.P. Environmental awareness and public perception on carbon capture and storage (CCS) in Brazil. Int. J. Greenh. Gas. Control 2021, 111, 103467. [CrossRef]; 47. Nordin, A.P.; Da Silva, J.; De Souza, C.; Niekraszewicz, L.A.B.; Dias, J.F.; Da Boit, K.; Oliveira, M.L.S.; Grivicich, I.; Garcia, A.L.; Silva, L.F.; et al. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard. Mater. 2018, 346, 263–272. [CrossRef]; 48. Gredilla, A.; Fdez-Ortiz de Vallejuelo, S.; Rodriguez-Iruretagoiena, A.; Gomez, L.; Oliveira, M.L.S.; Arana, G.; De Diego, A.; Madariaga, J.M. Evidence of mercury sequestration by carbon nanotubes and nanominerals present in agricultural soils from a coal fired power plant exhaust. J. Hazard. Mater. 2019, 378, 120747. [CrossRef]; 49. Freitas, A.P.P.; Schneider, I.A.H.; Schwartzbold, A. Biosorption of heavy metals by algal communities in water streams affected by the acid mine drainage in the coal-mining region of Santa Catarina state, Brazil. Miner. Eng. 2011, 24, 1215–1218. [CrossRef]; 50. IBGE. Brazilian Institute of Geography and Statistics. Demographic Data of 2022—Brazil. 2022. Available online: https: //www.ibge.gov.br/cidades-e-estados/sc.html (accessed on 15 September 2022).; 51. ASTM D2013/D2013M-12; Standard Practice for Preparing Coal Samples for Analysis. ASTM International: West Conshohocken, PA, USA, 2013.; 52. Civeira, M.; Pinheiro, R.; Gredilla, A.; De Vallejuelo, S.; Oliveira, M.; Ramos, C.; Taffarel, S.; Kautzmann, R.; Madariaga, J.; Silva, L.F. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of brazilian coal waste fire. Sci. Total Environ. 2016, 544, 892–900. [CrossRef]; 53. Kamble, A.D.; Mendhe, V.A.; Chavan, P.D.; Saxena, V.K. Insights of mineral catalytic effects of high ash coal on carbon conversion in fluidized bed Co-gasification through FTIR, XRD, XRF and FE-SEM. Renew. Energy 2022, 183, 729–751. [CrossRef]; 54. López, I.C.; Ward, C.R. Composition and mode of occurrence of mineral matter in some Colombian coals. Int. J. Coal Geol. 2008, 73, 3–18. [CrossRef]; 55. Okolo, G.N.; Neomagus, H.W.; Everson, R.C.; Roberts, M.J.; Bunt, J.R.; Sakurovs, R.; Mathews, J.P. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13 C NMR, and HRTEM techniques. Fuel 2015, 158, 779–792. [CrossRef]; 56. Matlala, I.V.; Moroeng, O.M.; Wagner, N.J. Macromolecular structural changes in contact metamorphosed inertinite-rich coals from the No. 2 Seam, Witbank Coalfield (South Africa): Insights from petrography, NMR and XRD. Int. J. Coal Geol. 2021, 247, 103857. [CrossRef]; 57. Zhou, H.; Wirth, R.; Gleeson, S.A.; Schreiber, A.; Mayanna, S. Three-Dimensional and Microstructural Fingerprinting of Gold Nanoparticles at Fluid-Mineral Interfaces. Am. Mineral. 2021, 106, 97–104. [CrossRef]; 58. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.L.; Da Boit, K.; Tutikian, B.; Crissien, T.; Pinto, D.; Serrano, I.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. [CrossRef]; 59. Oliveira, M.L.; Flores, E.M.; Dotto, G.L.; Neckel, A.; Silva, L.F. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef]; 60. Li, X.; Dai, S.; Zhang, W.; Li, T.; Zheng, X.; Chen, W. Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2014, 124, 1–4. [CrossRef]; 61. Yan, X.; Dai, S.; Graham, I.T.; He, X.; Shan, K.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 191, 152–156. [CrossRef]; 62. Neckel, A.; Oliveira, M.L.; Castro Bolaño, L.J.; Maculan, L.S.; Moro, L.D.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. [CrossRef]; 63. Uz-Zaman, K.A.; Biswas, B.; Rahman, M.M.; Naidu, R. Smectite-supported chain of iron nanoparticle beads for efficient clean-up of arsenate contaminated water. J. Hazard. Mater. 2021, 407, 124396. [CrossRef]; 64. Munir, M.A.M.; Liu, G.; Yousaf, B.; Mian, M.M.; Ali, M.U.; Ahmed, R.; Cheema, A.I.; Naushad, M. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings. Ecotoxicol. Environ. Saf. 2020, 191, 110244. [CrossRef] [PubMed]; 65. Zhang, T.; Li, Z.; Hu, F.; Huang, X.; Liu, Z. Correlation of sodium releasing and mineral transformation characteristics with ash composition of typical high-alkali coals. Fuel Process. Technol. 2021, 224, 107035. [CrossRef]; 66. Silva, L.F.O.; Da Boit, K.M.; Finkelman, R.B. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Environ. Geochem. Health 2009, 31, 475–485. [CrossRef] [PubMed]; 67. Wilcox, J.; Wang, B.; Rupp, E.; Taggart, R.; Hsu-Kim, H.; Oliveira, M.; Cutruneo, C.; Taffarel, S.; Thomas, G.; Hower, J. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: Environmental processes recorded at the macro and nanometer scale. Energy Fuels 2015, 29, 7168–7177. [CrossRef]; 68. Ketris, M.P.; Yudovich, Y.E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [CrossRef]; 69. Ferreira, L.P.; Müller, T.G.; Cargnin, M.; De Oliveira, C.M.; Peterson, M. Valorization of waste from coal mining pyrite beneficiation. J. Environ. Chem. Eng. 2021, 9, 105759. [CrossRef]; 70. Sriramoju, S.; Kumar, D.; Majumdar, S.; Dash, P.; Shee, D.; Banerjee, R. Sustainability of coal mines: Separation of clean coal from the fine-coal rejects by ultra-fine grinding and density-gradient-centrifugation. Powder Technol. 2021, 383, 356–370. [CrossRef]; 71. Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A.; Ali, A.Y.S.; Musarrat, J. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells. Sci. Total Environ. 2012, 437, 331–338. [CrossRef]; 72. Maass, D.; Valério, A.; Lourenço, L.A.; De Oliveira, D.; Hotza, D. Biosynthesis of iron oxide nanoparticles from mineral coal tailings in a stirred tank reactor. Hydrometallurgy 2019, 184, 199–205. [CrossRef]; 73. Ju, Y.; Li, X.; Ju, L.; Feng, H.; Tan, F.; Cui, Y.; Yang, Y.; Wang, X.; Cao, J.; Qiao, P.; et al. Nanoparticles in the Earth surface systems and their effects on the environment and resource. Gondwana Res. 2022, 110, 370–392. [CrossRef]; 74. Hu, G.; Cao, J. Occurrence and significance of natural ore-related Ag nanoparticles in groundwater systems. Chem. Geol. 2019, 515, 9–21. [CrossRef]; 75. Pokrovski, G.S.; Kokh, M.A.; Proux, O.; Hazemann, J.L.; Bazarkina, E.F.; Testemale, D.; Escoda, C.; Boiron, M.C.; Blanchard, M.; Aigouy, T.; et al. The nature and partitioning of invisible gold in the pyrite-fluid system. Ore Geol. Rev. 2019, 109, 545–563. [CrossRef]; 76. Permana, A.K.; Ward, C.R.; Li, Z.; Gurba, L.W. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116–117, 185–207. [CrossRef]; 77. Luo, S.X.; Nie, X.; Yang, M.Z.; Fu, Y.H.; Zeng, P.; Wan, Q. Sorption of differently charged gold nanoparticles on synthetic pyrite. Minerals 2018, 8, 428. [CrossRef]; 78. Niu, Q.; Pan, J.; Jin, Y.; Wang, H.; Li, M.; Ji, Z.; Wang, K.; Wang, Z. Fractal study of adsorption-pores in pulverized coals with various metamorphism degrees using N2 adsorption, X-ray scattering and image analysis methods. J. Pet. Sci. Eng. 2019, 176, 584–593. [CrossRef]; 79. Reich, M.; Utsunomiya, S.; Kesler, S.E.; Wang, L.; Ewing, R.C.; Becker, U. Thermal behavior of metal nanoparticles in geologic materials. Geology 2006, 34, 1033–1036. [CrossRef]; 80. Saeed, S.; Saleem, M.; Durrani, A.K. Thermal performance analysis of low-grade coal pretreated by ionic liquids possessing imidazolium, ammonium and phosphonium cations. Fuel 2020, 271, 117655. [CrossRef]; 81. Sun, Z.; Huang, B.; Liu, Y.; Jiang, Y.; Zhang, Z.; Hou, M.; Li, Y. Gas-phase production equation for CBM reservoirs: Interaction between hydraulic fracturing and coal orthotropic feature. J. Pet. Sci. Eng. 2022, 213, 110428. [CrossRef]; 82. Zhang, X.; Sun, B.; Fan, X.; Liang, P.; Zhao, G.; Saikia, B.K.; Wei, X. Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors. Fuel 2022, 311, 122552. [CrossRef]; 83. Xueqiu, W.; Bimin, Z.; Xin, L.; Shanfa, X.; Wensheng, Y.; Rong, Y. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geol. Rev. 2016, 73, 417–431. [CrossRef]; 84. Hao, R.; Li, X.; Xu, P.; Liu, Q. Thermal activation and structural transformation mechanism of kaolinitic coal gangue from Jungar coalfield, Inner Mongolia, China. Appl. Clay Sci. 2022, 223, 106508. [CrossRef]; 15; Oliveira, M.L.S.; Pinto, D.; Nagel-Hassemer, M.E.; Dal Moro, L.; Mores, G.d.V.; Bodah, B.W.; Neckel, A. Brazilian Coal Tailings Projects: Advanced Study of Sustainable Using FIB-SEM and HR-TEM. Sustainability 2023, 15, 220. https:// doi.org/10.3390/su15010220; https://hdl.handle.net/11323/10353; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
12Academic Journal
المؤلفون: Brandli, Luciana Londero, Lange Salvia, Amanda, Dal Moro, Leila, Tibola da Rocha, Vanessa, Mazutti, Janaina, Reginatto, Giovana
المصدر: International Journal of Sustainability in Higher Education. 2019 20(3):515-529.
Peer Reviewed: Y
Page Count: 15
Descriptors: Sustainable Development, Campuses, Ecology, Foreign Countries, Universities, Environmental Education, Food, Agricultural Occupations, School Community Relationship, Health Promotion, Cooperatives, Consumer Economics, Local Issues, Family Income, Females, Commercialization, Social Values, Rural Areas
مصطلحات جغرافية: Brazil
-
13Academic Journal
المؤلفون: Orsolin, Augusto Londero, Ávila, Lucas Veiga, Trevisan, Marcelo, Dal Moro, Leila, Cavalcante, Diego Marques
المصدر: Revista Catarinense da Ciência Contábil, ISSN 1808-3781, Nº. 23, 2024
مصطلحات موضوعية: Sustentabilidade, ESG, Relatórios de sustentabilidade, Indicadores e Drivers, Sustainability, Sustainability reports, Indicators and Drivers
وصف الملف: application/pdf
-
14Academic Journal
المؤلفون: Costa, Carlos, Coelho, Elenise, Sbalquiero, Célia, Dal Moro, Leila
المصدر: Revista Pensamento Contemporâneo em Administração; Vol. 15 No. 3 (2021); 145-159 ; Revista Pensamento Contemporâneo em Administração; v. 15 n. 3 (2021); 145-159 ; 1982-2596 ; 10.12712/rpca.v15i3
وصف الملف: application/pdf
-
15Academic Journal
المؤلفون: Zorzi, Carla Gabriela Carlot, Neckel, Alcindo, Stolfo Maculan, Laércio, Tibério Cardoso, Grace, Dal Moro, Leila, Almeida Del Savio, Alexandre
مصطلحات موضوعية: COVID-19 global epidemic, Dimensional analysis, Wind velocity, Hospital environment, Contamination
وصف الملف: 13 páginas; application/pdf
Relation: Geoscience Frontiers; Abrahão et al., 2021 J.S. Abrahão, L. Sacchetto, I.M. Rezende, R.A.L. Rodrigues, A.P.C. Crispim, C. Moura, D.C. Mendonça, E. Reis, F. Souza, G.F.G. Oliveira Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: a potential tool for monitoring the circulation of infected patients Sci. Total Environ., 766 (2021), Article 142645; Aghalari et al., 2021 Z. Aghalari, H.U. Dahms, J.E. Sosa-Hernandez, M.A. Oyervides-Muñoz, R. Parra-Saldívar Evaluation of SARS-COV-2 transmission through indoor air in hospitals and prevention methods: a systematic review Environ. Res., 195 (2021), Article 110841; Ahmed et al., 2021 T. Ahmed, P. Kumar, L. Mottet Natural ventilation in warm climates: the challenges of thermal comfort, heatwave resilience and indoor air quality Renew. Sustain. Energy Rev., 138 (2021), Article 110669; Autodesk CFD, 2021 Autodesk CFD, 2021. Turbulence. Autodesk CFD 2021. Turbulent (the default) to simulate turbulent flow. https://help.autodesk.com/view/SCDSE/2021/ENU/?guid=GUID-E9E8ACA1-8D49-4A49-8A35-52DB1A2C3E5F.; Aviv et al., 2021 D. Aviv, K.W. Chen, E. Teitelbaum, D. Sheppard, J. Pantelic, A. Rysanek, F. Meggers A fresh (air) look at ventilation for COVID-19: estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies Appl. Energy, 292 (2021), Article 116848; Barker and Jones, 2005 J. Barker, M.V. Jones The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet J. Appl. Microbiol., 99 (2005), pp. 339-347; Blocken, 2018 B. Blocken LES over RANS in building simulation for outdoor and indoor applications: a foregone conclusion? Build. Simul., 11 (2018), pp. 821-870; Cai et al., 2020 W. Cai, J.Y. Zhao, M. Zhu A real time methodology of cluster-system theory-based reliability estimation using k-means clustering Reliab. Eng. Syst. Saf., 202 (2020), Article 107045; Calautit et al., 2020 J.K. Calautit, D. O’Connor, P.W. Tien, S.Y. Wei, C.A.J. Pantua, B. Hughes Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis Renew. Energy, 160 (2020), pp. 465-482; Cao et al., 2021 Y.X. Cao, L.Y. Shao, T. Jones, M.L.S. Oliveira, S. Ge, X. Feng, L.F.O. Silva, K. Bérubé Multiple relationships between aerosol and COVID-19: a framework for global studies Gondwana Res., 93 (2021), pp. 243-251; Carraturo et al., 2020 F. Carraturo, C.D. Giudice, M. Morelli, V. Cerullo, G. Libralato, E. Galdiero, M. Guida Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces Environ. Pollut., 265 (2020), Article 115010; Chen et al., 2019 J.L. Chen, G.S. Brager, G. Augenbroe, X.Y. Song Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US Appl. Energy, 235 (2019), pp. 673-684; Chen et al., 2021 L.K. Chen, R.P. Yuan, X.J. Ji, X.Y. Lu, J. Xiao, J.B. Tao, X. Kang, X. Li, Z.H. He, S. Quan Modular composite building in urgent emergency engineering projects: a case study of accelerated design and construction of Wuhan thunder god mountain/Leishenshan Hospital to covid-19 pandemic Autom. Constr., 124 (2021), Article 103555; Cui et al., 2021 P.Y. Cui, Y. Zhang, W.Q. Chen, J.H. Zhang, Y. Luo, Y.D. Huang Wind-tunnel studies on the characteristics of indoor/outdoor airflow and pollutant exchange in a building cluster J. Wind. Eng. Ind. Aerodyn., 214 (2021), Article 104645; Das et al., 2016 S. Das, N.G. Deen, J.A.M. Kuipers Direct numerical simulation for flow and heat transfer through random open-cell solid foams: development of an IBM based CFD model Catal. Today, 273 (2016), pp. 140-150; Gatheeshgar et al., 2021 P. Gatheeshgar, K. Poologanathan, S. Gunalan, I. Shyha, P. Sherlock, H. Rajanayagam, B. Nagaratnam Development of affordable steel-framed modular buildings for emergency situations (Covid-19) Structure, 31 (2021), pp. 862-875; Gottesman et al., 2021 T. Gottesman, R. Fedorowsky, R. Yerushalmi, J. Lellouche, A. Nutman An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital J. Infect. Prev. Pract., 3 (1) (2021), Article 100113; Hadei et al., 2021 M. Hadei, S.R. Mohebbi, P.K. Hopke, A. Shahsavani, S. Bazzazpour, M. Alipour, A.J. Jafari, A.M. Bandpey, A. Zali, M. Yarahmadi Presence of SARS-CoV-2 in the air of public places and transportation Atmos. Pollut. Res., 12 (3) (2021), pp. 302-306; Hirose et al., 2021 C. Hirose, N. Ikegaya, A. Hagishima, J. Tanimoto Indoor airflow and thermal comfort in a cross-ventilated building within an urban-like block array using large-eddy simulations Build. Environ., 196 (2021), Article 107811; Ibge, 2021 Ibge (Brazilian Institute of Geography and Statistics), 2021. Brazilian Institute of Geography and Statistics. Demographic Data of 2021 - Brazil. https://cidades.ibge.gov.br/.; INMET, 2016 INMET (Brazilian Institute of Meteorology). 2016. Climate archives. http://www.mme.gov.br/projeteee/dados-climaticos/.; Jansi et al., 2021 R.S. Jansi, A. Khusro, P. Agastian, A. Alfarhan, N.A. Al-Dhabi, M.V. Arasu, R. Rajagopal, D. Barcelo, A. Al-Tamimi Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents Sci. Total Environ., 759 (2021), Article 143539; Jing et al., 2021 J.K. Jing, S.Z. Ke, T.J. Li, T. Wang Energy method of geophysical logging lithology based on K-means dynamic clustering analysis Environ. Technol. Innov., 23 (2021), Article 101534; Johansson and Wasim, 2020 E. Johansson, M. Wasim Wind comfort and solar access in a coastal development in Malmö, Sweden Urban Clim., 33 (2020), Article 100645; Kenarkoohi et al., 2020 A. Kenarkoohi, Z. Noorimotlagh, S. Falahi, A. Amarloei, S.A. Mirzaee, I. Pakzad, E. Bastani Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus Sci. Total Environ., 748 (2020), Article 141324; Kim et al., 2020 R.W. Kim, S.W. Hong, T. Norton, T. Amon, A. Youssef, D. Berckmans, I.B. Lee Computational fluid dynamics for non-experts: development of a user-friendly CFD simulator (Hnvr-Sys) for natural ventilation design applications Biosyst. Eng., 193 (2020), pp. 232-246; Kristianto et al., 2014 M.A. Kristianto, N.A. Utama, A.M. Fathoni Analyzing indoor environment of Minahasa Traditional House Using CFD Procedia Environ. Sci., 20 (2014), pp. 172-179; Lane et al., 2020 M.A. Lane, E.A. Brownsword, J.S. Morgan, A. Babiker, S.A. Vanairsdale, G.M. Lyon, A.K. Mehta, J.M. Ingersoll, W.G. Lindsley, C.S. Kraft Bioaerosol sampling of a ventilated patient with COVID-19 Am. J. Infect. Control, 48 (12) (2020), pp. 1540-1542; Li and Chen, 2020 Y. Li, L. Chen A study on database of modular façade retrofitting building envelope Energy Build., 214 (2020), Article 109826; Liu and Lee, 2020 T. Liu, W.L. Lee Evaluating the influence of transom window designs on natural ventilation in high-rise residential buildings in Hong Kong Sustain. Cities Soc., 62 (2020), Article 102406; López et al., 2021 J.H. López, Á.S. Romo, D.C. Molina, G.Á. Hernández, Á.B.G. Cureño, M.A. Acosta, C.A.A. Gaxiola, M.J.S. Félix, T.G. Galván Detection of Sars-Cov-2 in the air of two hospitals in Hermosillo, Sonora, México, utilizing a low-cost environmental monitoring system J. Glob. Infect. Dis., 102 (2021), pp. 478-482; Lou et al., 2020 L. Lou, D.H. Shou, H. Park, D.L. Zhao, Y.S. Wu, X.N. Hui, R.G. Yang, E.C. Kan, J.T. Fan Thermoelectric air conditioning undergarment for personal thermal management and HVAC energy saving Energy Build., 226 (2020), Article 110374; Ly and Cornelisse, 2019 Ly, A., Cornelisse, J., 2019. How to train a machine learning model in Jasp: Clustering. https://jasp-stats.org/2019/11/19/how-to-train-a-machine-learning-model-in-jasp-clustering/.; Maroni et al., 2021 D. Maroni, G.T. Cardoso, A. Neckel, L.S. Maculan, M.L.S. Oliveira, E.T. Bodah, B.W. Bodah, M. Santosh Land surface temperature and vegetation index as a proxy to microclimate J. Environ. Chem. Eng., 9 (4) (2021), Article 105796; Matour et al., 2021 S. Matour, V. Garcia-Hansen, S. Omrani, S. Hassanli, R. Drogemuller Wind-driven ventilation of Double Skin Façades with vertical openings: effects of opening configurations Build. Environ., 196 (2021), Article 107804; Meteoblue, 2021 Meteoblue, 2021. Wind rose of Porto Alegre. https://www.meteoblue.com/es/tiempo/archive/windrose/.; Mora-Pérez et al., 2015 M. Mora-Pérez, I. Guillén-Guillamón, P.A. López-Jiménez Computational analysis of wind interactions for comparing different buildings sites in terms of natural ventilation Adv. Eng. Softw., 88 (2015), pp. 73-82; Mousa et al., 2017 W.A.Y. Mousa, W. Lang, T. Auer, W.A. Yousef A pattern recognition approach for modeling the air change rates in naturally ventilated buildings from limited steady-state CFD simulations Energy Build., 155 (2017), pp. 54-65; Nalamwar et al., 2017 M. Nalamwar, D. Parbat, D. Singh Study of effect of windows location on ventilation by CFD Simulation Int. J. Civ. Eng. Technol., 8 (7) (2017), pp. 521-531; Neckel et al., 2021 A. Neckel, C. Korcelski, H.A. Kujawa, I.S.da. Silva, F. Prezoto, A.L.W. Amorin, L.S. Maculan, A.C. Gonçalves, E.T. Bodah, B.W. Bodah Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability Chemosphere, 262 (2021), Article 128248; Noorimotlagh et al., 2021 Z. Noorimotlagh, N. Jaafarzadeh, S.S. Martínez, S.A. Mirzaee A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment Environ. Res., 193 (2021), Article 110612; Oliveira et al., 2021 M.L.S. Oliveira, A. Neckel, D. Pinto, L.S. Maculan, M.R.D. Zanchett, L.F.O. Silva Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America Chemosphere, 277 (2021), Article 130286; Perondi et al., 2020 B. Perondi, A. Miethke-Morais, A.C. Montal, L. Harima, A.C. Segurado Setting up hospital care provision to patients with COVID-19: lessons learnt at a 2400-bed academic tertiary center in São Paulo, Brazil Braz. J. Infect. Dis., 24 (6) (2020), pp. 570-574; Porras-Amores et al., 2019 C. Porras-Amores, F.R. Mazarrón, I. Cañas, P.V. Sáez Natural ventilation analysis in an underground construction: CFD simulation and experimental validation Tunn. Undergr. Space Technol., 90 (2019), pp. 162-173; Raczkowski et al., 2019 A. Raczkowski, Z. Suchorab, P. Brzyski Computational fluid dynamics simulation of thermal comfort in naturally ventilated room MATEC Web Conf., 252 (2019), p. 04007; Robotto et al., 2021 A. Robotto, P. Quaglino, D. Lembo, M. Morello, E. Brizio, L. Bardi, A. Civra SARS-CoV-2 and indoor/outdoor air samples: a methodological approach to have consistent and comparable results Environ. Res., 195 (2021), Article 110847; Ryu et al., 2020 B.H. Ryu, Y. Cho, O.H. Cho, S.I. Hong, S. Kim, S. Lee Environmental contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea Am. J. Infect. Control, 48 (8) (2020), pp. 875-879; Shao et al., 2021 L. Shao, S. Ge, T. Jones, M. Santosh, L.F.O. Silva, Y.X. Cao, M.L.S. Oliveira, M. Zhang, K. Bérubé The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2 Geosci. Front., 12 (2021), Article 101189; Silva et al., 2020 L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020), Article 126838; Silva et al., 2021 L.F. Silva, M. Santosh, M. Schindler, J. Gasparotto, G.L. Dotto, M.L. Oliveira, M.F. Hochella Jr Nanoparticles in fossil and mineral fuel sectors and their impact on environment and human health: a review and perspective Gondwana Res., 82 (2021), pp. 184-201; Stavroulakis et al., 2020 P.J. Stavroulakis, S. Papadimitriou, V. Tsioumas, I.G. Koliousis, E. Riza, F. Tsirikou Exploratory spatial analysis of maritime clusters Mar. Policy, 120 (2020), Article 104125; Tung et al., 2010 Y.C. Tung, Y.C. Shih, S.C. Hu, Y.L. Chang Experimental performance investigation of ventilation schemes in a private bathroom Build. Environ., 45 (1) (2010), pp. 243-251; Ueda et al., 2020 R.M. Ueda, A.M. Souza, R.M.C.P. Menezes How macroeconomic variables affect admission and dismissal in the Brazilian electro-electronic sector: a var-based model and cluster analysis Phys. A: Stat. Mech. Appl., 557 (2020), Article 124872; Utkucu and Sözer, 2020 D. Utkucu, H. Sözer An evaluation process for natural ventilation using a scenario-based multi-criteria and multi-interaction analysis Energy Rep., 6 (2020), pp. 644-661; Vandercam et al., 2020 G. Vandercam, A. Simon, A. Scohy, L. Belkhir, B. Kabamba, H. Rodriguez-Villalobos, J.C. Yombi Clinical characteristics and humoral immune response in healthcare workers with COVID-19 in a teaching hospital in Belgium J. Hosp. Infect., 106 (4) (2020), pp. 713-720; Vassella et al., 2021 C.C. Vassella, J. Koch, A. Henzi, A. Jordan, R. Waeber, R. Iannaccone, R. Charrière From spontaneous to strategic natural window ventilation: improving indoor air quality in swiss schools Int. J. Hyg. Environ. Health, 234 (2021), Article 113746; Wang et al., 2021 Z.F. Wang, Y.Z. Wang, Z.W. Yang, H.K. Wu, J.Y. Liang, H.W. Liang, H.M. Lin, R.C. Chen, Y.E. Ou, F.Y. Wang, Y. Wang, Y. Wang, W.Z. Luo, N.J. Li, Z.T. Li, J.X. Xie, M. Jiang, S.Y. Li The use of non-invasive ventilation in COVID-19: a systematic review J. Glob. Infect. Dis., 106 (2021), pp. 254-261; WHO, 2021 WHO (World Health Organization), 2021. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/.; Xu et al., 2021 F. Xu, S.Z. Xu, U. Passe, B. Ganapathysubramanian Computational study of natural ventilation in a sustainable building with complex geometry Sustain. Energy Technol. Assess., 45 (2021), Article 101153; Yang and Chong, 2021 S.S. Yang, Z.H. Chong Smart city projects against COVID-19: quantitative evidence from china Sustain. Cities Soc., 70 (2021), Article 102897; Zhang et al., 2021 Zhang, Y.Y., Wang, H.J., Lv, Dong, X., Zhang, P., 2021. Capturing the grouping and compactness of high-level semantic feature for saliency detection. Neural Netw. 142, 351-362; Zhou et al., 2020 S.G. Zhou, K.F. Zhou, J.L. Wang Geochemical metallogenic potential based on cluster analysis: a new method to extract valuable information for mineral exploration from geochemical data J. Appl. Geochem., 122 (2020), Article 104748; 13; https://hdl.handle.net/11323/9192; https://doi.org/10.1016/j.gsf.2021.101279; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
16Academic Journal
المؤلفون: Dal Moro, Leila, Maculan, Laércio Stolfo, Neckel, Alcindo, de Vargas Mores, Giana, Pivoto, Dieisson, Bodah, Eliane Thaines, Bodah, Brian William, Oliveira, Marcos L.S.
المصدر: Journal of Environmental Chemical Engineering ; volume 9, issue 6, page 106475 ; ISSN 2213-3437
-
17Academic Journal
Alternate Title: AMBITIONS, EXPECTATIONS, AND STEREOTYPES OF WOMEN IN LEADERSHIP POSITIONS IN BRAZILIAN ORGANIZATIONS. (English)
المؤلفون: COSTENARO MACIEL, ALESSANDRA, DE VARGAS MORES, GIANA, GOMES CASAGRANDA, YASMIN, DAL MORO, LEILA, GALLON, SHALIMAR
المصدر: Revista Pretexto; abr-jun2024, Vol. 25 Issue 2, p9-28, 20p
مصطلحات موضوعية: LEADERSHIP in women, INSTITUTIONAL environment, ORGANIZATIONAL aims & objectives, TALENT development, QUEENS (Insects)
-
18Academic Journal
المؤلفون: Leite, Paulo Wladinir da Luz, Almeida Silva, Caliane Christie Oliveira de, Dal Moro, Leila, Bodah, Brian William, Mores, Giana de Vargas, Piccinato Junior, Dirceu, Engel, Amanda, Santosh, M., Neckel, Alcindo
المصدر: Architecture (2673-8945); Mar2024, Vol. 4 Issue 1, p170-187, 18p
مصطلحات موضوعية: TECHNOLOGICAL innovations, ARCHITECTURAL design, MANUSCRIPTS, SUSTAINABILITY
Reviews & Products: SUSTAINABLE Development Goals (United Nations)
-
19Report
المؤلفون: Neckel, Alcindo, Silva Oliveira, Marcos Leandro, Castro Bolaño, Lauren J., Stolfo Maculan, Laércio, Dal Moro, Leila, BODAH, ELIANE, Moreno-Ríos, Andrea L., Bodah, Brian William, Silva Oliveira, Luis Felipe
المصدر: Marine Pollution Bulletin ; https://www.sciencedirect.com/science/article/abs/pii/S0025326X21009590#!
مصطلحات موضوعية: Satellite analysis, Yellow coloration in water, Marine estuaries, Hazardous elements, Environmental quality
وصف الملف: application/pdf
Relation: https://hdl.handle.net/11323/8778; https://doi.org/10.1016/j.marpolbul.2021.112925; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
20Academic Journal
المؤلفون: Neckel, Alcindo, Carollo Toscan, Paloma, Aniceto Kujawa, Henrique, William Bodah, Brian, Korcelski, Cleiton, Stolfo Maculan, Laércio, Oliveira de Almeida Silva, Caliane Christie, Gonçalves Junior, Afonso Celso, Snak, Aline, Dal Moro, Leila, Silva Oliveira, Luis Felipe
مصطلحات موضوعية: Cemetery’s soils, Metallic contaminants, Non-metallic elements, Technical solutions, Vertical cemetery
وصف الملف: 15 páginas; application/pdf
Relation: Environmental Science and Pollution Research; Antwi-Afari M, Li H, Pärn E, Edwards D (2018) Critical success factors for implementing building information modelling (BIM): a longitudinal review. Autom Constr 91:100–110. https://doi.org/ 10.1016/j.autcon.2018.03.010; AOAC (2016) Digestão Nitroperclórica da amostra. Método AOAC – Association of Ofcial Analytical Chemist. Ofcial Methods of Analysis, 21st edn. Maryland, pp 3172; App M, Strohbach MW, Schneider AK, Schröder B (2022) Making the case for gardens: estimating the contribution of urban gardens to habitat provision and connectivity based on hedgehogs (Erinaceus europaeus). Landsc Urban Plan. 220:104347. https://doi.org/10. 1016/j.landurbplan.2021.104347; Atazadeh B, Olfat H, Rajabifard A, Kalantari M, Shojaei D, Marjani AM (2021) Linking Land Administration Domain Model and BIM environment for 3D digital cadastre in multi-storey buildings. Land Use Policy 104:105367. https://doi.org/10.1016/j. landusepol.2021.105367; Bennett G, Davies P (2015) Urban cemetery planning and the conficting role of local and regional interests. Land Use Policy 42:450–459. https://doi.org/10.1016/j.landusepol.2014.08.011; Chen J, Dong Z, Lei Y, Yang Y, Guo Z, Ye J (2022) β-glucan mitigation on toxicological efects in monocytes/macrophages of Nile tilapia (Oreochromis niloticus) following copper exposure. Fish Shellfsh Immunol 121:124–134. https://doi.org/10.1016/j.fsi.2022.01.003; Covre WP, Ramos SJ, Pereira WVS, de Souza ES, Martins GC, Teixeira OMM, do Amarante CB, Dias YN, Fernandes AR (2022) Impact of copper mining wastes in the Amazon: properties and risks to environment and human health. J Hazard Mater 421:126688. https://doi.org/10.1016/j.jhazmat.2021.126688; CELA (2023) Soil Analysis Quality Control Program. Paraná – Brazil. https://sbcs-nepar.org.br/cela. Accessed 04 Jan 2023; CETESB (2016) Environmental Sanitation Technology Company. São Paulo, Brazil. https://cetesb.sp.gov.br/laboratorios/orientacoes/. Accessed 5 Mar 2022; Dąbrowski P, Kulus M, Grzelak J, Radzikowska M, Oziembłowski M, Domagała Z, Krajcarz MT (2020) Assessing weaning stress - relations between enamel hypoplasia, δ18O and δ13C values in human teeth obtained from early modern cemeteries in Wroclaw, Poland. Ann Anat Anat Anz 232:151546. https://doi.org/10. 1016/j.aanat.2020.151546; Dal Moro L, Maculan LS, Neckel A, de Vargas Mores G, Pivoto D, Bodah ET, Bodah BW, Oliveira ML (2021) Geotechnologies applied to the analysis of buildings involved in the production of poultry and swine to the integrated food safety system and environment. J Environ Chem. Eng 9(6):106475. https://doi.org/ 10.1016/j.jece.2021.106475; D’Haese PC, de Broe ME (2001) Aluminium iron: implications for Alzheimer’s disease. Alum Alzh Disease 221–231. https://doi. org/10.1016/b978-044450811-9/50036-7; D’Haese PC, Douglas G, Verhulst A, Neven E, Behets GJ, Vervaet BA, Finsterle K, Lürling M, Spears B (2019) Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium. Chemosphere 220:286–299. https:// doi.org/10.1016/j.chemosphere.2018.12.093; Dórea JG (2020) Neurotoxic effects of combined exposures to aluminum and mercury in early life (infancy). Environ Res 188:109734. https://doi.org/10.1016/j.envres.2020.109734; Durdyev S, Ashour M, Connelly S, Mahdiyar A (2022) Barriers to the implementation of Building Information Modelling (BIM) for facility management. J Build Eng 46:103736. https://doi.org/10. 1016/j.jobe.2021.103736; Embrapa (2022) soils. Technical reports database. https://www.embra pa.br/trigo/infraestrutura/solos1. Accessed 19 May 2022; Ferreira JEV, Pinheiro MTS, dos Santos WRS, Maia RDS (2016) Graphical representation of chemical periodicity of main elements through boxplot. Educ Quim 27:209–216. https://doi.org/ 10.1016/j.eq.2016.04.007; Ferreira EPDB, Dusi AN, Costa JR, Xavier GR, Rumjanek NG (2009) Assessing insecticide and fungicide efects on the culturable soil bacterial community by analyses of variance of their DGGE fngerprinting data. Eur J Soil Biol 45:466–472. https://doi.org/10. 1016/j.ejsobi.2009.07.003; Franco DS, Georgin J, Villarreal Campo LA, Mayoral MA, Goenaga JO, Fruto CM, Neckel A, Oliveira ML, Ramos CG (2022) The environmental pollution caused by cemeteries and cremations: a review. Chemosphere 307:136025. https://doi.org/10.1016/j. chemosphere.2022.136025; Guo G, Lei M, Wang Y, Song B, Yang J (2018) Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int J Environ Res 15(11):2601. https://doi.org/10.3390/ijerph15112601; Gwenzi W (2021) Autopsy, thanatopraxy, cemeteries and crematoria as hotspots of toxic organic contaminants in the funeral industry continuum. Sci Total Environ 753:141819. https://doi.org/10. 1016/j.scitotenv.2020.141819; Hariyono WP (2015) Vertical cemetery. Procedia Eng 118:201–214. https://doi.org/10.1016/j.proeng.2015.08.419; He Y, Li H, Wang S, Yao X (2021) Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression. Neurocomputing 430:121– 137. https://doi.org/10.1016/j.neucom.2020.10.093; Hessel EV, Staal YC, Piersma AH, Braver-Sewradj SP, Ezendam J (2021) Occupational exposure to hexavalent chromium. Part I. Hazard assessment of non-cancer health efects. Regul Toxicol Pharmacol 126:105048. https://doi.org/10.1016/j.yrtph.2021. 105048; IAC (2023) Agronomic Institute - Center for Research and Development of Soils and Environmental Resources. Paraná – Brazil. http://lab.iac.sp.gov.br/Relatorios/ListaLaboratoriosSite.asp. Accessed 04 Jan 2023; IBGE (2022) Brazilian Institute of Geography and Statistics. Demographic Data of 2021 – Brazil. https://cidades.ibge.gov.br/. Accessed 10 Mar 2022; Klaufus C (2016) “The dead are killing the living”: spatial justice, funerary services, and cemetery land use in urban Colombia. Habitat Int 54:74–79. https://doi.org/10.1016/j.habitatint.2015.11.032; Klein GL (2019) Aluminum toxicity to bone: a multisystem efect? Osteoporos. Sarcopenia 5(1):2–5. https://doi.org/10.1016/j.afos. 2019.01.001; Li X, Zhang B, Li N, Ji X, Liu K, Jin M (2019) Zebrafsh neurobehavioral phenomics applied as the behavioral warning methods for fngerprinting endocrine disrupting efect by lead exposure at environmentally relevant level. Chemosphere 231:315–325. https://doi.org/10.1016/j.chemosphere.2019.05.146; Li X, Zhang J, Gong Y, Liu Q, Yang S, Ma J, Zhao L, Hou H (2020) Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere 244:125516. https://doi.org/10. 1016/j.chemosphere.2019.125516; Li X, Zhou Y, Zhang J (2021) Status and associated human health risk of zinc accumulation in agricultural soils across China. Process Saf Environ Prot 14:867–876. https://doi.org/10.1016/j.psep.2020.12.017; Loef M, Walach H (2011) Copper and iron in Alzheimer’s disease: a systematic review and its dietary implications. Br J Nutr 107(1):7– 19. https://doi.org/10.1017/s000711451100376x; Löki V, Molnár V, Süveges K, Heimeier H, Takács A, Nagy T, Fekete R, Lovas-Kiss D, Kreutz KC, Sramkó G, Tökölyi J (2019) Predictors of conservation value of Turkish cemeteries: a case study using orchids. Landsc Urban Plan 186:36–44. https://doi.org/10. 1016/j.landurbplan.2019.02.016; Lu Y, Wu Z, Chang R, Li Y (2017) Building Information Modeling (BIM) for green buildings: a critical review and future directions. Autom Constr 83:134–148. https://doi.org/10.1016/j.autcon.2017. 08.024; Mascalchi M, Orsini C, Pinna D, Salvadori B, Siano S, Riminesi C (2020) Assessment of diferent methods for the removal of bioflms and lichens on gravestones of the English Cemetery in Florence. Int Biodeterior 154:105041. https://doi.org/10.1016/j.ibiod. 2020.105041; Maroni D, Cardoso GT, Neckel A, Maculan LS, Oliveira ML, Bodah ET, Bodah BW, Santosh M (2021) Land surface temperature and vegetation index as a proxy to microclimate. J Environ Chem Eng 9(4):105796. https://doi.org/10.1016/j.jece.2021.105796; Miao F, Zhang Y, Li Y, Lin Q (2022) A synthetic health risk assessment based on geochemical equilibrium simulation and grid spatial interpolation for zinc (II) species. J Environ Manage 304:114207. https://doi.org/10.1016/j.jenvman.2021.114207; Mohammed MA, Abudeif AM (2020) Use of the geophysical approaches for studying the environmental impact assessment of the human burying techniques to the soil and groundwater: a case study of Geheina cemeteries, Sohag, Egypt. J Afr Earth Sci 172:104010. https://doi.org/10.1016/j.jafrearsci.2020.104010; Mordhorst A, Zimmermann I, Fleige H, Horn R (2022) Environmental risk of (heavy) metal release from urns into cemetery soils. Sci Total Environ 152952. https://doi.org/10.1016/j.scitotenv.2022. 152952; Morillas H, Marcaida I, Maguregui M, Upasen S, Gallego-Cartagena E, Madariaga JM (2019) Identifcation of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment afected by difuse contamination. J Clean Prod 226:369–378. https://doi.org/10.1016/j.jclepro.2019.04.063; Nag R, Cummins E (2022) Human health risk assessment of lead (Pb) through the environmental-food pathway. Sci Total Environ 151168. https://doi.org/10.1016/j.scitotenv.2021.151168; Neckel A, Korcelski C, Kujawa HA, Schaefer da Silva I, Prezoto F, Walker Amorin AL, Maculan LS, Gonçalves AC, Bodah ET, Bodah BW, Dotto GL, Silva LFO (2021) Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 262:128248. https://doi.org/10.1016/j. chemosphere.2020.128248; Neckel A, Korcelski C, Silva LFO, Kujawa HA, Bodah BW, Figueiredo AMR, Maculan LS, Gonçalves AC, Bodah ET, Moro LD (2021b) Metals in the soil of urban cemeteries in Carazinho (South Brazil) in view of the increase in deaths from COVID-19: projects for cemeteries to mitigate environmental impacts. Environ Dev Sustain 1–24. https://doi.org/10.1007/s10668-021-01879-y; Netto LG, Filho WM, Moreira CA, Donato FT, Helene LPI (2021) Delineation of necroleachate pathways using electrical resistivity tomography (ERT): case study on a cemetery in Brazil. Environ Chall 5:100344. https://doi.org/10.1016/j.envc.2021.100344; Olanrewaju OI, Kineber AF, Chileshe N, Edwards DJ (2022) Modelling the relationship between Building Information Modelling (BIM) implementation barriers, usage and awareness on building project lifecycle. Build Environ 207:108556. https://doi.org/10. 1016/j.buildenv.2021.108556; Pavan MRA, Block MS, Zempulski HC, Miyazawa MI, Zocoler DC (1992) Manual of soil chemical analysis and quality control. Londrina, IAPAR, pp 40 Rae RA (2021) Cemeteries as public urban green space: management, funding and form. Urban For Urban Green 61:127078. https://doi. org/10.1016/j.ufug.2021.127078; Sapyen W, Toonchue S, Praphairaksit N, Imyim A (2022) Selective colorimetric detection of Cr(VI) using starch-stabilized silver nanoparticles and application for chromium speciation. Spectrochim. Acta A Mol Biomol Spectrosc 274:121094. https://doi.org/ 10.1016/j.saa.2022.121094; Silva LF, Oliveira ML, Neckel A, Maculan LS, Milanes CB, Bodah BW, Cambrussi LP, Dotto GL (2022) Efects of atmospheric pollutants on human health and deterioration of medieval historical architecture (North Africa, Tunisia). Urban Clim 41:101046. https://doi.org/10.1016/j.uclim.2021.101046; Shangguan Y, Zhuang X, Querol X, Li B, Moreno N, Trechera P, Sola PC, Uzu G, Li J (2022) Characterization of deposited dust and its respirable fractions in underground coal mines: implications for oxidative potential-driving species and source apportionment. Int J Coal Geol 258:104017. https://doi.org/10.1016/j.coal.2022.104017; Tack FMG, Meers E (2010) Assisted phytoextraction: helping plants to help us. Elements 6(6):383–388. https://doi.org/10.2113/gsele ments.6.6.383; Tan T, Chen K, Xue F, Lu W (2019) Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: an interpretive structural modeling (ISM) approach. J Clean Prod 219:949–959. https://doi.org/10.1016/j.jclepro.2019.02.141; Tan Y, Li G, Cai R, Ma J, Wang M (2022) Mapping and modelling defect data from UAV captured images to BIM for building external wall inspection. Autom Constr 139:104284. https://doi.org/10. 1016/j.autcon.2022.104284; Tareen ADK, Nadeem MSA, Kearfott KJ, Abbas K, Khawaja MA, Rafque M (2019) Descriptive analysis and earthquake prediction using boxplot interpretation of soil radon time series data. Appl Radiat Isot 154:108861. https://doi.org/10.1016/j.apradiso. 2019.108861; Tarnik MG, Ghafari S, Bahraini T, SadoghiYazdi H (2020) Minimum variance based-Bayes combination for prediction of soil properties on Vis-NIR refectance spectroscopy. Chemom Intell Lab Syst 207:104194. https://doi.org/10.1016/j.chemolab.2020.104194; Toscan PC, Neckel A, Maculan LS, Korcelski C, Oliveira MLS, Bodah ET, Bodah BW, Kujawa HA, Gonçalves AC (2022) Use of geospatial tools to predict the risk of contamination by SARS-CoV-2 in urban cemeteries. Geosci Front 101310. https://doi.org/10.1016/j. gsf.2021.101310; Vega AS, Arce G, Rivera JI, Acevedo SE, Reyes-Paecke S, Bonilla CA, Pastén P (2022) A comparative study of soil metal concentrations in Chilean urban parks using four pollution indexes. J Appl Geochem 105230. https://doi.org/10.1016/j.apgeochem.2022.105230; Wang Q, Hao D, Wang F, Wang H, Huang X, Li F, Li C, Yu H (2021) Development of a new framework to estimate the environmental risk of heavy metal(loid)s focusing on the spatial heterogeneity of the industrial layout. Environ Int 147:106315. https://doi.org/ 10.1016/j.envint.2020.106315; Wang W, Wu X, Zhao X, Zhou X (2020) Quantile regression for panel count data based on quadratic inference functions. J Stat Plan Inference 207:230–245. https://doi.org/10.1016/j.jspi.2019.12.005; Wang X, Fernandes De Souza M, Li H, Tack FM, Ok YS, Meers E (2021) Zn phytoextraction and recycling of alfalfa biomass as potential Zn-biofortifed feed crop. Sci Total Environ 760:143424. https://doi.org/10.1016/j.scitotenv.2020.143424; Wang X, Fernandes De Souza M, Mench MJ, Li H, Ok YS, Tack FM, Meers E (2022) Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock. Environ Pollut 294:118627. https://doi.org/10.1016/j.envpol.2021.118627; Welz B, Sperling M (2008) Atomic absorption spectrometry, 3rd edn. Wiley-VCH, New York, Weinheim; Yang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FM, Kwon EE, Rinklebe J, Yin R (2022) The benefcial and hazardous efects of selenium on the health of the soil-plant-human system: an overview. J Hazard Mater 422:126876. https://doi.org/10.1016/j.jhazm at.2021.126876; Zhang N, Zhang J, Chen W, Su J (2022) Block-based variations in the impact of characteristics of urban functional zones on the urban heat island efect: a case study of Beijing. Sustain Cities Soc 76:103529. https://doi.org/10.1016/j.scs.2021.103529; 50689; 50675; 30; Neckel, A., Toscan, P.C., Kujawa, H.A. et al. Hazardous elements in urban cemeteries and possible architectural design solutions for a more sustainable environment. Environ Sci Pollut Res 30, 50675–50689 (2023). https://doi.org/10.1007/s11356-023-25891-z; https://hdl.handle.net/11323/10401; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/