يعرض 1 - 20 نتائج من 46 نتيجة بحث عن '"Contaminación de suelo"', وقت الاستعلام: 0.76s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Cuban Journal of Forest Science; Vol. 12 No. 1 (2024): January-April; e836 ; Revista Cubana de Ciencias Forestales; Vol. 12 Núm. 1 (2024): enero-abril; e836 ; Jornal Cubano de Ciências Florestais; Vol. 12 N.º 1 (2024): Janeiro-abril; e836 ; 2310-3469

    وصف الملف: application/pdf; text/xml

  3. 3
    Book
  4. 4
    Academic Journal
  5. 5
    Book
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal

    المصدر: Acta Biológica Colombiana; Vol. 24 Núm. 2 (2019); 343-353 ; Acta Biológica Colombiana; Vol. 24 No. 2 (2019); 343-353 ; 1900-1649 ; 0120-548X

    وصف الملف: application/pdf; application/xml

    Relation: https://revistas.unal.edu.co/index.php/actabiol/article/view/64771/pdf; https://revistas.unal.edu.co/index.php/actabiol/article/view/64771/72266; Adam G, Duncan H. The effect of diesel fuel on common vetch (Vicia sativa L.) plants. Environ Geochem Health. 2003;25(1):123-130. Doi: http://dx.doi.org/10.1023/A:1021228327540; Adenipekun CO, Oyetunji OJ, Kassim LS. Effect of spent engine oil on the growth parameters and chlorophyll content of Corchorus olitorius Linn. Environ. 2008;28(4):446-450. Doi: https://dx.doi.org/10.1007/s10669-008-9165-5; Akutam A, Pappoe ANM, Armah FA, Enu-Kwesi L. Phytoremediation potential of indigenous Ghanaian grass and grass-like species grown on used motor oil contaminated soils. J Ecol Environ. 2014;37(2):41-51. Doi: https://dx.doi.org/10.5141/ecoenv.2014.006; Alejandro-Córdova A, Rivera-Cruz MC, Hernández-Cuevas LV, Alarcón A, Trujillo-Narcía A, García-de la Cruz R. Responses of arbuscular mycorrhizal fungi and grass Leersia hexandra Swartz exposed to soil with crude oil. Water Air Soil Pollut. 2017;228(65):1-12. Doi: https://dx.doi.org/10.1007/s11270-017-3247-2; Alarcón A, Davies FT, Autenrieth, RL, Zuberer DA. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhanced phytoremediation of petroleum-contaminated soil. Int J Phytorem. 2008;10(4):251-263. Doi: https://dx.doi.org/10.1080/15226510802096002; Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci BioTechnol. 2004;3(1):71-90. Doi: https://dx.doi.org/10.1023/B:RESB.0000040059.70899.3d; Barea JM. Biología de la rizosfera. Inv Ciencia. 1998;256:74-81.; Baruah P, Saikia RR, Baruah PP, Deka S. Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environ Sci Pollut Res Int. 2014;21(21):12530-12538. Doi: https://dx.doi.org/10.1007/s11356-014-3195-y; Bento RA, Saggin-Júnior OJ, Pitard RM, Straliotto R, Ribeiro SEM, De Lucena-Tavares SR et al. Selection of leguminous trees associated with symbiont microorganisms for phytoremediation of petroleum-contaminated soil. Water Air Soil Pollut. 2012;223(9):5659-5671. Doi: https://dx.doi.org/10.1007/s11270-012-1305-3; Binet P, Portal JM, Leyval C. Application of GC±MS to the study of anthracene disappearance in the rhizosphere of ryegrass. Org Geochem. 2001;32(2):217-222. Doi: https://dx.doi.org/10.1016/S0146-6380(00)00168-6; Cabello MN. Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol Ecol. 1997;22(3):233-236. Doi: https://dx.doi.org/10.1111/j.1574-6941.1997.tb00375.x; Cabello MN. Mycorrhizas and hydrocarbons. In: Fungi in Bioremediation, Gadd GM Editors. Surrey: British Mycological Society; 2001; p. 456-471.; Castillo C, Astroza I, Borie F, Rubio R. Efecto de cultivos hospederos y no hospederos sobre propágulos micorrízicos arbusculares. Rev Cienc Suelo Nutr Veg. 2008;8(1):37-54. Doi: https://dx.doi.org/10.4067/S0718-27912008000100004; Catriona MO, Macinnis-Ng P, Ralph J. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni. Mar Pollut Bull. 2003;46(11):1395-1407. Doi: https://dx.doi.org/10.1016/S0025-326X(03)00290-X; Châineau CH, Yepremian C, Vidalie JF, Ducreux J, Ballerini D. Bioremediation of a crude oil-polluted soil: biodegradation, leaching and toxicity assessments. Water Air Soil Poll. 2003;144(1):419-440. Doi: https://dx.doi.org/10.1023/A:1022935600698; Chibuike GU. Use of mycorrhiza in soil remediation: A review. Sci Res Essays. 2013;8(35):1679-1687. Doi: https://dx.doi.org/10.5897/SRE2013.5605; Chikere CB, Okpokwasili GC, Chikere BO. Bacterial diversity in a tropical crude oil-polluted soil undergoing bioremediation. African J Biotechnol. 2009;8(11):2535-2540.; Dai Y, Shen Z, Liu Y, Wanga L, Hannaway D, Lu H. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot. 2009;65(2-3):177-182. Doi: https://dx.doi.org/10.1016/j.envexpbot.2008.12.008; Dajoz R, Leiva-Morales MJ. Tratado de ecología. 2a ed. Madrid: Mundi Prensa; 2002. 600 p.; De Farias V, Maranho LT, Carvalho De Vasconcelos E, Da Silva Carvalho FA, Lacerda LG, Menegassi-Azevedo JÁ et al. Phytodegradation potential of Erythrina crista-galli L., Fabaceae, in petroleum-contaminated soil. Appl Biochem Biotechnol. 2009; 157(1):10-22. Doi: https://dx.doi.org/10.1007/s12010-009-8531-1; De Ridder-Duine AS, Kowalchuk GA, Klein-Gunnewiek PJA, Gunnewiek K, Smant W, Van Veen JA et al. Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem. 2005;37(2):349-357. Doi: https://dx.doi.org/10.1016/j.soilbio.2004.08.005; Delille D, Pelletier E, Delille B, Coulon F. Effect of nutrients enrichment on the bacterial assemblage of Antarctic soils contaminated by diesel or crude oil. Polar Record. 2003;39(4):1-10. Doi: https://dx.doi.org/10.1017/S0032247402002863; Dellagnezze BM, Vasconcelos SG, Lopes ML, Ferreira DD, Limache EEG, Pantaroto VS et al. Bioremediation potential of microorganisms derived from petroleum reservoirs. Mar Pollut Bull. 2014;89(1-2):191-200. Doi: https://dx.doi.org/10.1016/j.marpolbul.2014.10.003; Dere S, Günes T, Sivaci R. Spectrophotometric determination of chlorophyll -a, b and total carotenoid contents of some algae species using different solvents. Tr J Bot. 1998;22:13-17.; Driai S, Verdin A, Laruelle F, Beddiar A, Sahraoui AL-H. Is the arbuscular mycorrhizal fungus Rhizophagus irregularis able to fulfil its life cycle in the presence of diesel pollution? Int Biodeter Biodegr. 2015;105:58-65. Doi: https://doi.org/10.1016/j.ibiod.2015.08.012; Essien J, Udoukpo F, Etesin U, Etuk H. Activities of hydrocarbon-utilizing and diazotrophic bacteria in crude oil impacted mangrove sediments of the Qua Iboe Estuary, Nigeria. Geosyst Engineer. 2013;16(2):165-174. Doi: http://dx.doi.org/10.1080/12269328.2013.805026; Ferrera-Cerrato R, Alarcón A. Rizosfera: Interacción suelo, planta y microorganismos. In: Ecología de la raíz, Fuentes-Dávila G, Ferrera-Cerrato R, editor(s). 2a ed. Ciudad Obregón: Sociedad Mexicana de Fitopatología, A.C.; 2007. p. 1-26.; Franco I, Contin M, Bragato G, De Nobili M. Microbiological resilience of soils contaminated with crude oil. Geoderma. 2004;121(1-2):17-30. Doi: https://dx.doi.org/10.1016/j.geoderma.2003.10.002; Franco-Ramírez A, Ferrera-Cerrato R, Varela-Fregoso L, Pérez-Moreno J, Alarcón A. Arbuscular mycorrhizal fungi in chronically petroleum contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination. J Basic Microbiol. 2007;47(5):378-383. Doi: https://dx.dor.org/10.1002/jobm.200610293; García E, Ferrera-Cerrato R, Almaráz JJ, Rodríguez R, García E. Biodegradación de queroseno en la rizósfera de gramíneas en condiciones de invernadero. Agron Costarricense. 2013;37(2):125-134.; Gaspar ML, Cabello MN, Cazau MC, Pollero RJ. Effect of phenanthrene and Rhodotorula glutinis on arbuscular mycorrhizal fungus colonization of maize roots. Mycorrhiza. 2002; 12(2):55-59. Doi: https://dx.doi.org/10.1007/s00572-001-0147-4; Gerdemann JW, Nicolson TH. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 1963;46(2):235-244. Doi: https://dx.doi.org/10.1016/S0007-1536(63)80079-0; Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E. Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol. 2005;53(1):129-139. Doi: https://dx.doi.org/10.1016/j.femsec.2004.11.010; Harrier LA, Watson CA. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soilborne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci. 2004;60(2):149-157. Doi: https://dx.doi.org/10.1002/ps.820; Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 2010;60(4):579-598. Doi: https://dx.doi.org/10.1007/s13213-010-0117-1; Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J Environ Manage. 2012;95:S319-324. Doi: https://dx.doi.org/10.1016/j.jenvman.2011.02.015; Hubalek T, Vosáhlová S, Matêju V, Kovácová N, Novotný C. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. Arch Environ Contam Toxicol. 2007;52(1):1-7. Doi: https://dx.doi.org/10.1007/s00244-006-0030-6; Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils. 2003;37(1):1-16. Doi: https://dx.doi.org/10.1007/s00374-002-0546-5; Joner EJ, Leyval C. Phytoremediation of organic pollutants using mycorrhizal plants: A new aspect of rhizosphere interactions. Agronomie 2003;23(5):495-502. Doi: https://dx.doi.org/10.1051/agro:2003021; Kaplan CW, Kitts CL. Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol. 2004;70(3):1777-1786. Doi: https://dx.doi.org/10.1128/AEM.70.3.1777-1786.2004; Kuo HC, Juang DF, Yang L, Kuo W-C, Wu Y-M. Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi. Int J Environ Sci Technol 2014;11(6):1661-1668. Doi: https://dx.doi.org/10.1007/s13762-013-0353-6; Labud V, Garcia C, Hernandez T. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 2007;66(10):1863-1871. Doi: https://dx.doi.org/10.1016/j.chemosphere.2006.08.021; Li G, Huang W, Lerner DN, Zhang X. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Res. 2000;34(15):3845-3853. Doi: https://dx.doi.org/10.1016/S0043-1354(00)00134-2; Linderman RG. Effects of mycorrhizas on plant diseases. In: Kapulnick Y, Douds DD editor(s). Arbuscular mycorrhizas: physiology and function. Amsterdam: Kluwer Academic Press; 2000. p. 345-366.; Lindström K, Jussila MM, Hintsa H, Kaksonen A, Mokelke L, Mäkeläinen K et al. Potential of the Galega-Rhizobium galegae system for bioremediation of oil-contaminated soil. Food Technol Biotechnol. 2003;41(1):11-16.; Liste HH, Felgentreu D. Crop growth, culturable bacteria and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl Soil Ecol. 2006;31(1-2):43-52. Doi: https://dx.doi.org/10.1016/j.apsoil.2005.04.006; Liu SL, Luo YM, Cao ZH, Wu LH, Ding KQ, Christie P. Degradation of benzo[a]pyrene in soil with arbuscular mycorrhizal alfalfa. Environ Geochem Health 2004;26(2):285-293. Doi: https://dx.doi.org/10.1023/B:EGAH.0000039592.80489.e5; Lorch HJ, Benckieser G, Ottow JCG. Basic methods for counting microorganisms in soil and water. In: Methods in applied soil microbiology and biochemistry, Alef K, Nannipieri P, editor(s). New York: Academic Press; 1995. p. 146-161.; Miranda-Martínez R, Delgadillo-Martínez J, Alarcón A, Ferrera-Cerrato R. Degradación de fenantreno por microorganismos en la rizosfera del pasto alemán. Terra Latinoamer. 2007;25(1):25-33.; Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F et al. Chapter seven - Advances in elucidating beneficial interactions between plants, soil, and bacteria. Adv Agron. 2013;121:381-445. Doi: https://dx.doi.org/10.1016/B978-0-12-407685-3.00007-4; Morales-Guzmán G, Ferrera-Cerrato R, Rivera-Cruz MC, Torres-Bustillos LG, Arteaga-Garibay RI, Mendoza-López MR et al. A. Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl Soil Ecol. 2017;121:127-134. Doi: https://dx.doi.org/10.1016/j.apsoil.2017.10.003; Nageswara-Rao CV, Afzal M, Malallah G, Kurian M, Gulshan S. Hydrocarbon uptake by roots of Vicia faba (Fabaceae). Environ Monitor Assessment 2007;132(1-3):439-443. Doi: https://dx.doi.org/10.1007/s10661-006-9546-5; Naidoo G, Naidoo Y, Achar P. Responses of the mangroves Avicennia marina and Bruguiera gymnorrhiza to oil contamination. Flora. 2010;205(5):357-362. Doi: https://dx.doi.org/10.1016/j.flora.2009.12.033; Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J et al. Understanding plant-microbe interactions for phytoremediation of petroleum polluted soil. Plos One 2011;6:e17961. Doi: https://dx.doi.org/10.1371/journal.pone.0017961; Njoku KL, Akinola MO, Oboh BO. Growth and performance of Glycine max L. (Merrill) grown in crude oil contaminated soil augmented with cow dung. Life Sci J. 2008;5(3):48-56.; Odjegba VJ, Sadiq AO. Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of Amaranthus hybridus L. The Environ. 2002;22(1):23-28. Doi: https://dx.doi.org/10.1023/A:1014515924037; Osuji LC, Nwoye I. An appraisal of the impact of petroleum hydrocarbons on soil fertility: the Ozawa experience. Afr J Agric Res. 2007;2(7)318-324.; Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 1970;55(1):158-161. Doi: https://dx.doi.org/10.1016/S0007-1536(70)80110-3; Pilon-Smits E. Phytoremediation. Annu. Rev Plant Biol. 2005;56:15-39. Doi: https://dx.doi.org/10.1146/annurev.arplant.56.032604.144214; Ramírez-Elías MA, Ferrera-Cerrato R, Alarcón A, Almaraz JJ, Ramírez-Valverde G, de-Bashan LE et al. Identification of culturable microbial functional groups isolated from the rhizosphere of four species of mangroves and their biotechnological potential. Appl Soil Ecol. 2014;82:1-10. Doi: https://dx.doi.org/10.1016/j.apsoil.2014.05.001; Rennie RJ. A single medium for the isolation of acetylene reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol. 1981;27(1):8-14. Doi: https://dx.doi.org/10.1139/m81-002; Rivera-Cruz MC, Trujillo-Narcia A, Miranda De La Cruz MA, Maldonado Chávez E. Evaluación toxicological de suelos contaminados con petróleos nuevo e intemperizado mediante ensayos con leguminosas. Interciencia. 2005;30(6):326-331.; Sangabriel W, Ferrera-Cerrato R, Trejo-Aguilar D, Mendoza-López MR, Cruz-Sánchez JS, López-Ortiz C et al. Tolerancia y capacidad de fitorremediación de combustóleo en el suelo por seis especies vegetales. Rev Int Contam Ambien. 2006;22(2):63-73.; Sanon A, Andrianjaka ZN, Prin Y, Bally R, Thioulouse J, Comte G et al. Rhizosphere microbiota interfers with plant-plant interactions. Plant Soil. 2009;321(1-2):259-278. Doi: https://dx.doi.org/10.1007/s11104-009-0010-5; SAS Institute Inc. The SAS system for windows, ver. 9.0. North Carolina: SAS Institute Inc.; 2002.; Singh DK. Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol. 2008;48(1):35-40. Doi: https://doi.org/10.1007/s12088-008-0004-7; Spiares JD, Kenworthy KE, Rhykerd RL. Root and shoot biomass of plants seeded in crude oil contaminated soil. Texas J Agric Nat Res. 2001;14:117-124.; Stroud JL, Paton GI, Semple KT. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol. 2007;102:1239-1253. Doi: https://dx.doi.org/10.1111/j.1365-2672.2007.03401.x; Subba-Rao NS. Biofertilizers in Agriculture. New Delhi: Oxford and IBH Publishing; 1993. 208 p.; Sun W, Dong Y, Gao P, Fu M, Ta K, LI J. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: implications for active petroleum-degrading capacity. J Microbiol. 2015;53(6):371-378. Doi: https://dx.doi.org/10.1007/s12275-015-5023-6; Tanee FBG, Akonye LA. Effectiveness of Vigna unguiculata as a phytoremediation plant in the remediation of crude oil polluted soil for Cassava (Manihot esculenta; Crantz) cultivation. J Appl Sci Environ Manag. 2009;13(1):43-47. Doi: https://dx.doi.org/10.4314/jasem.v13i1.55263; Tang M, Chen H, Huang JC, Tian ZQ. AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biol Biochem. 2009;41(5):936-940. Doi: https://doi.org/10.1016/j.soilbio.2008.11.007; Trujillo-Narcia A, Rivera-Cruz M, Lagunes-Espinoza LC, Palma-López DJ, Sánchez-Soto S, Ramírez-Valverde G. Uso de fertilizantes orgánicos en la enmendación de un fluvisol restaurado tras la contaminación con petróleo. Interciencia 2014;39(4):266-273.; Ullah A, Mushtaq H, Ali H, Munis MF, Javed MT, Chaudhary HJ. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res. 2015;22(4):2505-2514. Doi: https://dx.doi.org/10.1007/s11356-014-3699-5; Van Hamme JD, Singh A, Ward O. Recent advances in petroleum microbiology. Microbiol Molec Biol Rev. 2003;67(4):503-549. Doi: https://dx.doi.org/10.1128/MMBR.67.4.503-549.2003; Walker TS, Bais HP, Grotewold E, Vivanco JM. Root exudation and rhizosphere biology. Plant Physiol. 2003;132:44-51. Doi: https://dx.doi.org/10.1104/pp.102.019661; Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant. 2017;10(9):1147-1158. Doi: https://dx.doi.org/10.1016/j.molp.2017.07.012; Weidmann S, Sánchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V. Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant-Microbe Interact. 2004;17(12):1385-1393. Doi: https://dx.doi.org/10.1094/MPMI.2004.17.12.1385; Yan L, Penttinen P, Stoddard FL, Lindström K. Perennial crop growth in oil-contaminated soil in a boreal climate. Sci Total Environ. 2015;532:752-761. Doi: https://dx.doi.org/10.1016/j.scitotenv.2015.06.052; Yang S, Wen X, Zhao L, Shi Y, Jin H. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia crude oil pipeline route. PlosOne. 2014;9:e96552. Doi: https://dx.doi.org/10.1371/journal.pone.0096552; Zhang Q, Zhou Q, Ren L, Zhu YG, Sun SL. Ecological effects of crude oil residues on the functional diversity of soil microorganism in three weed rhizospheres. J Environ Sci. 2006;18(6):1101-1106. Doi: https://dx.doi.org/10.1016/S1001-0742(06)60046-6; Zhou G, Wang Y, Zhai S, Ge F, Liu ZH, Dai YJ et al. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol. 2013;97(9):4065-4074. Doi: https://dx.doi.org/10.1007/s00253-012-4638-3; Zhuang X, Chen J, Shim H, Bai Z. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int. 2007;33(3):406-413. Doi: https://dx.doi.org/10.1016/j.envint.2006.12.005; https://revistas.unal.edu.co/index.php/actabiol/article/view/64771

  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20