يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"Copolimeros en bloque"', وقت الاستعلام: 0.46s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Di Mauro, Primiano Pio

    المساهمون: University/Department: Universitat Ramon Llull. IQS - Bioenginyeria

    Thesis Advisors: Borrós i Gómez, Salvador

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Gámez Pérez, José

    المساهمون: University/Department: Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica

    Thesis Advisors: jose.gamez@upc.edu, Maspoch, M. Ll. (Maria Lluïsa)

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis
  4. 4
    Dissertation/ Thesis
  5. 5
    Dissertation/ Thesis
  6. 6
    Dissertation/ Thesis
  7. 7
    Dissertation/ Thesis
  8. 8
    Dissertation/ Thesis

    Thesis Advisors: Sández Macho, María Isabel, 1950-, Alvarez Lorenzo, Carmen, 1970-, Concheiro Nine, Angel, 1951-

    المصدر: GONZÁLEZ LÓPEZ, Jaime: «Copolímeros bloque de poli(óxido de etileno) y poli(óxido de propileno) lineales y en estrella: propiedades de agregación y aplicaciones en solubilización micelar de fármacos». Santiago de Compostela: Universidade. Servizo de Publicacións e Intercambio Científico, 2010. ISBN 978-84-9887-378-8
    978-84-9887-378-8

  9. 9
    Academic Journal

    المؤلفون: Arias Patrón, Elsa Ruth

    المساهمون: Pérez Pérez, León Darío, Grupo de Investigación en Macromoléculas

    وصف الملف: application/pdf

    Relation: [2] D. M. Kamiński, “Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments,” Eur. Biophys. J., vol. 43, no. 10–11, pp. 453–467, 2014.; [3] M. P. Haynes, P. L. G. Chong, H. R. Buckley, and R. A. Pieringer, “Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells,” Biochemistry, vol. 35, no. 24, pp. 7983–7992, 1996.; [4] Z. Tang et al., “Polymeric nanostructured materials for biomedical applications,” Prog. Polym. Sci., vol. 60, pp. 86–128, 2016.; [5] G. Vandermeulen, L. Rouxhet, A. Arien, M. E. Brewster, and V. Préat, “Encapsulation of amphotericin B in poly(ethylene glycol)-block-poly(ε- caprolactone-co-trimethylenecarbonate) polymeric micelles,” Int. J. Pharm., vol. 309, no. 1–2, pp. 234–240, 2006.; [1] R. Stoodley, K. M. Wasan, and D. Bizzotto, “Fluorescence of amphotericin B-deoxycholate (Fungizone) monomers and aggregates and the effect of heat-treatment,” Langmuir, vol. 23, no. 17, pp. 8718–8725, 2007.; [6] T. Ren et al., “Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles,” J. Biomater. Sci. Polym. Ed., vol. 20, no. 10, pp. 1369–1380, 2009.; [7] J. C. Villamil, C. M. Parra-Giraldo, and L. D. Pérez, “Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol,” Colloids Surfaces A Physicochem. Eng. Asp., 2019.; [8] Y. J. Rodriguez, L. F. Quejada, J. C. Villamil, Y. Baena, C. M. Parra-giraldo, and L. D. Perez, “Development of Amphotericin B Micellar Formulations Based on Copolymers of Poly ( ethylene glycol ) and Poly ( ε -caprolactone ) Conjugated with Retinol.”; [9] C. Alvarez, D. H. Shin, and G. S. Kwon, “Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B,” Pharm. Res., vol. 33, no. 9, pp. 2098–2106, 2016.; [10] R. Gref and A. Domb, “The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres,” Adv. Drug Deliv. Rev., vol. 16, no. 95, pp. 215–233, 1995.; [11] R. Herbrecht, S. Natarajan-Amé, Y. Nivoix, and V. Letscher-Bru, “The lipid formulations of amphotericin B.,” Expert Opin. Pharmacother., vol. 4, no. 8, pp. 1277–1287, 2003.; [12] A. del Palacio, J. Villar, and A. Alhambra, “Epidemiología de las candidiasis invasoras en población pediátrica y adulta,” Rev. Iberoam. Micol., vol. 26, no. 1, pp. 2–7, 2009.; [13] J. Pemán, “Epidemiología general de la enfermedad fúngica invasora,” Enfermedades Infecc. y Microbiol. clínica, vol. 30, no. 2, pp. 90–8, 2012.; [14] M. Mesquita Da Costa et al., “Cryptococcosis, A Risk for Immunocompromised and Immunocompetent Individuals,” Open Epidemiol. J., vol. 6, pp. 9–17, 2013.; [15] J. Lizarazo, P. Escandón, C. I. Agudelo, and E. Castañeda, “Cryptococcosis in Colombian children and literature review,” Mem. Inst. Oswaldo Cruz, vol. 109, no. 6, pp. 797–804, 2014.; [16] M. A. Pfaller and D. J. Diekema, “Epidemiology of invasive candidiasis: A persistent public health problem,” Clin. Microbiol. Rev., vol. 20, no. 1, pp. 133–163, 2007.; [17] A. Lemke, A. F. Kiderlen, and O. Kayser, “Amphotericin B,” Appl. Microbiol. Biotechnol., vol. 68, no. 2, pp. 151–162, 2005.; [18] F. Sangalli-Leite et al., “Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst,” Microbes Infect., vol. 13, no. 5, pp. 457–467, 2011.; [19] T. M. Anderson et al., “Amphotericin forms an extramembranous and fungicidal sterol sponge,” Nat. Chem. Biol., vol. 10, no. 5, pp. 400–406, 2014.; [20] P. Laskar, S. Samanta, S. K. Ghosh, and J. Dey, “In vitro evaluation of pH-sensitive cholesterol-containing stable polymeric micelles for delivery of camptothecin,” J. Colloid Interface Sci., vol. 430, pp. 305–314, 2014.; [21] C. Luengo-Alonso et al., “A novel performing PEG-cholane nanoformulation for Amphotericin B delivery,” Int. J. Pharm., vol. 495, no. 1, pp. 41–51, 2015.; [22] Y. Kim, M. H. Pourgholami, D. L. Morris, and M. H. Stenzel, “Effect of cross-linking on the performance of micelles as drug delivery carriers: A cell uptake study,” Biomacromolecules, vol. 13, no. 3, pp. 814–825, 2012.; [23] J. Miñones, J. Miñones, J. M. Rodríguez-Patino, O. Conde, and E. Iribarnegaray, “Miscibility of amphotericin B - Dipalmitoyl phosphatidyl serine mixed monolayers spread on the air/water interface,” J. Phys. Chem. B, vol. 107, no. 17, pp. 4189–4195, 2003.; [24] R. Pérez, S. Villanueva, and R. Cosío, “El aceite de aguacate y sus propiedades nutricionales,” e-Gnosis, vol. 3, pp. 0–11, 2005.; [25] A. E. Silva, G. Barratt, M. Cheŕon, and E. S. T. Egito, “Development of oil-in-water microemulsions for the oral delivery of amphotericin B,” Int. J. Pharm., vol. 454, no. 2, pp. 641–648, 2013.; [26] P. Wasko, R. Luchowski, K. Tutaj, W. Grudzinski, P. Adamkiewicz, and W. I. Gruszecki, “Toward understanding of toxic side effects of a polyene antibiotic amphotericin B: Fluorescence spectroscopy reveals widespread formation of the specific supramolecular structures of the drug,” Mol. Pharm., vol. 9, no. 5, pp. 1511–1520, 2012.; [27] I. L. Diaz, C. Parra, M. Linarez, and L. D. Perez, “Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B,” AAPS PharmSciTech, vol. 16, no. 5, pp. 1069–1078, 2015.; [28] E. De Pablo, P. Ballesteros, and D. R. Serrano, “Unmet clinical needs in the treatment of systemic fungal infections: the role of amphotericin B and drug targeting,” Int. J. Pharm., 2017.; [29] J. Zielińska, M. Wieczór, T. Bączek, M. Gruszecki, and J. Czub, “Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail,” Nat. Publ. Gr., no. January, pp. 1–11, 2016.; [30] J. P. Rao and K. E. Geckeler, “Polymer nanoparticles: Preparation techniques and size-control parameters,” Prog. Polym. Sci., vol. 36, no. 7, pp. 887–913, 2011.; [31] M. C. Chen, K. Sonaje, K. J. Chen, and H. W. Sung, “A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery,” Biomaterials, vol. 32, no. 36, pp. 9826–9838, 2011.; [32] S. B. H. Fessi, F. Puisieux, J.Ph. Devissaguet, N. Ammoury, “Nanocapsule formation by interfacial polymer deposition following solvent displacement,” Int. J. Pharm., vol. 55, pp. R1–R4, 1989.; [33] C. C.-G. E. Marin, M. Briceño, “Critical evaluation of biodegradable polymers used in nanodrugs,” Int. J. Nanomedicine, vol. 8, pp. 3071–3091, 2013.; [34] D. J. Mc Carthy, M. Malhotra, A. M. O’Mahony, J. F. Cryan, and C. M. O’Driscoll, “Nanoparticles and the blood-brain barrier: Advancing from in-vitro models towards therapeutic significance,” Pharm. Res., vol. 32, no. 4, pp. 1161–1185, 2015.; [35] M. C. Urrejola et al., “Sistemas de Nanopartículas Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; [36] Y. Mai and A. Eisenberg, “Self-assembly of block copolymers,” Chem. Soc. Rev., vol. 41, no. 18, pp. 5969–5985, 2012.; [37] G. Rojas, B. Vallejo, and J. Perilla, “Los biopolímeros como materiales para el desarrollo de productos en aplicaciones farmacéuticas y de uso biomédico,” Rev. Ing. E Investig., vol. 28, no. 1, pp. 57–71, 2008.; [38] I. Katime, V. Sáez, E. Hernáez, and L. Sanz, “Liberación controlada de fármacos. micropartículas,” Rev. Iberoam. Polímeros, vol. 5, no. 2, pp. 87–101, 2004.; [39] D. Ramos, M. Gómez, D. Fernández, and L. Nuñez, “Microesferas biodegradables de liberación controlada para administración parenteral,” Rev. Cuba. Farm., vol. 34, no. 1, pp. 70–77, 2000.; [40] M. Barzegar-Jalali et al., “Kinetic analysis of drug release from nanoparticles,” J. Pharm. Pharm. Sci., vol. 11, no. 1, pp. 167–177, 2008.; [41] G. H. Son, B. J. Lee, and C. W. Cho, “Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles,” J. Pharm. Investig., vol. 47, no. 4, pp. 287–296, 2017.; [42] S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, “Kinetic modeling on drug release from controlled drug delivery systems,” Acta Pol. Pharm. - Drug Res., vol. 67, no. 3, pp. 217–223, 2010.; [43] A. R. Voltan, G. Quindós, K. P. M. Alarcón, A. M. Fusco-Almeida, M. J. S. Mendes-Giannini, and M. Chorilli, “Fungal diseases: Could nanostructured drug delivery systems be a novel paradigm for therapy?,” Int. J. Nanomedicine, vol. 11, pp. 3715–3730, 2016.; [44] B. Gaba, M. Fazil, A. Ali, S. Baboota, J. K. Sahni, and J. Ali, “Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration,” Drug Deliv., vol. 22, no. 6, pp. 691–700, 2015.; [45] M. Liu, M. Chen, and Z. Yang, “Design of amphotericin B oral formulation for antifungal therapy,” Drug Deliv., vol. 24, no. 1, pp. 1–9, 2017.; [46] M. B. Chaudhari, P. P. Desai, P. A. Patel, and V. B. Patravale, “Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module,” Drug Deliv. Transl. Res., vol. 6, no. 4, pp. 354–364, 2016.; [47] Z. Yang et al., “Development of Amphotericin B-Loaded Cubosomes Through the SolEmuls Technology for Enhancing the Oral Bioavailability,” AAPS PharmSciTech, vol. 13, no. 4, pp. 1483–1491, 2012.; [48] M. Benincasa, S. Pacor, W. Wu, M. Prato, A. Bianco, and R. Gennaro, “Antifungal activity of amphotericin B conjugated to carbon nanotubes,” ACS Nano, vol. 5, no. 1, pp. 199–208, 2011.; [49] J. L. Italia, M. M. Yahya, D. Singh, and M. N. V. Ravi Kumar, “Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous fungizone®,” Pharm. Res., vol. 26, no. 6, pp. 1324–1331, 2009.; [50] X. Zhang et al., “Preparation and self-assembly of amphiphilic triblock copolymers with polyrotaxane as a middle block and their application as carrier for the controlled release of Amphotericin B,” Polymer (Guildf)., vol. 50, no. 18, pp. 4343–4351, 2009.; [51] M. L. Adams, D. R. Andes, and G. S. Kwon, “Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity,” Biomacromolecules, vol. 4, no. 3, pp. 750–757, 2003.; [52] X. Tang et al., “Enhanced Antifungal Activity by Ab-Modified Amphotericin B-Loaded Nanoparticles Using a pH-Responsive Block Copolymer,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–11, 2015.; [53] Y. Wang et al., “Biodegradable functional polycarbonate micelles for controlled release of amphotericin B,” Acta Biomater., vol. 46, pp. 211–220, 2016.; [54] C. H. Wang, W. T. Wang, and G. H. Hsiue, “Development of polyion complex micelles for encapsulating and delivering amphotericin B,” Biomaterials, vol. 30, no. 19, pp. 3352–3358, 2009.; [56] M. J. Paquet, I. Fournier, J. Barwicz, P. Tancrède, and M. Auger, “The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by2H NMR,” Chem. Phys. Lipids, vol. 119, no. 1–2, pp. 1–11, 2002.; [57] J. C. Villamil, C. M. Parra-Giraldo, and L. D. Pérez, “Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 572, no. March, pp. 79–87, 2019.; [58] G. Ramage and B. L. Wickes, “Standardized Method for In Vitro Antifungal Susceptibility Testing of,” Society, vol. 45, no. 9, pp. 2475–2479, 2001.; [59] P. B. Fai and A. Grant, “A rapid resazurin bioassay for assessing the toxicity of fungicides,” Chemosphere, vol. 74, no. 9, pp. 1165–1170, 2009.; [60] E. M. Moctezuma, “La Teoría de Flory – Huggins en la Ingeniería de Soluciones y Mezclas de Polímeros,” ContactoS, vol. 68, pp. 54–62, 2008.; [61] G. Odian, Principles of Polymerization, Cuarta Edi., vol. 37, no. 3. Staten Island, New York: John Wiley & Sons, Inc., 2004.; [62] A. Angarita, “Síntesis de copolímeros dibloque biodegradables conjugados con biomoléculas como plataforma de administración de fármacos,” Universidad Nacional de Colombia, 2020.; [63] A. Lavasanifar, J. Samuel, and G. S. Kwon, “Poly(ethylene oxide)-block-poly(,” Adv. Drug Deliv. Rev., vol. 54, pp. 169–190, 2002.; [64] C. M. Hansen, “50 Years with solubility parameters - Past and future,” Prog. Org. Coatings, vol. 51, no. 1, pp. 77–84, 2004.; [65] K. K. Gill, S. Nazzal, and A. Kaddoumi, “Paclitaxel loaded PEG5000-DSPE micelles as pulmonary delivery platform: Formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation,” Eur. J. Pharm. Biopharm., vol. 79, no. 2, pp. 276–284, 2011.; [66] T. Elzein, H. Awada, M. Nasser-eddine, C. Delaite, and M. Brogly, “A model of chain folding in Polycaprolactone-b-Polymethyl Methacrylate diblock copolymers,” vol. 483, pp. 388–395, 2005.; [67] A. Azam, K. E. Laflin, M. Jamal, R. Fernandes, and D. H. Gracias, “Self-folding micropatterned polymeric containers,” pp. 51–58, 2011.; [68] A. K. Mohanty, U. Jana, P. K. Manna, and G. P. Mohanta, “Synthesis and evaluation of MePEG-PCL diblock copolymers: surface properties and controlled release behavior,” Prog. Biomater., vol. 4, no. 2–4, pp. 89–100, 2015.; [69] G. Singhvi and M. Singh, “Review: In-vitro Drug Release Characterisation Models,” Int. J. Pharm. Stud. Res., vol. 2, no. 1, pp. 77–84, 2011.; [70] D. R. Paul, “Elaborations on the Higuchi model for drug delivery,” Int. J. Pharm., vol. 418, no. 1, pp. 13–17, 2011.; [71] J. Balcerzak and M. Mucha, “Analysis of Model Drug Release Kinetics from Complex Matrices of Polylactide-Chitosane,” Prog. Chem. Appl. Chitin Its Deriv., vol. 15, pp. 117–126, 2010.; [72] M. Pérez Guzmán, Y. Orobio Lerma, and Y. Baena Aristizábal, “Comparative study for in vitro release of metformin of two immediate-release multisource products, marketed in Colombia,” Rev. Colomb. Ciencias Químico - Farm., vol. 42, no. 2, pp. 169–189, 2013.; [73] R. Espada, S. Valdespina, C. Alfonso, G. Rivas, M. P. Ballesteros, and J. J. Torrado, “Effect of aggregation state on the toxicity of different amphotericin B preparations,” Int. J. Pharm., vol. 361, no. 1–2, pp. 64–69, 2008.; [74] Y. Rodríguez Molina and L. Pérez Pérez, “Aproximaciones al diseño de copolímeros anfifílicos con potencial aplicación en la encapsulación y liberación de Anfotericina B,” Universidad Nacional de Colombia, 2019.; [75] J. Xie, S. Singh-Babak, and L. Cowen, “Minimum Inhibitory Concentration (MIC) Assay for Antifungal Drugs,” Bio-Protocol, vol. 2, no. 20, pp. 1–7, 2012.; https://repositorio.unal.edu.co/handle/unal/78067

  10. 10
    Academic Journal
  11. 11
    Dissertation/ Thesis
  12. 12

    المؤلفون: Grillo, Damián Alexis

    المساهمون: Ferraro, Marta B., Mocskos, Esteban E.

    المصدر: Biblioteca Digital (UBA-FCEN)
    Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
    instacron:UBA-FCEN

    وصف الملف: application/pdf

  13. 13
  14. 14
    Academic Journal
  15. 15
    Dissertation/ Thesis

    المؤلفون: Gámez Pérez, José

    المساهمون: Maspoch, M. Ll. (Maria Lluïsa), Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 620

    وصف الملف: application/pdf

  16. 16
    Dissertation/ Thesis

    المؤلفون: Gámez Pérez, José

    المساهمون: Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, Maspoch Rulduà, Mª Lluïsa

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Relation: Gámez Pérez, J. "Relación estructura-propieddes en placas y láminas de polipropileno y copolímeros en bloque etileno-propileno obtenidas por diferentes procesos de transformación.". Tesi doctoral, UPC, Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, 2006.; http://www.tdx.cat/TDX-0221107-121800; http://hdl.handle.net/2117/93363; http://hdl.handle.net/10803/6049

  17. 17
    Dissertation/ Thesis

    المؤلفون: González López, Jaime

    المساهمون: Sández Macho, María Isabel, Álvarez Lorenzo, Carmen, Concheiro Nine, Ángel

    وصف الملف: application/pdf

    Relation: GONZÁLEZ LÓPEZ, Jaime: «Copolímeros bloque de poli(óxido de etileno) y poli(óxido de propileno) lineales y en estrella: propiedades de agregación y aplicaciones en solubilización micelar de fármacos». Santiago de Compostela: Universidade. Servizo de Publicacións e Intercambio Científico, 2010. ISBN 978-84-9887-378-8; http://hdl.handle.net/10347/2807

  18. 18
    Dissertation/ Thesis