يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"Connor, H. K"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal

    المساهمون: Particle Physics and Astrophysics, Space Physics Research Group, Department of Physics

    وصف الملف: application/pdf

    Relation: We acknowledge the European Research Council for starting grant 200141-QuESpace, with which the Vlasiator model was developed, and consolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations. We gratefully acknowledge Academy of Finland grant numbers 338629-AERGELC'H, 339756-KIMCHI, 336805-FORESAIL, and 335554-ICT-SUNVAC. The Academy of Finland also supported this work through the PROFI4 grant (grant number 3189131). Hyunju K. Connor gratefully acknowledges support from the NASA grants, 80NSSC20K1670 and 80MSFC20C0019, and the NASA GSFC FY23 IRAD and HIF funds. The CSC -IT Center for Science and the PRACE Tier-0 supercomputer infrastructure in HLRS Stuttgart (grant number 2019204998) are acknowledged as they made these results possible. The authors wish to thank the Finnish Grid and Cloud Infrastructure (FGCI) for supporting this project with computational and data storage resources. The authors declare that they have no conflict of interest. The Vlasiator simulation data used in the study amount to 18 TB of disk space; access to the raw simulation data can be granted by following the Vlasiator data access policy (see https://www2.helsinki.fi/en/researchgroups/vlasiator/rules-of-the-road).The Vlasiator code is preserved at https://zenodo.org/record/3640593 (PfauKempf et al., 2022), available in open access. It is developed openly at https://github.com/fmihpc/vlasiator.; Grandin , M , Connor , H K , Hoilijoki , S , Battarbee , M , Pfau-Kempf , Y , Ganse , U , Papadakis , K & Palmroth , M 2024 , ' Hybrid-Vlasov simulation of soft X-ray emissions at the Earth’s dayside magnetospheric boundaries ' , Earth and planetary physics , vol. 8 , no. 1 , pp. 70-88 . https://doi.org/10.26464/epp2023052; ORCID: /0000-0002-6373-9756/work/150709124; ORCID: /0000-0001-7055-551X/work/150755973; ORCID: /0000-0003-4857-1227/work/150778266; ORCID: /0000-0001-5793-7070/work/150788085; http://hdl.handle.net/10138/569606; b13d6c04-6605-4254-be3f-9b82dbb7908c; 85183912510; 001170454300008

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Report
  5. 5
    Report
  6. 6
    Academic Journal

    المساهمون: NASA Goddard Space Flight Center (GSFC), Johns Hopkins University Applied Physics Laboratory Laurel, MD (APL), Department of Astronomy College Park, University of Maryland College Park, University of Maryland System-University of Maryland System, Mullard Space Science Laboratory (MSSL), University College of London London (UCL), Lawrence Livermore National Laboratory (LLNL), University of Leicester, University of Alaska Fairbanks (UAF), University of Kansas Lawrence (KU), Tokyo Metropolitan University Tokyo (TMU), Department of Physics Coral Gables, University of Miami Coral Gables, Swedish Institute of Space Physics Kiruna (IRF), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency Sagamihara (JAXA), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University (JHU), University of Maryland Baltimore County (UMBC), University of Maryland System, Nagoya University, University of New Hampshire (UNH), St Petersburg State University (SPbU), Department of Physics and Astronomy Leicester, International Space Science Institute Bern (ISSI), Boston University Boston (BU)

    المصدر: ISSN: 0038-6308.

  7. 7
    Report
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: Boudouridis, A.; Connor, H. K.; Lummerzheim, D.; Ridley, A. J.; Zesta, E. (2021). "Changes in the Magnetic Field Topology and the Dayside/Nightside Reconnection Rates in Response to a Solar Wind Dynamic Pressure Front: A Case Study." Journal of Geophysical Research: Space Physics 126(7): n/a-n/a.; https://hdl.handle.net/2027.42/168491; Journal of Geophysical Research: Space Physics; Pulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., et al. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056; Paschmann, G., Øieroset, M., & Phan, T. ( 2013 ). In‐situ observations of reconnection in space. Space Science Reviews, 178, 385 – 417. https://doi.org/10.1007/s11214-012-9957-2; Raeder, J. ( 2003 ). Global magnetohydrodynamics – A Tutorial. In J. Buechner, C. T. Dum, & M. Scholer (Eds.), Space plasma simulation, lecture notes in physics (Vol. 615 ). Heidelberg: Springer Verlag.; Raeder, J. ( 2006 ). Flux transfer events: 1. Generation mechanism for strong southward IMF. Annales Geophysicae, 24, 381 – 392. https://doi.org/10.5194/angeo-24-381-2006; Raeder, J., Larson, D., Li, W., Kepko, E. L., & Fuller‐Rowell, T. ( 2008 ). Open GGCM simulations for the THEMIS mission. Space Science Reviews, 141, 535 – 555. https://doi.org/10.1007/s11214-008-9421-5; Raeder, J., McPherron, R. L., Frank, L. A., Kokubun, S., Lu, G., Mukai, T., et al. ( 2001 ). Global simulation of the geospace environment modeling substorm challenge event. Journal of Geophysical Research, 106 ( A1 ), 381 – 395. https://doi.org/10.1029/2000ja000605; Raeder, J., Wang, Y. L., & Fuller‐Rowell, T. J. ( 2001 ). Geomagnetic storm simulation with a coupled magnetosphere‐ionosphere‐thermosphere model. In P. Song, H. J. Singer, & G. Siscoe (Eds.), Space weather: Progress and challenges in Research and applications, geophys. Monogr. Ser (Vol. 125, pp. 377 – 384 ). Washington,D.C: American Geophysical Union.; Rich, F. J., & Hairston, M. R. ( 1994 ). Large‐scale convection patterns observed by DMSP. Journal of Geophysical Research, 99 ( A3 ), 3827 – 3844. https://doi.org/10.1029/93JA03296; Richmond, A. D., & Kamide, Y. ( 1988 ). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique. Journal of Geophysical Research, 93, 5741 – 5759. https://doi.org/10.1029/ja093ia06p05741; Ridley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. ( 1998 ). A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. Journal of Geophysical Research, 103, 4023 – 4039. https://doi.org/10.1029/97ja03328; Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. ( 1987 ). On calculating ionospheric conductances from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92, 2565 – 2569. https://doi.org/10.1029/ja092ia03p02565; Shi, Q.‐Q., Hartinger, M., Angelopoulos, V., Zong, Q.‐G., Zhou, X.‐Z., Zhou, X.‐Y., et al. ( 2013 ). THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events. Journal of Geophysical Research: Space Physics, 118, 284 – 298. https://doi.org/10.1029/2012JA017984; Siscoe, G. L., & Huang, T. S. ( 1985 ). Polar cap inflation and deflation. Journal of Geophysical Research, 90, 543 – 547. https://doi.org/10.1029/ja090ia01p00543; Terasawa, T., Fujimoto, M., Mukai, T., Shinohara, I., Saito, Y., Yamamoto, T., et al. ( 1997 ). Solar wind control of density and temperature in the near‐Earth plasma sheet: WIND/GEOTAIL collaboration. Geophysical Research Letters, 24, 935 – 938. https://doi.org/10.1029/96GL04018; Vasyliunas, V. M. ( 1970 ). Mathematical models of magnetospheric convection and its coupling to the ionosphere. In B. M. McCormac, & D. Reidel (Eds.), Particles and fields in the magnetosphere (Vol. 17, pp. 60 – 71 ). Springer. https://doi.org/10.1007/978-94-010-3284-1_6; Wang, C. ‐P., Lyons, L. R., Nagai, T., Weygand, J. M., & Lui, A. T. Y. ( 2010 ). Evolution of plasma sheet particle content under different interplanetary magnetic field conditions. Journal of Geophysical Research, 115, A06210. https://doi.org/10.1029/2009JA015028; Wang, C.‐P., Yue, C., Zaharia, S., Xing, X., Lyons, L., Angelopoulos, V., et al. ( 2013 ). Empirical modeling of plasma sheet pressure and three‐dimensional force‐balanced magnetospheric magnetic field structure: 1. Observation. Journal of Geophysical Research: Space Physics, 118, 6154 – 6165. https://doi.org/10.1002/jgra.50585; Weimer, D. R. ( 2004 ). Correction to “Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique”. Journal of Geophysical Research, 109, A12104. https://doi.org/10.1029/2004JA010691; Weimer, D. R., Ober, D. M., Maynard, N. C., Collier, M. R., McComas, D. J., Ness, N. F., et al. ( 2003 ). Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique. Journal of Geophysical Research, 108 ( A1 ), 1026. https://doi.org/10.1029/2002JA009405; Weygand, J. M., & McPherron, R. L. ( 2006a ). Wind 3DP Weimer propagated 60 s resolution in GSM coordinates. https://doi.org/10.21978/P82K7X; Weygand, J. M., & McPherron, R. L. ( 2006b ). Wind Weimer propagated 60 s resolution tri‐axial fluxgate magnetometer in GSM coordinates. https://doi.org/10.21978/P8FW5P; Yue, C., Nishimura, Y., Lyons, L. R., Angelopoulos, V., Donovan, E. F., Shi, Q., et al. ( 2013 ). Coordinated THEMIS spacecraft and all‐sky imager observations of interplanetary shock effects on plasma sheet flow bursts, poleward boundary intensifications, and streamers. Journal of Geophysical Research: Space Physics, 118, 3346 – 3356. https://doi.org/10.1002/jgra.50372; Zesta, E., Singer, H. J., Lummerzheim, D., Russell, C. T., Lyons, L. R., & Brittnacher, M. J. ( 2000 ). The effect of the January 10, 1997, pressure pulse on the magnetosphere‐ionosphere current system. In S. Ohtani, R. Fujii, M. Hesse, & R. L. Lysak (Eds.), Magnetospheric current systems, geophys. Monogr. Ser (Vol. 118, pp. 217 – 226 ). Washington, D.C: American Geophysical Union. https://doi.org/10.1029/gm118p0217; Zhou, X., Zhou, X.‐Z., Angelopoulos, V., Shi, Q., Wang, C.‐P., & Frey, H. ( 2013 ). Interplanetary shock–induced current sheet disturbances leading to auroral activations: THEMIS observations. Journal of Geophysical Research: Space Physics, 118, 3173 – 3187. https://doi.org/10.1002/jgra.50175; Zhou, X.‐Y., & Tsurutani, B. T. ( 2002 ). Interplanetary shock effects on the nightside auroral zone, magnetosphere and ionosphere. In Proceedings of COSPAR colloquium on space weather study using multi‐point TechniquesLing‐hsiao lyu. (Vol. 12, pp. 139 – 147 ). Elsevier. https://doi.org/10.1016/s0964-2749(02)80213-x; Ahn, B.‐H., Richmond, A. D., Kamide, Y., Kroehl, H. W., Emery, B. A., de la Beaujardiére, O., & Akasofu, S.‐I. ( 1998 ). An ionospheric conductance model based on ground magnetic disturbance data. Journal of Geophysical Research, 103, 14769 – 14780. https://doi.org/10.1029/97ja03088; Akasofu, S.‐I. ( 1980 ). The solar wind‐magnetosphere energy coupling and magnetospheric disturbances. Planetary and Space Science, 28, 495 – 509. https://doi.org/10.1016/0032-0633(80)90031-8; Akasofu, S.‐I. ( 2017 ). Auroral substorms: Search for processes causing the expansion phase in terms of the electric current approach. Space Science Reviews, 212, 341 – 381. https://doi.org/10.1007/s11214-017-0363-7; Araki, T. ( 1977 ). Global structure of geomagnetic sudden commencements. Planetary and Space Science, 25, 373 – 384. https://doi.org/10.1016/0032-0633(77)90053-8; Baker, J. B., Clauer, C. R., Ridley, A. J., Papitashvili, V. O., Brittnacher, M. J., & Newell, P. T. ( 2000 ). The nightside poleward boundary of the auroral oval as seen by DMSP and the ultraviolet imager. Journal of Geophysical Research, 105 ( A9 ), 21267 – 21280. https://doi.org/10.1029/1999ja000363; Borovsky, J. E., Thomsen, M. F., & Elphic, R. C. ( 1998 ). The driving of the plasma sheet by the solar wind. Journal of Geophysical Research, 103, 17617 – 17640. https://doi.org/10.1029/97ja02986; Boudouridis, A., Lyons, L. R., Zesta, E., & Ruohoniemi, J. M. ( 2007 ). Dayside reconnection enhancement resulting from a solar wind dynamic pressure increase. Journal of Geophysical Research, 112, A06201. https://doi.org/10.1029/2006JA012141; Boudouridis, A., Lyons, L. R., Zesta, E., Ruohoniemi, J. M., & Lummerzheim, D. ( 2008 ). Nightside flow enhancement associated with solar wind dynamic pressure driven reconnection. Journal of Geophysical Research, 113, A12211. https://doi.org/10.1029/2008JA013489; Boudouridis, A., Lyons, L. R., Zesta, E., Weygand, J. M., Ribeiro, A. J., & Ruohoniemi, J. M. ( 2011 ). Statistical study of the effect of solar wind dynamic pressure fronts on the dayside and nightside ionospheric convection. Journal of Geophysical Research, 116, A10233. https://doi.org/10.1029/2011JA016582; Boudouridis, A., Zesta, E., Lyons, L. R., & Anderson, P. C. ( 2004 ). Evaluation of the hill‐siscoe transpolar potential saturation model during a solar wind dynamic pressure pulse. Geophysical Research Letters, 31, L23802. https://doi.org/10.1029/2004GL021252; Boudouridis, A., Zesta, E., Lyons, L. R., Anderson, P. C., & Lummerzheim, D. ( 2003 ). Effect of solar wind pressure pulses on the size and strength of the auroral oval. Journal of Geophysical Research, 108 ( A4 ), 8012. https://doi.org/10.1029/2002JA009373; Boudouridis, A., Zesta, E., Lyons, L. R., Anderson, P. C., & Lummerzheim, D. ( 2004 ). Magnetospheric reconnection driven by solar wind pressure fronts. Annales Geophysicae, 22, 1367 – 1378. https://doi.org/10.5194/angeo-22-1367-2004; Boudouridis, A., Zesta, E., Lyons, L. R., Anderson, P. C., & Lummerzheim, D. ( 2005 ). Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation. Journal of Geophysical Research, 110, A05214. https://doi.org/10.1029/2004JA010704; Boudouridis, A., Zesta, E., Lyons, L. R., Anderson, P. C., & Ridley, A. J. ( 2008 ). Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure. Geophysical Research Letters, 35, L02101. https://doi.org/10.1029/2007GL031766; Boyle, C. B., Reiff, P. H., & Hairston, M. R. ( 1997 ). Empirical polar cap potentials. Journal of Geophysical Research, 102 ( A1 ), 111 – 125. https://doi.org/10.1029/96JA01742; Brittnacher, M., Fillingim, M., Parks, G., Germany, G., & Spann, J. ( 1999 ). Polar cap area and boundary motion during substorms. Journal of Geophysical Research, 104 ( A6 ), 12251 – 12262. https://doi.org/10.1029/1998JA900097; Carbary, J. F., Sotirelis, T., Newell, P. T., & Meng, C.‐I. ( 2003 ). Auroral boundary correlations between UVI and DMSP. Journal of Geophysical Research, 108 ( A1 ), 1018. https://doi.org/10.1029/2002JA009378; Chi, P. J., Russell, C. T., Raeder, J., Zesta, E., Yumoto, K., Kawano, H., et al. ( 2001 ). Propagation of the preliminary reverse impulse of sudden commencements to low latitudes. Journal of Geophysical Research, 106, 18857 – 18864. https://doi.org/10.1029/2001ja900071; Chi, P. J., Russell, C. T., Raeder, J., Zesta, E., Yumoto, K., Kawano, H., et al. ( 2002 ). Reply to comment by T. Kikuchi and T. Araki on “Propagation of the preliminary reverse impulse of sudden commencements to low latitudes”. Journal of Geophysical Research, 107 ( A12 ), 1474. https://doi.org/10.1029/2002JA009369; Chua, D., Parks, G., Brittnacher, M., Germany, G., Spann, J., Spann, J., & Carlson, C. ( 2001 ). Energy characteristics of auroral electron precipitation: A comparison of substorms and pressure pulse related auroral activity. Journal of Geophysical Research, 106, 5945 – 5956. https://doi.org/10.1029/2000ja003027; Codrescu, M. V., Negrea, C., Fedrizzi, M., Fuller‐Rowell, T. J., Dobin, A., Jakowsky, N., et al. ( 2012 ). A real‐time run of the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model. Space Weather, 10, S02001. https://doi.org/10.1029/2011SW000736; Connor, H. K., Zesta, E., Fedrizzi, M., Shi, Y., Raeder, J., Codrescu, M. V., & Fuller‐Rowell, T. J. ( 2016 ). Modeling the ionosphere‐thermosphere response to a geomagnetic storm using physics‐based magnetospheric energy input: Open GGCM‐CTIM results. Journal of Space Weather and Space Climate, 6, A25. https://doi.org/10.1051/swsc/2016019; Connor, H. K., Zesta, E., Ober, D. M., & Raeder, J. ( 2014 ). The relation between transpolar potential and reconnection rates during sudden enhancement of solar wind dynamic pressure: Open GGCM‐CTIM results. Journal of Geophysical Research: Space Physics, 119, 3411 – 3429. https://doi.org/10.1002/2013JA019728; Cowley, S. W. H. ( 1984 ). Solar wind control of magnetospheric convection. In B. Battrick, & E. Rolfe (Eds.), Achievements of the international magnetospheric study (IMS) (p. 483 – 494 ). Netherlands: European Space Agency.; Ebihara, Y. ( 2019 ). Simulation study of near‐earth space disturbances: 2. Auroral substorms. Progress in Earth and Planetary Science, 6, 24. https://doi.org/10.1186/s40645-019-0273-2; Fuller‐Rowell, T., & Evans, D. ( 1987 ). Height‐integrated pedersen and hall conductivity patterns inferred from TIROS–NOAA satellite data. Journal of Geophysical Research, 92, 7606 – 7618. https://doi.org/10.1029/JA092iA07p07606; Fuller‐Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V., Millward, G. H., & Schunk, R. W. ( 1996 ). A coupled thermosphere‐ionosphere model (CTIM) (pp. 217 ). Colorado: STEP Report.; Fuselier, S. A., & Lewis, W. S. ( 2011 ). Properties of near‐earth magnetic reconnection from in‐situ observations. Space Science Reviews, 160, 95 – 121. https://doi.org/10.1007/s11214-011-9820-x; Holmes, J. M., Johnsen, M. G., Deehr, C. S., Zhou, X.‐Y., & Lorentzen, D. A. ( 2014 ). Circumpolar ground‐based optical measurements of proton and electron shock aurora. Journal of Geophysical Research: Space Physics, 119, 3895 – 3914. https://doi.org/10.1002/2013JA019574; Hubert, B., Blockx, C., Milan, S. E., & Cowley, S. W. H. ( 2009 ). Statistical properties of flux closure induced by solar wind dynamic pressure fronts. Journal of Geophysical Research, 114, A07211. https://doi.org/10.1029/2008JA013813; Hubert, B., Milan, S. E., Grocott, A., Cowley, S. W. H., Gérard, J.‐C., & Gérard, J.‐C. ( 2006 ). Dayside and nightside reconnection rates inferred from IMAGE‐FUV and SuperDARN data. Journal of Geophysical Research, 111, A03217. https://doi.org/10.1029/2005JA011140; Hubert, B., Palmroth, M., Laitinen, T. V., Janhunen, P., Milan, S. E., Grocott, A., et al. ( 2006 ). Compression of the earth’s magnetotail by interplanetary shocks directly drives transient magnetic flux closure. Geophysical Research Letters, 33, L10105. https://doi.org/10.1029/2006GL026008; Kauristie, K., Weygand, J., Pulkkinen, T. I., Murphree, J. S., & Newell, P. T. ( 1999 ). Size of the auroral oval: UV ovals and precipitation boundaries compared. Journal of Geophysical Research, 104 ( A2 ), 2321 – 2331. https://doi.org/10.1029/1998ja900046; Kelley, M. C. ( 1989 ). The Earth’s ionosphere. NewYork: Academic Press.; Kennel, C. F., & Petschek, H. E. ( 1966 ). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71, 1 – 28. https://doi.org/10.1029/jz071i001p00001; Kihn, E. A., Redmon, R., Ridley, A. J., & Hairston, M. R. ( 2006 ). A statistical comparison of the AMIE derived and DMSP‐SSIES observed high‐latitude ionospheric electric field. Journal of Geophysical Research, 111, A08303. https://doi.org/10.1029/2005JA011310; Kikuchi, T., & Araki, T. ( 1979 ). Horizontal transmission of the polar electric field to the equator. Journal of Atmospheric and Terrestrial Physics, 41, 927 – 936. https://doi.org/10.1016/0021-9169(79)90094-1; Kikuchi, T., & Araki, T. ( 2002 ). Comment on “Propagation of the preliminary reverse impulse of sudden commencements to low latitudes” by P. J. Chi et al. Journal of Geophysical Research, 107 ( A12 ), 1473. https://doi.org/10.1029/2001JA009220; Knight, S. ( 1973 ). Parallel electric fields. Planetary and Space Science, 21, 741 – 750. https://doi.org/10.1016/0032-0633(73)90093-7; Liou, K. ( 2006 ). Global auroral response to interplanetary media with emphasis on solar wind dynamic pressure enhancements. In B. Tsurutani, et al. (Eds.), Recurrent magnetic storms: Corotating solar wind streams, geophys. Monogr. Ser. (Vol. 167, pp. 197 – 212 ). Washington, D.C: American Geophysical Union. https://doi.org/10.1029/167gm17; Lu, G., Baker, D. N., McPherron, R. L., Farrugia, C. J., Lummerzheim, D., Ruohoniemi, J. M., et al. ( 1998 ). Global energy deposition during the January 1997 magnetic cloud event. Journal of Geophysical Research, 103 ( A6 ), 11685 – 11694. https://doi.org/10.1029/98JA00897; Lu, G., Emery, B. A., Rodger, A. S., Lester, M., Taylor, J. R., Evans, D. S., et al. ( 1996 ). High‐latitude ionospheric electrodynamics as determined by the assimilative mapping of ionospheric electrodynamics procedure for the conjunctive SUNDIAL/ATLAS 1/GEM period of March 28–29. 1992. Journal of Geophysical Research, 101 ( A12 ), 26697 – 26718. https://doi.org/10.1029/96JA00513; Lummerzheim, D., Brittnacher, M., Evans, D., Germany, G. A., Parks, G. K., Rees, M. H., & Spann, J. F. ( 1997 ). High time resolution study of the hemispheric power carried by energetic electrons into the ionosphere during the May 19/20, 1996 auroral activity. Geophysical Research Letters, 24, 987 – 990. https://doi.org/10.1029/96gl03828; Lyons, L. R. ( 2000 ). Geomagnetic disturbances: Characteristics of, distinction between types, and relations to interplanetary conditions. Journal of Atmospheric and Solar‐Terrestrial Physics, 62, 1087 – 1114. https://doi.org/10.1016/s1364-6826(00)00097-3; Lyons, L. R., Evans, D., & Lundin, R. ( 1979 ). An observed relation between magnetic field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. Journal of Geophysical Research, 84, 457 – 461. https://doi.org/10.1029/ja084ia02p00457; Lyons, L. R., Lee, D.‐Y., Wang, C.‐P., & Mende, S. B. ( 2005 ). Global auroral responses to abrupt solar wind changes: Dynamic pressure, substorm, and null events. Journal of Geophysical Research, 110, A08208. https://doi.org/10.1029/2005JA011089; Lyons, L. R., Nishimura, Y., Donovan, E., & Angelopoulos, V. ( 2013 ). Distinction between auroral substorm onset and traditional ground magnetic onset signatures. Journal of Geophysical Research: Space Physics, 118, 4080 – 4092. https://doi.org/10.1002/jgra.50384; Milan, S. E., Cowley, S. W. H., Lester, M., Wright, D. M., Slavin, J. A., Fillingim, M., et al. ( 2004 ). Response of the magnetotail to changes in the open flux content of the magnetosphere. Journal of Geophysical Research, 109, A04220. https://doi.org/10.1029/2003JA010350; Mishin, V. M., Mishin, V. V., Lunyushkin, S. B., Wang, J. Y., & Moiseev, A. V. ( 2017 ). 27 August 2001 substorm: Preonset phenomena, two main onsets, field‐aligned current systems, and plasma flow channels in the ionosphere and in the magnetosphere. Journal of Geophysical Research: Space Physics, 122, 4988 – 5007. https://doi.org/10.1002/2017JA023915; Miyashita, Y., Keika, K., Liou, K., Machida, S., Kamide, Y., Miyoshi, Y., et al. ( 2010 ). Plasma sheet changes caused by sudden enhancements of the solar wind pressure. Journal of Geophysical Research, 115, A05214. https://doi.org/10.1029/2009JA014617; Newell, P. T., Feldstein, Y. I., Galperin, Y. I., & Meng, C.‐I. ( 1996 ). Morphology of nightside precipitation. Journal of Geophysical Research, 101 ( A5 ), 10737 – 10748. https://doi.org/10.1029/95ja03516; Oliveira, D. M., & Raeder, J. ( 2014 ). Impact angle control of interplanetary shock geoeffectiveness. Journal of Geophysical Research: Space Physics, 119, 8188 – 8201. https://doi.org/10.1002/2014JA020275; Oliveira, D. M., & Raeder, J. ( 2015 ). Impact angle control of interplanetary shock geoeffectiveness: A statistical study. Journal of Geophysical Research: Space Physics, 120, 4313 – 4323. https://doi.org/10.1002/2015JA021147; Ozturk, D. S., Zou, S., Ridley, A. J., & Slavin, J. A. ( 2018 ). Modeling study of the geospace system response to the solar wind dynamic pressure enhancement on 17 March 2015. Journal of Geophysical Research: Space Physics, 123, 2974 – 2989. https://doi.org/10.1002/2017JA025099

  10. 10
    Conference

    المساهمون: University of Alaska Fairbanks (UAF), University of Leicester, HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)

    المصدر: American Geophysical Union, Fall Meeting 2019 ; https://hal.science/hal-02938885 ; American Geophysical Union, Fall Meeting 2019, Dec 2019, San Francisco, United States

    جغرافية الموضوع: San Francisco, United States

    Relation: BIBCODE: 2019AGUFMSM13B.01J

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    المؤلفون: Ma, Q.1,2 (AUTHOR) qianlima@atmos.ucla.edu, Connor, H. K.3 (AUTHOR), Zhang, X.‐J.1,4 (AUTHOR), Li, W.2 (AUTHOR), Shen, X.‐C.2 (AUTHOR), Gillespie, D.3 (AUTHOR), Kletzing, C. A.5 (AUTHOR), Kurth, W. S.5 (AUTHOR), Hospodarsky, G. B.5 (AUTHOR), Claudepierre, S. G.1,6 (AUTHOR), Reeves, G. D.7 (AUTHOR), Spence, H. E.8 (AUTHOR)

    المصدر: Geophysical Research Letters. 8/16/2020, Vol. 47 Issue 15, p1-11. 11p.

  16. 16
    Academic Journal

    المصدر: Journal of Geophysical Research. Space Physics; Jul2018, Vol. 123 Issue 7, p5364-5378, 15p

  17. 17
    Academic Journal

    المصدر: Journal of Geophysical Research. Space Physics; Jun2015, Vol. 120 Issue 6, p4890-4906, 17p

  18. 18
    Academic Journal

    المصدر: Journal of Geophysical Research. Space Physics; May2014, Vol. 119 Issue 5, p3411-3429, 19p