يعرض 1 - 20 نتائج من 62 نتيجة بحث عن '"Cristal Violeta"', وقت الاستعلام: 1.01s تنقيح النتائج
  1. 1
    Report
  2. 2

    المؤلفون: Anjo, Elisandra Aparecida

    المساهمون: Barahona, Isabel, Repositório Comum

    مصطلحات موضوعية: Bulk Fill, Ensaio cristal violeta, Ensaio dos micronúcleos

    وصف الملف: application/pdf

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Report

    المؤلفون: Cruz Lozano, Brandon Omar

    المساهمون: Calleros Flores, Raúl, Zavala Sánchez, Miguel Ángel

    وصف الملف: 1 recurso en línea (25 páginas); application/pdf

  6. 6
    Academic Journal
  7. 7

    المؤلفون: Marques, Sérgio Rafael Cabral

    المساهمون: Correia, Ilídio Joaquim Sobreira, Costa, Elisabete Cristina da Rocha, uBibliorum

    وصف الملف: application/pdf

  8. 8
  9. 9
    Dissertation/ Thesis
  10. 10
    Dissertation/ Thesis

    المؤلفون: Ricci, Poliana

    المساهمون: Faria, Anizio Marcio, http://lattes.cnpq.br/5710906021234699, Assunção, Rosana Maria Nascimento de, http://lattes.cnpq.br/9826939189216731, Pasquini, Daniel, http://lattes.cnpq.br/6879704705300161, Barud, Hernane da Silva, http://lattes.cnpq.br/7020467292690112

    وصف الملف: application/pdf

    Relation: RICCI, Poliana. Desenvolvimento de monolitos poliméricos porosos a base de acetato de celulose Para remoção de contaminantes em efluentes: estudo de remoção do corante cristal violeta. 2023. 115 f. Dissertação (Mestrado em Química) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.599.; https://repositorio.ufu.br/handle/123456789/40995; http://doi.org/10.14393/ufu.di.2023.599

  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis
  13. 13
  14. 14
    Academic Journal

    المصدر: Sínteses: Revista Eletrônica do SimTec; n. 2 (2008): Temática: Perspectivas e desafios dos profissionais da UNICAMP; 221-221 ; Sínteses: Revista Eletrônica do SimTec; No. 2 (2008): Temática: Perspectivas e desafios dos profissionais da UNICAMP; 221-221 ; 2525-5398

    وصف الملف: application/pdf

  15. 15
    Dissertation/ Thesis
  16. 16
    Dissertation/ Thesis

    المساهمون: Hincapie Triviño, Gina Marcela, Pérez Flórez, Alejandro, Estado Sólido y Catálisis Ambiental

    وصف الملف: xix, 109 páginas; application/pdf

    Relation: Ángel, M., José, H., Velasco, A., Rojas, F., Hugo, V., Alicia, M., Víctor, S., Mesoporos, E. D. E., & Arcillas, Y. C. D. E. (2003). Revista Internacional de Contaminación Ambiental DEL ESTADO DE PUEBLA , MÉXICO Departamento de Investigación en Zeolitas , Instituto de Ciencias de la Universidad Autónoma de Puebla . Edif . 76 , Complejo de Ciencias , C . U ., San Manuel , Puebla 72570 P. 19, 183–190.; Arias, A., Bernal, L., González, H., López, J., Primelles, R. F. L., Arenas, D. M. M., Moreno, G., Rodríguez, Á. M., & Melo, C. U. (2019). Recursos minerales de Colombia. In Servicio Geológico Colombiano (Vol. 2).; Augusto, T. D. M., Chagas, P., Sangiorge, D. L., Mac Leod, T. C. D. O., Oliveira, L. C. A., & Castro, C. S. De. (2018). Iron ore tailings as catalysts for oxidation of the drug paracetamol and dyes by heterogeneous Fenton. Journal of Environmental Chemical Engineering, 6(5), 6545–6553. https://doi.org/10.1016/j.jece.2018.09.052; Bello, M. M., Abdul Raman, A. A., & Asghar, A. (2019). A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection, 126, 119–140. https://doi.org/10.1016/j.psep.2019.03.028; Benavides, V., & Vasquez Sarria, N. (2015). Diseño del plan de gestión ambiental para la industria textil Aritex de Colombia S.A.; Biń, A. K., & Sobera-Madej, S. (2012). Comparison of the Advanced Oxidation Processes (UV, UV/H 2O 2 and O 3) for the Removal of Antibiotic Substances during Wastewater Treatment. Ozone: Science and Engineering, 34(2), 136–139. https://doi.org/10.1080/01919512.2012.650130; Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054; Botero Camacho, L. A. (2020). La Paradoja de la Disponibilidad de Agua de Mala Calidad en el Sector Rural Colombiano. Revista de Ingeniera. Universidad de Los Andes, 49, 38–51. https://doi.org/10.16924/revinge.49.6; Carvalho, S. S. F., & Carvalho, N. M. F. (2017). Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. Journal of Environmental Management, 187, 82–88. https://doi.org/10.1016/j.jenvman.2016.11.032; Chaibakhsh, N., Ahmadi, N., & Zanjanchi, M. A. (2014). Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Industrial Crops and Products, 61, 169–175. https://doi.org/10.1016/j.indcrop.2014.06.056; Clarizia, L., Russo, D., Di Somma, I., Marotta, R., & Andreozzi, R. (2017). Homogeneous photo-Fenton processes at near neutral pH: A review. Applied Catalysis B: Environmental, 209, 358–371. https://doi.org/10.1016/j.apcatb.2017.03.011; de Freitas, V. A. A., Breder, S. M., Silvas, F. P. C., Radino Rouse, P., & de Oliveira, L. C. A. (2019). Use of iron ore tailing from tailing dam as catalyst in a fenton-like process for methylene blue oxidation in continuous flow mode. Chemosphere, 219, 328–334. https://doi.org/10.1016/j.chemosphere.2018.12.052; Dil, E. A., Ghaedi, M., Ghaedi, A., Asfaram, A., Jamshidi, M., & Purkait, M. K. (2016). Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: Kinetics and equilibrium study. Journal of the Taiwan Institute of Chemical Engineers, 59, 210–220. https://doi.org/10.1016/j.jtice.2015.07.023; Donado, R. (2013). Plan de gestión para lodos generados en las PTAR-D de los municipios de Cumaral y San Martín de los Llanos en departamento del Meta. Pontificia Universidad Javeriana.; Ertl, G., Knözinger, H., Schüth, F., & Weitkamp, J. (Eds.). (2008). Handbook of Heterogeneous Catalysis (1st ed.). Wiley-VCH. https://doi.org/10.1002/9783527610044; Fida, H., Zhang, G., Guo, S., & Naeem, A. (2017). Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst. Journal of Colloid and Interface Science, 490, 859–868. https://doi.org/10.1016/j.jcis.2016.11.085; Fónagy, O., Szabó-Bárdos, E., & Horváth, O. (2021). 1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. Journal of Photochemistry and Photobiology A: Chemistry, 407. https://doi.org/10.1016/j.jphotochem.2020.113057; Fraume Restrepo, N. J. (2006). Diccionario Ambiental. ECOE Ediciones.; Garcia Herrera, J. C. (2014). Procesos fenton y foto-fenton para el tratamiento de aguas residuales de laboratorio microbiológico empleando Fe2O3 soportado en nanotubos de carbono. Repositorio Ujaveriana, 65. https://repository.javeriana.edu.co/bitstream/handle/10554/11853/GarciaHerreraJulianCamilo2014.pdf?sequence=1; Garrido-Ramírez, E. G., Theng, B. K. G., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Applied Clay Science, 47(3–4), 182–192. https://doi.org/10.1016/j.clay.2009.11.044; Global Environment Outlook – GEO-6: Summary for Policymakers. (2019). Global Environment Outlook – GEO-6: Summary for Policymakers. https://doi.org/10.1017/9781108639217; Gosetti, F., Gianotti, V., Angioi, S., Polati, S., Marengo, E., & Gennaro, M. C. (2004). Oxidative degradation of food dye E133 Brilliant Blue FCF: Liquid chromatography-electrospray mass spectrometry identification of the degradation pathway. Journal of Chromatography A, 1054(1–2), 379–387. https://doi.org/10.1016/j.chroma.2004.07.106; Guimaraes, I. R., Giroto, A., Oliveira, L. C. A., Guerreiro, M. C., Lima, D. Q., & Fabris, J. D. (2009). Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process. Applied Catalysis B: Environmental, 91(3–4), 581–586. https://doi.org/10.1016/j.apcatb.2009.06.030; Guo, S., Yuan, N., Zhang, G., & Yu, J. C. (2017). Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous and Mesoporous Materials, 238, 62–68. https://doi.org/10.1016/j.micromeso.2016.02.033; Hadjltaief, H. B., Sdiri, A., Gálvez, M. E., Zidi, H., Costa, P. Da, & Zina, M. Ben. (2018). Natural hematite and siderite as heterogeneous catalysts for an effective degradation of 4-chlorophenol via photo-fenton process. ChemEngineering, 2(3), 1–14. https://doi.org/10.3390/chemengineering2030029; Hitam, C. N. C., & Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258(January). https://doi.org/10.1016/j.jenvman.2019.110050; Hussain, T., & Wahab, A. (2018). A critical review of the current water conservation practices in textile wet processing. Journal of Cleaner Production, 198, 806–819. https://doi.org/10.1016/j.jclepro.2018.07.051; Hwang, S., Huling, S. G., & Ko, S. (2010). Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers. Chemosphere, 78(5), 563–568. https://doi.org/10.1016/j.chemosphere.2009.11.005; IDEAM. (2019). Estudio Nacional del Agua 2018. http://www.andi.com.co/Uploads/ENA_2018-comprimido.pdf; IPCC. (2015). Cambio climático 2014: Mitigación del cambio climático. Resumen para responsables de políticas y Resumen técnico. Contribución del Grupo de Trabajo III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre Cambio Climático. In Ipcc.; Jaén, J., & de Araque, L. (2014). Carbono En El Clima Tropical Marino De Sherman (Provincia De Colón, Panama). Tecnociencia, 8(February).; Kanagaraj, T., Thiripuranthagan, S., Paskalis, S. M. K., & Abe, H. (2017). Visible light photocatalytic activities of template free porous graphitic carbon nitride—BiOBr composite catalysts towards the mineralization of reactive dyes. Applied Surface Science, 426, 1030–1045. https://doi.org/10.1016/j.apsusc.2017.07.255; Kashyap, S. J., Sankannavar, R., & Madhu, G. M. (2022). Iron oxide (Fe2O3) synthesized via solution-combustion technique with varying fuel-to-oxidizer ratio: FT-IR, XRD, optical and dielectric characterization. Materials Chemistry and Physics, 286(April), 126118. https://doi.org/10.1016/j.matchemphys.2022.126118; Kassem, K. O., Hussein, M. A. T., Motawea, M. M., Gomaa, H., Alrowaili, Z. A., & Ezzeldien, M. (2021). Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. Journal of Cleaner Production, 326(February), 129416. https://doi.org/10.1016/j.jclepro.2021.129416; Khataee, A., Gholami, P., & Vahid, B. (2017). Catalytic performance of hematite nanostructures prepared by N2 glow discharge plasma in heterogeneous Fenton-like process for acid red 17 degradation. Journal of Industrial and Engineering Chemistry, 50, 86–95. https://doi.org/10.1016/j.jiec.2017.01.035; Kim, K. H., & Ihm, S. K. (2011). Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. Journal of Hazardous Materials, 186(1), 16–34. https://doi.org/10.1016/j.jhazmat.2010.11.011; Kong, L., Zhu, Y., Liu, M., Chang, X., Xiong, Y., & Chen, D. (2016). Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII. Environmental Pollution, 216, 568–574. https://doi.org/10.1016/j.envpol.2016.06.012; Liu, Y., Zhang, G., Chong, S., Zhang, N., Chang, H., Huang, T., & Fang, S. (2017). NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange. Journal of Environmental Management, 192, 150–155. https://doi.org/10.1016/j.jenvman.2017.01.064; Mazilu, I., Ciotonea, C., Chirieac, A., Dragoi, B., Catrinescu, C., Ungureanu, A., Petit, S., Royer, S., & Dumitriu, E. (2017). Synthesis of highly dispersed iron species within mesoporous (Al-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous and Mesoporous Materials, 241, 326–337. https://doi.org/10.1016/j.micromeso.2016.12.024; Meneses Madroñero, P. S. (2022). Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta. Universidad Nacional de Colombia.; Ministerio de Ambiente y Desarrollo Sostenible. (2004a). Plan de manejo de aguas residuales municipales lineamientos para tasa retributiva y plan de saneamiento y manejo de vertimientos. 1–19.; Ministerio de Ambiente y Desarrollo Sostenible. (2004b). Plan nacional de manejo de aguas residuales en Colombia. Vasa, 1–36. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf; Ministerio de Ambiente y Desarrollo Sostenible. (2015). Resolución 615 de 2015 Vertimientos. 62.; Monge, S., Torres, A., Ribeiro, R., Silva, A., & Bengoa, C. (2018). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriles. http://triton-cyted.com/wp-content/uploads/2019/04/Manual-sobre-oxidaciones-avanzadas.pdf; Morató, J., Carneiro, A. P., Subirana, A., Vidal, G., Jarpa, M., Plaza de los Reyes, C., Belmonte, M., Mariangel, L., & Peñuela, G. (2016). Manual de Tecnologías Sostenibles en Tratamiento de Aguas (Red ALFA TECSPAR (Ed.); Vol. 4, Issue 1).; Nguyen, L. H., Nguyen, X. H., Van Thai, N., Le, H. N., Thi, T. T. B., Thi, K. T. B., Nguyen, H. M., Le, M. T., Van, H. T., & Nguyet, D. T. A. (2022). Promoted degradation of ofloxacin by ozone integrated with Fenton-like process using iron-containing waste mineral enriched by magnetic composite as heterogeneous catalyst. Journal of Water Process Engineering, 49(June), 103000. https://doi.org/10.1016/j.jwpe.2022.103000; Nie, X., Li, G., Li, S., Luo, Y., Luo, W., Wan, Q., & An, T. (2022). Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters. Applied Catalysis B: Environmental, 300(June 2021), 120734. https://doi.org/10.1016/j.apcatb.2021.120734; Nosaka, Y., & Nosaka, A. Y. (2017). Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117(17), 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161; Noyola, A., Morgan, J., & Guereca, L. (2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales. Guía de apoyo para ciudades pequeñas y medianas. In UNAM (Ed.), Selección de tecnologías para el tratamiento de aguas residuales municipales. http://es.slideshare.net/EdwinMamaniVilcapaza/seleccion-de-tecnologias-para-el-tratamiento-de-aguas-residuales-municipales; Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E., & Cinar, O. (2013). Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 146, 135–143. https://doi.org/10.1016/j.biortech.2013.07.066; P, K. (2016). Degradation of Toxic Dyes- A Review. International Journal of Pure & Applied Bioscience, 4(5), 81–89. https://doi.org/10.18782/2320-7051.2400; Payá, J. mateo. (2020). Tratamiento de emisiones de COVs en la industria química farmacéutica mediante oxidación térmica regenerativa [Universidad de Murcia]. http://nadir.uc3m.es/alejandro/phd/thesisFinal.pdf%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Universidad+de+murcia#0; PBL Netherlands Environmental Assessment Agency. (2018). The geography of future water challenges. PBL Netherlands Environmental Assessment Agency, 47(3 Pt 1), 699–702. https://doi.org/10.2466/pr0.1980.47.3.699; Pérez Bedoya, J. S. (2017). Valorización De Un Mineral De Hierro Colombiano Como Catalizador Para La Síntesis Fischer-Tropsch. Universidad de Antioquia.; Quadrado, R. F. N., & Fajardo, A. R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177(June), 443–450. https://doi.org/10.1016/j.carbpol.2017.08.083; Quattrocchi, O. A., Abelaira de Andrizzi, S. I., & Laba, R. F. (1992). Introducción a la HPLC. Aplicación y Práctica (1st ed.). Gráficas Farro S.A.; Rai, P., Gautam, R. K., Banerjee, S., Rawat, V., & Chattopadhyaya, M. C. (2015). Synthesis and characterization of a novel SnFe2O4@activated carbon magnetic nanocomposite and its effectiveness in the removal of crystal violet from aqueous solution. Journal of Environmental Chemical Engineering, 3(4), 2281–2291. https://doi.org/10.1016/j.jece.2015.08.017; Ramos, M. D. N., Santana, C. S., Velloso, C. C. V., da Silva, A. H. M., Magalhães, F., & Aguiar, A. (2021). A review on the treatment of textile industry effluents through Fenton processes. Process Safety and Environmental Protection, 155, 366–386. https://doi.org/10.1016/j.psep.2021.09.029; Rodriguez Férnandez-Alba, A., Letón García, P., Rosal García, R., Dorado Valiño, M., Villar Fernández, S., & Sanz García, J. M. (2006). Tratamientos Avanzados De Aguas Residuales Industriales. Citme, 6,8. 13, 30, 34.; Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by Powders and Porous Solids (2nd ed., Vol. 1). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-598920-6.X5000-3; Ryder, G. (2017). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos, 2017: Aguas residuales: el recurso no explotado. In Paris : UNESCO, 2017 (Vol. 3, p. 202). http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_composicion.pdf; Sahoo, C., Gupta, A. K., & Pal, A. (2005). Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2. Dyes and Pigments, 66(3), 189–196. https://doi.org/10.1016/j.dyepig.2004.09.003; Saini, B., & Dey, A. (2022). Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Materials Today: Proceedings, 61, 342–350. https://doi.org/10.1016/j.matpr.2021.10.060; Sánchez, A. (2013). Síntesis y caracterización de catalizadores para la oxidación húmeda catalítica de colorantes y aguas residuales. 223. https://eprints.ucm.es/21676/1/T34519.pdf; Sanz Tejedor, A. (2020). Química Orgánica Industrial. Retrieved December 3, 2020, from https://www.eii.uva.es/organica/qoi/tema-11.php; Saravan, R. S., Muthukumaran, M., Mubashera, S. M., Abinaya, M., Prasath, P. V., Parthiban, R., Mohammad, F., Oh, W. C., & Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik, 207(December 2019), 164428. https://doi.org/10.1016/j.ijleo.2020.164428; Segura Triana, L. E. (2007). Estudio de Antecedentes sobre la contaminación del recurso hidrico en Colombia. In Escuela Superior de Administración Pública (ESAP).; Singh, K. P., Gupta, S., Singh, A. K., & Sinha, S. (2011). Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials, 186(2–3), 1462–1473. https://doi.org/10.1016/j.jhazmat.2010.12.032; Tackling global water pollution %7C UNEP - UN Environment Programme. (n.d.). Retrieved September 16, 2020, from https://www.unenvironment.org/explore-topics/water/what-we-do/tackling-global-water-pollution; Tamburini, D., Shimada, C. M., & McCarthy, B. (2021). The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” (1893) by high performance liquid chromatography - Diode array detector - Mass spectrometry (HPLC-DAD-MS). Dyes and Pigments, 190(March), 109286. https://doi.org/10.1016/j.dyepig.2021.109286; Tan, X. fei, Liu, Y. guo, Gu, Y. ling, Liu, S. bo, Zeng, G. ming, Cai, X., Hu, X. jiang, Wang, H., Liu, S. mian, & Jiang, L. hua. (2016). Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal. Journal of Environmental Management, 184, 85–93. https://doi.org/10.1016/j.jenvman.2016.08.070; Testolin, R. C., Mater, L., Sanches-Simões, E., Dal Conti-Lampert, A., Corrêa, A. X. R., Groth, M. L., Oliveira-Carneiro, M., & Radetski, C. M. (2020). Comparison of the mineralization and biodegradation efficiency of the Fenton reaction and Ozone in the treatment of crude petroleum-contaminated water. Journal of Environmental Chemical Engineering, 8(5), 104265. https://doi.org/10.1016/j.jece.2020.104265; Thiam, A., Salazar, R., Brillas, E., & Sirés, I. (2020). In-situ dosage of Fe2+ catalyst using natural pyrite for thiamphenicol mineralization by photoelectro-Fenton process. Journal of Environmental Management, 270(May). https://doi.org/10.1016/j.jenvman.2020.110835; Thomas, N., Dionysiou, D. D., & Pillai, S. C. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404(PB), 124082. https://doi.org/10.1016/j.jhazmat.2020.124082; UNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (p. 215). http://www.unwater.org/publications/world-water-development-report-2019/; Vega Mora, L. (2015). PROGRAMA INTEGRAL DE GESTIÓN AMBIENTAL SECTORIAL-PGAS SUBSECTOR TEXTIL.; Villegas- Guzman, P., Giannakis, S., Rtimi, S., Grandjean, D., Bensimon, M., de Alencastro, L. F., Torres-Palma, R., & Pulgarin, C. (2017). A green solar photo-Fenton process for the elimination of bacteria and micropollutants in municipal wastewater treatment using mineral iron and natural organic acids. In Applied Catalysis B: Environmental (Vol. 219, pp. 538–549). https://doi.org/10.1016/j.apcatb.2017.07.066; Wahi, N., Joseph, C., Tawie, R., & Ikau, R. (2016). Critical Review on Construction Waste Control Practices: Legislative and Waste Management Perspective. Procedia - Social and Behavioral Sciences, 224(August 2015), 276–283. https://doi.org/10.1016/j.sbspro.2016.05.460; Wang, A., Wang, Y., Walter, E. D., Kukkadapu, R. K., Guo, Y., Lu, G., Weber, R. S., Wang, Y., Peden, C. H. F., & Gao, F. (2018). Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts. Journal of Catalysis, 358, 199–210. https://doi.org/10.1016/j.jcat.2017.12.011; Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016; Weissermel, K., & Arpe, H.-J. (1997). Industrial Organic Chemistry (Third). VCH A Wiley company.; Xu, Y., Chen, X. Y., Li, Y., Ge, F., & Zhu, R. L. (2016). Quantitative structure-property relationship (QSPR) study for the degradation of dye wastewater by Mo-Zn-Al-O catalyst. Journal of Molecular Liquids, 215, 461–466. https://doi.org/10.1016/j.molliq.2016.01.029; Yao, G., Wei, Y., Gui, K., & Ling, X. (2022). Catalytic performance and reaction mechanisms of NO removal with NH3 at low and medium temperatures on Mn-W-Sb modified siderite catalysts. Journal of Environmental Sciences (China), 115(x), 126–139. https://doi.org/10.1016/j.jes.2021.06.029; Yin, J., Cai, J., Yin, C., Gao, L., & Zhou, J. (2016). Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method. Journal of Environmental Chemical Engineering, 4(1), 958–964. https://doi.org/10.1016/j.jece.2016.01.001; Yu, J., Zou, J., Xu, P., & He, Q. (2020). Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. In Journal of Cleaner Production (Vol. 251). https://doi.org/10.1016/j.jclepro.2019.119744; Zhang, M., Dong, H., Zhao, L., Wang, D. xi, & Meng, D. (2019). A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 670, 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180; Zhang, Y., Zhang, Z., Yan, Q., & Wang, Q. (2016). Synthesis, characterization, and catalytic activity of alkali metal molybdate/α-MoO3 hybrids as highly efficient catalytic wet air oxidation catalysts. Applied Catalysis A: General, 511, 47–58. https://doi.org/10.1016/j.apcata.2015.11.035; Zhu, Y., Zhu, R., Xi, Y., Zhu, J., Zhu, G., & He, H. (2019). Strategies for enhancing the heterogeneous fenton catalytic reactivity: A review. Applied Catalysis B: Environmental, 255(January). https://doi.org/10.1016/j.apcatb.2019.05.041; Zollinger, H. (2004). Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. By Heinrich Zollinger. Angewandte Chemie International Edition, 43(40), 5291–5292. https://doi.org/10.1002/anie.200385122; https://repositorio.unal.edu.co/handle/unal/83915; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  17. 17
    Dissertation/ Thesis
  18. 18
  19. 19
    Academic Journal

    وصف الملف: application/pdf

    Relation: DEL NERO, Jordan, et al. Dye incorporation in polyphosphate gels: synthesis and theoretical calculations. Materials Research, São Carlos, v. 6, n. 3, p. 335-340, abr./jun. 2003. Disponível em: . Acesso em: 27 set. 2013. .; http://repositorio.ufpa.br/jspui/handle/2011/4292

  20. 20