يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"D. A. Gabrielyan"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: Работа была поддержана грантом РНФ №22-15-00251 «Персонализированное применение прямых оральных антикоагулянтов на основе фармакогеномного подхода».

    المصدر: Meditsinskiy sovet = Medical Council; № 17 (2022); 52-64 ; Медицинский Совет; № 17 (2022); 52-64 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7111/6384; Payne R.A. The Epidemiology of Polypharmacy. Clin Med (Lond). 2016;16(5):465–469. https://doi.org/10.7861/clinmedicine.16-5-465.; Foerster K.I., Hermann S., Mikus G., Haefeli W.E. Drug-Drug Interactions with Direct Oral Anticoagulants. Clin Pharmacokinet. 2020;59(8):967–980. https://doi.org/10.1007/s40262-020-00879-x.; Leelakanok N., Holcombe A.L., Lund B.C., Gu X., Schweizer M.L. Association between Polypharmacy and Death: A Systematic Review and Meta-Analysis. J Am Pharm Assoc (2003). 2017;57(6):729–738.e10. https://doi.org/10.1016/j.japh.2017.06.002.; Franco Moreno A.I., Martín Díaz R.M., García Navarro M.J. Direct Oral Anticoagulants: An Update. Med Clin (Barc). 2018;151(5):198–206. https://doi.org/10.1016/j.medcli.2017.11.042.; Бойцов С.А., Лукьянов М.М., Платонова Е.В., Горбунов В.М., Романчук С.В., Назарова O.A. и др. Оценка эффективности вакцинопрофилактики гриппа по данным проспективного контроля у лиц, находящихся под диспансерным наблюдением по поводу болезней системы кровообращения. Рациональная фармакотерапия в кардиологии. 2016;(6):703–710. https://doi.org/10.20996/1819-6446-2016-12-6-703-710.; Murphy J.E. Clinical Pharmacokinetics. 2017. 429 р.; Eriksson B.I., Quinlan D.J., Weitz J.I. Comparative Pharmacodynamics and Pharmacokinetics of Oral Direct Thrombin and Factor Xa Inhibitors in Development. Clin Pharmacokinet. 2009;48(1):1–22. https://doi.org/10.2165/0003088-200948010-00001.; Gong I.Y., Kim R.B. Importance of Pharmacokinetic Profile and Variability as Determinants of Dose and Response to Dabigatran, Rivaroxaban, and Apixaban. Can J Cardiol. 2013;29(7 Suppl.):S24–33. https://doi.org/10.1016/j.cjca.2013.04.002.; Gerk P.M., Sara E. Rosenbaum. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations. Hoboken NJ: John Wiley & Sons, Inc.; 2011. 430 р.; Holm J., Mannheimer B., Malmström R.E., Eliasson E., Lindh J.D. Bleeding and Thromboembolism Due to Drug-Drug Interactions with Non-Vitamin K Antagonist Oral Anticoagulants-a Swedish, Register-Based Cohort Study in Atrial Fibrillation Outpatients. Eur J Clin Pharmacol. 2021;77(3):409–419. https://doi.org/10.1007/s00228-020-03015-7.; Hakeam H.A., Al-Sanea N. Effect of Major Gastrointestinal Tract Surgery on the Absorption and Efficacy of Direct Acting Oral Anticoagulants (DOACs). J Thromb Thrombolysis. 2017;43(3):343–351. https://doi.org/10.1007/s11239-016-1465-x.; Steffel J., Verhamme P., Potpara T.S., Albaladejo P., Antz M., Desteghe L. et al. The 2018 European Heart Rhythm Association Practical Guide on the Use of NonVitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Eur Heart J. 2018;39(16):1330–1393. https://doi.org/10.1093/eurheartj/ehy136.; Булаев В.М., Ших Е.В., Сычев Д.А. Безопасность и эффективность лекарственных растений. М.; 2013. 270 с. Bulaev V.M., Shikh E.V., Sychev D.A. Safety and efficacy of medicinal plants. Moscow; 2013. 270 р. (In Russ.); Pai M.P., Momary K.M., Rodvold K.A. Antibiotic Drug Interactions. Med Clin North Am. 2006;90(6):1223–1255. https://doi.org/10.1016/j.mcna.2006.06.008.; Hu J., Xiao Y.-H., Zheng Y., Lai Y.-X., Fang X.-L., Fang Q. Clinical Characteristics and Risk Factors of Tigecycline-Associated Hypofibrinogenaemia in Critically Ill Patients. Eur J Clin Pharmacol. 2020;76(7):913–922. https://doi.org/0.1007/s00228-020-02860-w.; Shorr A.F., Lodise T.P., Corey G.R., De Anda C., Fang E., Das A.F., Prokocimer P. Analysis of the Phase 3 ESTABLISH Trials of Tedizolid versus Linezolid in Acute Bacterial Skin and Skin Structure Infections. Antimicrob Agents Chemother. 2015;59(2):864–871. https://doi.org/10.1128/AAC.03688-14.; Abdul-Aziz M.H., Alffenaar J.-W.C., Bassetti M., Bracht H., Dimopoulos G., Marriott D. et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020;46(6):1127– 1153. https://doi.org/10.1007/s00134-020-06050-1.; Bhatt D.L., Scheiman J., Abraham N.S., Antman E.M., Chan F.K.L., Furberg C.D. et al. ACCF/ACG/AHA 2008 Expert Consensus Document on Reducing the Gastrointestinal Risks of Antiplatelet Therapy and NSAID Use: A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation. 2008;118(18):1894–1909. https://doi.org/10.1161/CIRCULATIONAHA.108.191087.; Zhang Y., Souverein P.C., Gardarsdottir H., van den Ham H.A., Maitland-van der Zee A.-H., de Boer A. Risk of Major Bleeding among Users of Direct Oral Anticoagulants Combined with Interacting Drugs: A Population-Based Nested Case-Control Study. Br J Clin Pharmacol. 2020;86(6):1150–1164. https://doi.org/10.1111/bcp.14227.; Sepehri Shamloo A., Dagres N., Hindricks G. 2020 ESC guidelines on atrial fibrillation: Summary of the most relevant recommendations and innovations. Herz. 2021;46(1):28–37. https://doi.org/0.1007/s00059-020-05005-y.; Smith K. Mental Health: A World of Depression. Nature. 2014;515(7526):181. https://doi.org/10.1038/515180a.; Nicolussi S., Drewe J., Butterweck V., Meyer Zu Schwabedissen H.E. Clinical relevance of St. John’s wort drug interactions revisited. Br J Pharmacol. 2020;177(6):1212–1226. https://doi.org/10.1111/bph.14936.; Cortegiani A., Ippolito M., Greco M., Granone V., Protti A., Gregoretti C. et al. Rationale and Evidence on the Use of Tocilizumab in COVID-19: A Systematic Review. Pulmonology. 2021;27(1):52–66. https://doi.org/10.1016/j.pulmoe.2020.07.003.; Testa S., Prandoni P., Paoletti O., Morandini R., Tala M., Dellanoce C. et al. Direct Oral Anticoagulant Plasma Levels’ Striking Increase in Severe COVID-19 Respiratory Syndrome Patients Treated with Antiviral Agents: The Cremona Experience. J Thromb Haemost. 2020;18(6):1320–1323. https://doi.org/10.1111/jth.14871.; Bikdeli B., Madhavan M.V., Jimenez D., Chuich T., Dreyfus I., Driggin E. et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950–2973. https://doi.org/10.1016/j.jacc.2020.04.031.; Mar P.L., Gopinathannair R., Gengler B.E., Chung M.K., Perez A., Dukes J. et al. Drug Interactions Affecting Oral Anticoagulant Use. Circ Arrhythm Electrophysiol. 2022;15(6):e007956. https://doi.org/10.1161/CIRCEP.121.007956.; https://www.med-sovet.pro/jour/article/view/7111

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المساهمون: This work was supported by the Russian Science Foundation No. 14-14-00039 (to SIA). BDB and NGB acknowledge support from TN-SCORE, a multidisciplinary research program sponsored by NSF-EPSCoR (EPS-1004083). NGB and BDB acknowledge support from the UTK BCMB Department and from the Gibson Family Foundation, Работа выполнена при финансовой поддержке Российского научного фонда (Грант РНФ № 14-14-00039). Б.Д. Брюс и Н.Г. Брэди выражают признательность Национальной научной организации США за частичное финансирование в рамках экспериментальной программы стимулирования конкурентных исследований TN-SCORE (EPS1004083), а также кафедре биохимии, клеточной и молекулярной биологии (UTK BCMB) Университета Теннеси и Семейному Фонду Гибсон

    المصدر: Alternative Energy and Ecology (ISJAEE); № 34-36 (2019); 12-25 ; Альтернативная энергетика и экология (ISJAEE); № 34-36 (2019); 12-25 ; 1608-8298

    وصف الملف: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/1844/1584; Voloshin R.A., Rodionova M.V., Zharmukhamedov S.K., Hou H., Shen J.-R., Allakhverdiev S.I. Components of natural photosynthetic apparatus in solar cells. In: Najafpour M.M., editor. Applied photosynthesise new progress. Rijeka, Croatia: InTech; 2016; p. 161–88; http://dx.doi.org/10.5772/62238.; Gratzel M. Photovoltaic and photoelectrochemical conversion of solar energy. Phil Trans R Soc A, 2007;365:993–1005.; Rokesh K., Pandikumar A., Jothivenkatachalam K. Dye sensitized solar cell: a summary. Mater. Sci. Forum, 2014;771:1–24; http://dx.doi.org/10.4028/www.scientific.net/MSF.771.1.; Gratzel M. Photoelectrochemical cells. Nature, 2001;414:338–44.; Gratzel M. Recent advances in sensitized mesoscopic solar cells. Accounts Chem. Res., 2009;42(11):1788–98; http://dx.doi.org/10.1021/ar900141yCCC.; Martineau D. Dye solar cells for real/the assembly guide for making your own solar cells. Solaronix SA, 2012; http://www.solaronix.com/documents/dye_solar_cells_for_real.pdf.; Gratzel M. Review dye-sensitized solar cells. J. Photochem.Photobiol. C PhotochemRev., 2003;4:145– 53; http://dx.doi.org/10.1016/S1389-5567(03)00026-1.; Falsgraf E.S. Biologically-derived dye-sensitized solar cells: a cleaner alternative for solar energy. Pomona Senior Theses., 2012; p. 61.; Hamann T.W., Jensen R.A., Martinson A.B.F., Ryswyk H.V., Hupp J.T. Advancing beyond current generation dye sensitized solar cells. Energy Environ Sci., 2008;1:66–78; http://dx.doi.org/10.1039/b809672d.; Peng E., Berberoglu H. Temperature and irradiance dependence of a dye sensitized solar cell with acetonitrile based electrolyte. J. Sol. Energy Eng, 2012;134:1–7.; Suait M.S., Ahmad A., Badri K.H., Mohamed N.S., Rahman M.Y.A., Azanza Ricardo C.L., et al. The potential of polyurethane biobased solid polymer electrolyte for photoelectrochemical cell application. Int. J. Hydrogen Energy, 2014;39(6):3005–17; http://dx.doi.org/10.1016/j.ijhydene.2013.08.117.; Jasim K.E. Dye sensitized solar cells e working principles, challenges and opportunities. In: Kosyachenko L.A., editor. Solar cells e dye-sensitized devices. InTech: 2011; p. 171–204.; Martinson A.B.F., Hamann T.W., Pellin M.J., Hupp J.T. New architectures for dye-sensitized solar cells. ChemEur J., 2008;14:4458–67; http://dx.doi.org/10.1002/chem.200701667.; Bisquert J., Zaban A., Greenshtein M., Mora-Sero I. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am ChemSoc., 2004;126(41):13550–9; http://dx.doi.org/10.1021/ja047311k.; Hassan H.C., Abidin Z.H.Z., Chowdhury F.I., Arof A.K.A. Highefficiency chlorophyll sensitized solar cell with quasi solid PVA based electrolyte. Int J Photoenergy, 2016:1–9; http://dx.doi.org/10.1155/2016/3685210.; Alhamed M., Issa A.S., Doubal A.W. Studying of natural dyes properties as photo-sensitizer for dye sensitized solar cells(DSSC). J Electron Devices, 2012;16:1370–83.; Smestad G.P., Gratzel M. Demonstrating electron transfer and nanotechnology: a natural dye sensitized nanocrystalline energy converter. J ChemEduc., 1998;75:752–6.; Maksimov E.G., Lukashev E.P., Seifullina N.Kh., Nizova G.V., Pashchenko V.Z. Photophysical properties of hybrid complexes of quantum dots and reaction centers of purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films. Nanotechnol Russ, 2013;8(7):423–31; http://dx.doi.org/10.1134/.; Kavadiya S., Chadha T.S., Liu H., Shah V.B., Blankenship R.E., Biswas P. Directed assembly of thylakoid membrane on nanostructured TiO2 for a photoelectrochemical cell. Nanoscale, 2016;8:1868–72; http://dx.doi.org/10.1039/C5NR08178E.; Mershin A., Matsumoto K., Kaiser L., Yu D., Vaughn M., Nazeeruddin M.K., et al. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep., 2012;2:1–7; http://dx.doi.org/10.1038/srep00234.; Voloshin R.A., Kreslavski V.D., Zharmukhamedov S.K., Bedbenov V.S., Ramakrishna S., Allakhverdiev S.I. Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res J., 2015;6:227–35.; Scheer H. An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B., Porra R.J., Rudiger W., Scheer H., editors. Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Dordrecht: Springer; 2006; p. 4–11.; Allakhverdiev S.I., Kreslavski V.D., Zharmukhamedov S.K., Voloshin R.A., Korol’kova D.V., Tomo T., et al. Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry (Moscow), 2016;81:201–12; http://dx.doi.org/10.1134/S0006297916030020.; Berginc M., Krasovec U.O., Jankovec M., Topic M. The effect of temperature on the performance of dyesensitized solar cells based on a propyl-methylimidazolium iodide electrolyte. Sol Energy Mater Sol Cells, 2007;91(9):821–8.; Xue G., Guo Y., Yu T., Guan J., Yu X., Zhang J., et al. Degradation mechanisms investigation for longterm thermal stability of dye-sensitized solar cells. Int J Electrochem Sci., 2012;7:1496–511.; Yaakoubi H., Hamdani S., Bekalé L., Carpentier R. Protective action of spermine and spermidine against photoinhibitionof photosystem I in isolated thylakoid membranes. PLoS One, 2014;9(11): e112893; http://dx.doi.org/10.1371/journal.pone.0112893.; Novakova A.A., Khval'kovskaya E.A., Aleksandrov A.Y., Kiseleva T.Y., Davletshina L.N., Semin B.K., et al. Comparative study of thermal degradation of ironsulfur proteins in spinach chloroplasts and membranes of thermophilic cyanobacteria: mössbauer spectroscopy. Biochemistry (Moscow), 2001;66:520–3.; Dobrikova A.G., Apostolova E.L. Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH. J Plant Physiol., 2015;184:98–105; http://dx.doi.org/10.1016/j.jplph.2015.06.008.; Yua Z., Lia F., Sun L. Recent advances in dyesensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ Sci., 2015;8:760–75; http://dx.doi.org/10.1039/C4EE03565H.; GOST (GОСТ) 9411-91. Optical color filters. Мoscow, 1992.; Dean R.L. Measuring light-dependent proton translocation in isolated thylakoids. J Lab ChemEduc., 2014;2(3):33–43.; Jensen K.F., Brandt H., Im C., Wilde J., Hinsch A. Stability of UV Illuminated dye sensitized solar cells (Dsc) studied by photoinduced absorption in the second range. 28th European PV solar energy conference and exhibition. Paris, French; 2013. p. 6.; https://www.isjaee.com/jour/article/view/1844

  9. 9
  10. 10
    Academic Journal

    المصدر: Journal of the Russian Universities. Radioelectronics; № 2 (2017); 28-33 ; Известия высших учебных заведений России. Радиоэлектроника; № 2 (2017); 28-33 ; 2658-4794 ; 1993-8985

    وصف الملف: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/163/169; Рембовский А. М., Ашихмин А. В., Козьмин В. А. Радиомониторинг - задачи, методы, средства / под ред. А. М. Рембовского. М.: Горячая линия-Телеком, 2010. 624 с.; Системы радиосвязи / В. С. Тоискин, В. И. Петренко, М. Р. Бибарсов, Д. Ю. Мишин; Ставропольский воен. ин-т ракетных войск. Ставрополь, 2010. 217 с.; Сосунов Б. В., Бородулин Р. Ю. Конструкционный синтез фазированных антенных решеток // Науч.-техн. вед. СПбГПУ. 2013. № 2. С. 47-54.; Nelson J. G. F. Design and Implementation of a Closed Cylindrical BFN-Fed Circular Array Antenna for Multiple-Beam Coverage in Azimuth // Antennas and Propag. 2012. Vol. 60, № 2. P. 863-869.; Wideband and High-Gain Uniform Circular Array With Calibration Element for Smart Antenna Application / Tian Li, Fu-Shun Zhang, Fan Zhang, Ya-Li Yao, Li Jiang // IEEE Antennas and Wireless Propag. Lett. 2016. Vol. 15. P. 230-233.; Бахрах Л. Д., Кременецкий С. Д. Синтез излучающих систем. Теория и методы. М.: Сов. радио, 1974. 223 с.; Зелкин Е. Г., Соколов В. Г Методы синтеза антенн: фазированные антенные решетки и антенны с непрерывным раскрывом. М.: Сов. радио, 1980. 341 с.; Кременецкий С. Д. Прикладные математические модели для решения задач синтеза, восстановления и коммуникаций // Антенны. 2004. № 8-9. С. 88-96.; Зелкин Е Г., Кравченко В. Ф. Синтез антенн на основе атомарных функций: в 2 кн. Кн. 2. М.: ИПРЖР, 2003. 72 с.; Габриэльян Д. Д., Волошин В. А., Оводов О. В. Синтез амплитудно-фазового распределения в антенных решетках с произвольным контуром // Антенны. 2010. № 2. С. 44-47.; Гантмахер Ф. Р. Теория матриц. 4-е изд. М.: Наука. Гл. ред. физ.-мат. лит., 1983. 552 с.; https://re.eltech.ru/jour/article/view/163

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16