يعرض 1 - 15 نتائج من 15 نتيجة بحث عن '"DICOM metadata"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: The article was written by the author's team as a part of the research work “Development of a platform for the preparation of datasets of radiation diagnostic studies”., Данная статья подготовлена авторским коллективом в рамках научно-исследовательской работы “Разработка платформы подготовки наборов данных лучевых диагностических исследований”

    المصدر: Medical Visualization; Том 28, № 2 (2024); 134-144 ; Медицинская визуализация; Том 28, № 2 (2024); 134-144 ; 2408-9516 ; 1607-0763

    وصف الملف: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1346/855; https://medvis.vidar.ru/jour/article/downloadSuppFile/1346/2115; https://medvis.vidar.ru/jour/article/downloadSuppFile/1346/2116; McDonald R.J., Schwartz K.M., Eckel L.J. et al. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 2015; 22 (9): 1191–1198. https://doi.org/10.1016/j.acra.2015.05.007; van Leeuwen K.G., de Rooij M., Schalekamp S. et al. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr. Radiol. 2022; 52 (11): 2087–2093. https://doi.org/10.1007/s00247-021-05114-8; Chetlen A.L., Chan T.L., Ballard D.H. et al. Addressing Burnout in Radiologists. Acad. Radiol. 2019; 26 (4): 526–533. https://doi.org/10.1016/j.acra.2018.07.001; Hosny A., Parmar Ch., Quackenbush J. et al. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018; 18 (8): 500–510. https://doi.org/10.1038/s41568-018-0016-5; Rubin D.L. Artificial Intelligence in Imaging: The Radiologist’s Role. J. Am. Coll. Radiol. 2019; 16 (9): 1309–1317. https://doi.org/10.1016/j.jacr.2019.05.036; Savadjiev P., Chong J., Dohan A. et al. Demystification of AI-driven medical image interpretation: past, present and future. Eur. Radiol. 2019; 29 (3): 1616–1624. https://doi.org/10.1007/s00330-018-5674-x; Acosta J.N., Falcone G.J., Rajpurkar P. The Need for Medical Artificial Intelligence That Incorporates Prior Images. Radiology. 2022; 304 (2): 283–288. https://doi.org/10.1148/radiol.212830; Павлов Н.А., Андрейченко А.Е., Владзимирский А.В., Ревазян А.А., Кирпичев Ю.С., Морозов С.П. Эталонные медицинские датасеты (MosMedData) для независимой внешней оценки алгоритмов на основе искусственного интеллекта в диагностике. Dig. Diagn. 2021; 2 (1): 49–66. https://doi.org/10.17816/DD60635; Willemink M.J., Koszek W.A., Hardell C. et al. Preparing Medical Imaging Data for Machine Learning. Radiology. 2020; 295 (1): 4–15. https://doi.org/10.1148/radiol.2020192224; Park S.H., Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology. 2018; 286 (3): 800–809. https://doi.org/10.1148/radiol.2017171920; European Society of Radiology (ESR). What the radiologist should know about artificial intelligence – an ESR white paper. Insights. Imaging. 2019; 10 (1): 44. https://doi.org/10.1186/s13244-019-0738-2; Борисов А.А., Семенов С.С., Арзамасов К.М. Использование трансферного обучения для автоматизированного поиска дефектов на рентгенограммах органов грудной клетки. Медицинская визуализация. 2023; 27 (1): 158–169. https://doi.org/10.24835/1607-0763-1243; Juszczyk J., Badura P., Czajkowska J. et al. Automated size-specific dose estimates using deep learning image processing. Medical Image Analysis. 2021; 68: 101898. https://doi.org/10.1016/j.media.2020.101898; Keshavamurthy K.N., Elnajjar P., El-Rowmeim A. et al. Application of Deep Learning Techniques for Characterization of 3D Radiological Datasets – A Pilot Study for Detection of Intravenous Contrast in Breast MRI. Proc. SPIE Int. Soc. Opt. Eng. 2019; 10954: 109540X. https://doi.org/10.1117/12.2513809; DICOM standart // URL: https://www.dicomstandard.org/ (дата обращения 10.01.2023); CheXpert Dataset //URL: https://stanfordmlgroup.github.io/competitions/chexpert/ (дата обращения 23.12.2022); Chest X-rays dataset // URL: https://www.kaggle.com/datasets/raddar/chest-xrays-indiana-university (дата обращения 26.12.2022); Chest X-Ray Images (Pneumonia)// URL: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (дата обращения 20.12.2022); NIH ChestX-ray14 //URL: https://nihcc.app.box.com/v/ChestXray-NIHCC (дата обращения 20.12.2022); Han B., Du J., Jia Y. et al. Zero-Watermarking Algorithm for Medical Image Based on VGG19 Deep Convolution Neural Network. J. Healthc. Eng. 2021; 2021: 5551520. https://doi.org/10.1155/2021/5551520; Karacı A. VGGCOV19-NET: automatic detection of COVID-19 cases from X-ray images using modified VGG19 CNN architecture and YOLO algorithm. Neural. Comput. Appl. 2022; 34 (10): 8253–8274. https://doi.org/10.1007/s00521-022-06918-x; ROC-инструмент ГБУЗ НПКЦ ДиТ ДЗМ // URL: https://roc-analysis.mosmed.ai/; Mustra M., Delac K., Grgic M. et al. Overview of the DICOM standard. ELMAR, 2008. 50th International Symposium. Zadar, Croatia: 39–44. ISBN 978-1-4244-3364-3; Gueld M.O., Kohnen M., Keysers D. et al. Quality of DICOM header information for image categorization. Proc. SPIE 4685. Medical Imaging 2002: PACS and Integrated Medical Information Systems: Design and Evaluation. https://doi.org/10.1117/12.467017; Santosh K.C., Wendling L. Angular relational signature-based chest radiograph image view classification. Med. Biol. Eng. Comput. 2018; 56 (8): 1447–1458. https://doi.org/10.1007/s11517-018-1786-3; Urinbayev K., Orazbek Y., Nurambek Y. et al. End-to-End Deep Diagnosis of X-ray Images. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. https://doi.org/10.1109/EMBC44109.2020.9175208; https://medvis.vidar.ru/jour/article/view/1346

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal
  6. 6
    Dissertation/ Thesis
  7. 7
    Dissertation/ Thesis

    المؤلفون: Pšurný, Michal

    المساهمون: Harabiš, Vratislav, Kolář, Radim

    وصف الملف: application/pdf; application/zip; text/html

    Relation: PŠURNÝ, M. Big data analýzy a statistické zpracování metadat v archivu obrazové zdravotnické dokumentace [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2017.; 102377; http://hdl.handle.net/11012/65456

  8. 8
    Dissertation/ Thesis

    المؤلفون: Pšurný, Michal

    المساهمون: Harabiš, Vratislav, Kolář, Radim

    المصدر: PŠURNÝ, M. Big data analýzy a statistické zpracování metadat v archivu obrazové zdravotnické dokumentace [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2017.

    وصف الملف: text/html

  9. 9
  10. 10
    Electronic Resource
  11. 11
    Electronic Resource
  12. 12
    Electronic Resource
  13. 13
    Electronic Resource
  14. 14
    Electronic Resource
  15. 15
    Electronic Resource