يعرض 1 - 8 نتائج من 8 نتيجة بحث عن '"Compound specific δ 13 C"', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
    Report

    المساهمون: Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires (CONICET), Centre de Recherche en Archéologie, Archéosciences, Histoire (CReAAH), Le Mans Université (UM)-Université de Rennes (UR)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)-Nantes Université - UFR Histoire, Histoire de l'Art et Archéologie (Nantes Univ - UFR HHAA), Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), PROJET ARPHYMAT RENNES METROPOLE UNIVERSITE DE RENNES 1 CNRS CONICET Argentine National Council ofScience CONICET (PIP 112-200801- 01605), the Agency of Science FONCyT (PICT 14.171), the University of Buenos Aires (UBACyT 20020100100266), and a research grant awarded by the French Embassy in Argentina and the French Ministry of Education.

    المصدر: https://hal.science/hal-04292885 ; 2023.

  2. 2
    Report

    المساهمون: Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires (CONICET), Centre de Recherche en Archéologie, Archéosciences, Histoire (CReAAH), Le Mans Université (UM)-Université de Rennes (UR)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)-Nantes Université - UFR Histoire, Histoire de l'Art et Archéologie (Nantes Univ - UFR HHAA), Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), PROJET ARPHYMAT RENNES METROPOLE UNIVERSITE DE RENNES 1 CNRS CONICET Argentine National Council ofScience CONICET (PIP 112-200801- 01605), the Agency of Science FONCyT (PICT 14.171), the University of Buenos Aires (UBACyT 20020100100266), and a research grant awarded by the French Embassy in Argentina and the French Ministry of Education.

    المصدر: https://hal.science/hal-04292885 ; 2023.

  3. 3
    Report

    المساهمون: Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires (CONICET), Centre de Recherche en Archéologie, Archéosciences, Histoire (CReAAH), Le Mans Université (UM)-Université de Rennes (UR)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)-Nantes Université - UFR Histoire, Histoire de l'Art et Archéologie (Nantes Univ - UFR HHAA), Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), PROJET ARPHYMAT RENNES METROPOLE UNIVERSITE DE RENNES 1 CNRS CONICET Argentine National Council ofScience CONICET (PIP 112-200801- 01605), the Agency of Science FONCyT (PICT 14.171), the University of Buenos Aires (UBACyT 20020100100266), and a research grant awarded by the French Embassy in Argentina and the French Ministry of Education.

    المصدر: https://hal.science/hal-04292885 ; 2023.

  4. 4
    Report

    المساهمون: Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires (CONICET), Centre de Recherche en Archéologie, Archéosciences, Histoire (CReAAH), Le Mans Université (UM)-Université de Rennes (UR)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)-Nantes Université - UFR Histoire, Histoire de l'Art et Archéologie (Nantes Univ - UFR HHAA), Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), PROJET ARPHYMAT RENNES METROPOLE UNIVERSITE DE RENNES 1 CNRS CONICET Argentine National Council ofScience CONICET (PIP 112-200801- 01605), the Agency of Science FONCyT (PICT 14.171), the University of Buenos Aires (UBACyT 20020100100266), and a research grant awarded by the French Embassy in Argentina and the French Ministry of Education.

    المصدر: https://hal.science/hal-04292885 ; 2023.

  5. 5
    Report

    المساهمون: Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires (CONICET), Centre de Recherche en Archéologie, Archéosciences, Histoire (CReAAH), Le Mans Université (UM)-Université de Rennes (UR)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)-Nantes Université - UFR Histoire, Histoire de l'Art et Archéologie (Nantes Univ - UFR HHAA), Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), PROJET ARPHYMAT RENNES METROPOLE UNIVERSITE DE RENNES 1 CNRS CONICET Argentine National Council ofScience CONICET (PIP 112-200801- 01605), the Agency of Science FONCyT (PICT 14.171), the University of Buenos Aires (UBACyT 20020100100266), and a research grant awarded by the French Embassy in Argentina and the French Ministry of Education.

    المصدر: https://hal.science/hal-04292885 ; 2023.

  6. 6
    Academic Journal
  7. 7
  8. 8
    Academic Journal

    المؤلفون: Meyers, Philip A.

    وصف الملف: application/pdf

    Relation: Meyers, Philip A. (2014). "Why are the δ 13 C org values in Phanerozoic black shales more negative than in modern marine organic matter?." Geochemistry, Geophysics, Geosystems 15(7): 3085-3106.; http://hdl.handle.net/2027.42/108327; Geochemistry, Geophysics, Geosystems; Pratt, L. M., M. A. Arthur, W. E. Dean, and P. A. Scholle ( 1993 ), Paleo‐oceanographic cycles and events during the Late Cretaceous in the Western Interior Seaway of North America, in Evolution of the Western Interior Basin, Spec. Pap. 39, edited by W. G. E. Caldwell and E. G. Kauffman, pp. 333 – 353, Geol. Assoc. of Can., St. Johns, Canada.; Schwab, V., and J. E. Spangenberg ( 2004 ), Organic geochemistry across the Permian‐Triassic transition at the Idrijca Valley, Western Slovenia, Appl. Geochem., 19, 55 – 72.; Shen, J., T. J. Algeo, Q. Hu, N. Zhang, L. Zhou, W. Xia, S. Xie, and Q. Feng ( 2012 ), Negative C‐isotopic excursions at the Permian‐Triassic boundary linked to volcanism, Geology, 40, 963 – 966.; Sinninghe‐Damsté, J. S., and J. Köster ( 1998 ), A euxinic southern North Atlantic Ocean during the Cenomanian‐Turonian oceanic anoxic event, Earth Planet. Sci. Lett., 158, 165 – 173.; Sinninghe‐Damsté, J. S., M. M. M. Kuypers, R. D. Pancost, and S. Schouten ( 2008 ), The carbon isotopic response of algae, (cyano)bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: Insights from biomarkers in black shales from the Cape Verde Basin (ODP Site 367), Org. Geochem., 39, 1703 – 1718.; Śliwiński, M. G., M. T. Whalen, R. J. Newberry, J. H. Payne, and J. E. Day ( 2011 ), Stable isotope (δ13C carb and org, δ 15 N org ) and trace element anomalies during the Late Devonian “ punctuata Event” in the Western Canada Sedimentary Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 307, 245 – 271.; Sobolev, S. V., A. V. Sobolev, D. V. Kuzmin, N. A. Krivolutshkaya, A. G. Petrunin, N. T. Arndt, V. A. Radko, and Y. R. Vasilev ( 2011 ), Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature, 477, 312 – 316.; Spiker, E. C., and P. G. Hatcher ( 1984 ), Carbon isotope fractionation of sapropelic organic matter during early diagenesis, Org. Geochem., 5, 283 – 290.; Suan, G., B. Pittet, I. Bohr, E. Matteoli, L. V. Duarte, and S. Maillot ( 2008 ), Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: Consequence for its possible causes, Earth Planet. Sci. Lett., 267, 666 – 679.; Svensen, H., S. Planke, L. Chevallier, A. Malthe‐Sorenssen, F. Corfu, and B. Jamtveit ( 2007 ), Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming, Earth Planet. Sci. Lett., 256, 554 – 566.; Svensen, H., S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, and B. Jamtveit ( 2009 ), Siberian gas venting and the end‐Permian environmental crisis, Earth Planet. Sci. Lett., 277, 490 – 500.; Towe, K. M. ( 1982 ), Anomalous 13 C depletion in Precambrian organic carbon, Nature, 295, 171.; Tsikos, H., et al. ( 2004 ), Carbon‐isotope stratigraphy recorded by the Cenomanian‐Turonian Oceanic Anoxic Event: Correlation and implication based on three localities, J. Geol. Soc. London, 161, 711 – 719.; Tuite, M. L., and S. A. Macko ( 2013 ), Basinward nitrogen limitation demonstrates role of terrestrial nitrogen and redox control of δ 15 N in a Late Devonian black shale, Geology, 41, 1079 – 1082.; Turgeon, S. C., and R. A. Creaser ( 2008 ), Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode, Nature, 454, 323 – 326.; van Bentum, E. C., G.‐J. Reichart, A. Forster, and J. S. Sinninghe‐Damsté ( 2012 ), Latitudinal differences in the amplitude of the OAE‐2 carbon isotopic excursion: p CO 2 and paleoproductivity, Biogeosciences, 9, 717 – 731.; van Helmond, N. A. G. M., A. Sluijs, G.‐J. Reichart, J. S. Sinninghe‐Damsté, C. P. Slomp, and H. Brinkhuis ( 2014 ), A perturbed hydrological cycle during Ocean Anoxic Event 2, Geology, 42, 123 – 126.; Wagner, T. J., O. Herrle, J. S. Sinninghe‐Damsté, S. Schouten, I. Stusser, and P. Hoffman ( 2008 ), Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic, Geology, 36, 203 – 206.; Wolfe, B. B., T. W. D. Edwards, K. R. M. Beuning, and R. J. Elgood ( 2001 ), Carbon and oxygen isotope analysis of lake sediment cellulose: Methods and applications, in Tracking Environmental Changes Using Lake Sediments: Physical and Chemical Techniques, edited by W. M. Last and J. P. Smol, pp. 373 – 400, Kluwer, Dordrecht, Netherlands.; Young, S. A., M. R. Saltzman, and S. M. Beuning ( 2005 ), Upper Ordovician (Mohawkian) carbon isotope (d 13 C) stratigraphy in eastern and central North America: Regional expression of a perturbation of the global carbon cycle, Palaeogeogr. Palaeoclimatol, Palaeoecol., 222, 53 – 76.; Young, S. A., M. R. Saltzman, S. M. Bergstrom, S. A. Leslie, and C. Xu ( 2008 ), Paired d 13 C carb and d 13 C org records of Upper Ordovician (Sandvian‐Katian) carbonates in North America and China: Implications for paleoceanographic change., Palaeogeogr. Palaeoclimatol, Palaeoecol., 270, 166 – 178.; Algeo, T. J., L. Hinnov, J. Moser, J. B. Maynard, E. Elswick, K. Kuwahara, and H. Sano ( 2010 ), Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian, Geology, 38, 187 – 190.; Algeo, T. J., P. A. Meyers, R. S. Robinson, H. Rowe, and G. Jiang ( 2014 ), Icehouse‐greenhouse variations in marine denitrification, Biogeosciences, 11, 1273 – 1295.; Altabet, M. A., and R. François ( 1994 ), Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization, Global Biogeochem. Cycles, 8, 103 – 116.; Anod, A., T. Kategawa, R. Takeshima and T. Saito ( 2002 ), New perspective on Aptian carbon isotope stratigraphy: Data from d 13 C records of terrestrial organic matter, Geology, 30, 227 – 230.; Andrusevich, V. E., M. H. Engel, and J. E. Zumberge ( 2000 ), Effects of paleolatitude on the stable carbon isotope composition of crude oils, Geology, 28, 847 – 850.; Arnaboldi, M., and P. A. Meyers ( 2006a ), Data report: Multiproxy geochemical characterization of OAE‐related black shales at Site 1276, Newfoundland Basin, Proc. Ocean Drill. Program Sci. Results, 210, 1 – 18, doi:10.2973/odp.proc.sr.210.102.2006.; Arnaboldi, M., and P. A. Meyers ( 2006b ), Patterns of carbon and nitrogen stable isotopic compositions of latest Pliocene sapropels from six locations across the Mediterranean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235, 149 – 167.; Arthur, M. A., W. E. Dean, and G. E. Claypool ( 1985 ), Anomalous 13 C enrichment in modern organic matter, Nature, 315, 216 – 218.; Bachan, A., B. van de Schootbrugge, J. Fiebig, C. A. McRoberts, G. Ciarapica, and J. L. Payne ( 2012 ), Carbon cycle dynamics following the end‐Triassic mass extinction: Constraints from paired δ 13 C carb and δ 13 C org records, Geochem. Geophys. Geosyst., 13, Q06010, doi:10.1029/2012GC004150.; Beerling, D. J., M. R. Lomas, and D. R. Grocke ( 2002 ), On the nature of methane gas‐hydrate dissociation during the Toarcian and Aptian oceanic anoxic events, Am. J. Sci., 302, 28 – 49.; Bice, K. L., D. Birgel, P. A. Meyers, K. A. Dahl, K.‐U. Hinrichs, and R. D. Norris ( 2006 ), A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO 2 concentrations, Paleoceanography, 21, PA2002, doi:10.1029/2005PA001203.; Blackburn, J., P. E. Olsen, S. A. Bowring, N. M. McLean, D. V. Kent, J. Puffer, G. McHone, E. T. Rasbury, and M. Et‐Touhami ( 2013 ), Zircon U‐Pb geochronology links the end‐Triassic extinction with the Central Atlantic magmatic province, Science, 340, 941 – 945.; Blättler, C. L., H. C. Jenkyns, L. M. Reynard, and G. M. Henderson ( 2011 ), Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes, Earth Planet. Sci. Lett., 309, 77 – 88.; Bonis, N. R., M. Ruhl, and W. M. Kürschner ( 2010 ), Climate change driven black shale deposition during the end‐Triassic in the western Tethys, Palaeogeogr. Palaeoclimatol. Palaeoecol., 290, 151 – 159.; Bottini, C., A. S. Cohen, E. Erba, H. C. Jenkyns, and A. L. Coe ( 2012 ), Osmium‐isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a, Geology, 40, 583 – 586.; Bralower, T. J., E. CoBabe, B. Clement, W. V. Sliter, C. L. Osburn, and J. Longoria ( 1999 ), The record of global change in mid‐Cretaceous (Barremian‐Albian) sections from Sierra Madre, northeastern Mexico, J. Foraminiferal Res., 29, 418 – 437.; Cohen, A. S., A. L. Coe, S. M. Harding, and L. Schwark ( 2004 ), Osmium isotope evidence for the regulation of atmospheric CO 2 by continental weathering, Geology, 32, 157 – 160.; Collister, J. W., G. Rieley, B. Stern, G. Eglinton, and B. Fry ( 1994 ), Compoundspecific δ 13 C analyses of leaf lipids from plants with differing carbon dioxide metabolisms, Org. Geochem., 21, 619 – 627.; Craig, H. ( 1953 ), The geochemistry of the stable carbon isotopes, Geochim. Cosmochim. Acta, 3, 53 – 92.; Cremonese, L., G. Shields‐Zhou, U. Struck, H.‐F. Ling, L. Och, X. Chen, and D. Li ( 2013 ), Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section, South China, Precambrian Res., 225, 148 – 165.; Dean, W. E., M. A. Arthur, and G. E. Claypool ( 1986 ), Depletion of 13 C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal?, Mar. Geol., 70, 119 – 157.; Degens, E. T. ( 1969 ), Biogeochemistry of stable carbon isotopes, in Organic Geochemistry, edited by G. Eglinton and M. T. J. Murphy, pp. 304 – 328, Springer, N. Y.; Degens, E. T., M. Behrendt, B. V. Gotthardt, and E. Reppmann ( 1968 ), Metabolic fractionation of carbon isotopes in marine plankton, Deep Sea Res. Oceanogr. Abstr., 15, 11 – 20.; Deines, P. ( 2002 ), The carbon isotope geochemistry of mantle xenoliths, Earth Sci. Rev., 58, 247 – 248.; de la Rue, S. R., H. D. Rowe, and S. M. Rimmer ( 2007 ), Palynological and bulk geochemical constraints on the paleoceanographic conditions across the Frasnian‐Famennian boundary, New Albany Shale, Indiana, Coal Geol., 71, 72 – 84.; Dickens, G. R., and M. S. Quinby‐Hunt ( 1994 ), Methane hydrate stability in seawater, Geophys. Res. Lett., 21, 2115 – 2118.; Dickens, G. R., J. R. O'Neil, D. K. Rea, and R. M. Owen ( 1995 ), Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965 – 971.; Dumitrescu, M., and S. C. Brassell ( 2006a ), Compositional and isotopic characteristics of organic matter for the early Aptian Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235, 168 – 191.; Dumitrescu, M., and S. C. Brassell ( 2006b ), Biogeochemical assessment of sources of organic matter and paleoproductivity during the early Aptian Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198, Org. Geochem., 36, 1002 – 1022.; Emeis, K.‐C., and H. Weissert ( 2009 ), Tethyan‐Mediterranean organic carbon‐rich sediments from Mesozoic black shales to sapropels, Sedimentology, 56, 247 – 266.; Emerson, S., and J. I. Hedges ( 1988 ), Processes controlling the organic carbon content of open ocean sediments, Paleoceaonography, 3, 621 – 634.; Erbacher, J., J. Thurow, and R. Littke ( 1996 ), Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea‐level changes in mid‐Cretaceous pelagic environments, Geology, 24, 499 – 502.; Erbacher, J., B. T. Huber, R. D. Norris, and M. Markey ( 2001 ), Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period, Nature, 409, 325 – 327.; Erbacher, J., O. Friedrich, P. A. Wilson, H. Birch, and J. Mutterlose ( 2005 ), Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic, Geochem. Geophys. Geosyst., 6, Q06010, doi:10.1029/2004GC000850.; Fogel, M. L., and L. A. Cifuentes ( 1993 ), Isotope fractionation during primary production, in Organic Geochemistry, edited by M. H. Engel and S. A. Macko, pp. 73 – 98, Plenum, N. Y.; Forster, A., M. M. M. Kuypers, S. C. Turgeon, H.‐J. Brumsack, M. R. Petrizzo, and J. S. Sinninghe‐Damsté ( 2008 ), The Cenomanian‐Turonian oceanic anoxic event in the South Atlantic: New insights from a geochemical study of DSDP Site 530A, Palaeogeogr. Palaeoclimatol. Palaeoecol., 267, 256 – 283.; Forster, A., S. Schouten, M. Baas, and J. S. Sinninghe‐Damsté ( 2007 ), Mid‐Cretaceous (Albian‐Santonian) sea surface temperature record of the tropical Atlantic Ocean, Geology, 35, 919 – 922.; Freeman, K. H., and J. M. Hayes ( 1992 ), Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO 2 levels, Global Biogeochem. Cycles, 6, 185 – 198.; Galimov, E. M. ( 2006 ), Isotope organic geochemistry, Org. Geochem., 37, 1200 – 1262.; Gallego‐Torres, D., F. Martinez‐Ruiz, P. A. Meyers, A. Paytan, F. J. Jiminez‐Espejo, and M. Ortega‐Huertas ( 2011 ), Productivity patterns and N‐fixation associated with Pliocene‐Pleistocene sapropels: Paleoceanographic and paleoecological significance, Biogeosciences, 8, 415 – 431.; Grice, K., C. Cao, M. E. Böttcher, R. J. Twitchett, E. Grosjean, R. E. Summons, S. Turgeon, W. Dunning, and Y. Jin ( 2005 ), Photic zone euxinia during the Permian‐Triassic superanoxic event, Science, 307, 706 – 709.; Gröcke, D. R., G. L. Ludvigson, B. L. Witzke, S. A. Robinson, R. M. Joeckel, D. Ufnar, and R. L. Ravn ( 2006 ), Recognizing the Albian‐Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Seaway, Geology, 34, 193 – 196.; Hayes, J. M., B. N. Popp, R. Takigiku, and M. W. Johnson ( 1989 ), An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation, Geochim. Cosmochim. Acta, 53, 2961 – 2972.; Hayes, J. M., H. Strauss, and A. J. Kaufman ( 1999 ), The abundance of 13 C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol., 161, 103 – 125.; Hermoso, M., F. Minoletti, R. E. M. Rickaby, S. P. Hesselbo, F. Baudin, and H. C. Jenkyns ( 2012 ), Dynamics of a stepped carbon‐isotope excursion: Ultra high‐resolution study of Early Toarcian environmental change, Earth Planet. Sci. Lett., 319–320, 45 – 54.; Hesselbo, S. E., D. R. Gröcke, H. C. Jenkyns, C. J. Bjerrum, P. Farrimond, H. S. M. Bell, and O. R. Green ( 2000 ), Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event, Nature, 406, 392 – 395.; Hesselbo, S. P., S. A. Robinson, F. Surlyk, and S. Piasecki ( 2002 ), Terrestrial and marine extinction at the Triassic‐Jurassic boundary synchronized with major carbon‐cycle perturbation: A link to initiation of massive volcanism?, Geology, 30, 251 – 254.; Hesselbo, S. P., H. C. Jenkyns, L. V. Duarte, and L. C. V. Oliveira ( 2007 ), Carbon‐isotopic record of Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal), Earth Planet. Sci. Lett., 253, 455 – 470.; Ho, E. S., P. A. Meyers, and J. L. Mauk ( 1990 ), Organic geochemistry of Keweenawan Nonesuch Formation at White Pine, Michigan, Org. Geochem., 16, 229 – 234.; Huber, B. T., D. A. Hodell, and C. P. Hamilton ( 1995 ), Middle‐Late Cretaceous climate of the southern high latitudes: Stable isotope evidence for minimal equator‐to‐pole thermal gradient, Geol. Soc. Am. Bull., 107, 1164 – 1191.; Huber, B. T., R. D. Norris, and K. G. MacLeod ( 2002 ), Deep‐sea paleotemperature record of extreme warmth during the Cretaceous, Geology, 30, 123 – 126.; Jenkyns, H. C. ( 1988 ), The early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence, Am. J. Sci., 288, 101 – 151.; Jenkyns, H. C. ( 2010 ), Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004, doi:10.1029/2009GC002788.; Jourdan, F., G. Feraud, H. Bertrand, M. K. Watkeys, and P. R. Renne ( 2008 ), The 40 Ar/ 39 Ar ages of the sill complex of the Karoo large igneous province: Implications for the Pliensbachian‐Toarcian climate change, Geochem. Geophys. Geosyst., 9, Q06009, doi:10.1029/2008GC001994.; Kashiyama, Y., N. O. Ogawa, J. Kuroda, M. Shiro, S. Nomoto, R. Tada, H. Kitazato, and N. Ohkouchi ( 2008 ), Diazotrophic cyanobacteria as the major photoautotrophs during mid‐Cretaceous oceanic anoxic events: Nitrogen and carbon specific isotopic evidence from sedimentary porphyrin, Org. Geochem., 39, 532 – 549.; Kaplan, I. R., and A. Nissenbaum ( 1966 ), Anomalous carbon isotope ratios in non volatile organic material, Science, 153, 744 – 745.; Kemp, D. B., A. L. Coe, A. S. Cohen, and L. Swark ( 2005 ), Astronomical pacing of methane release in the Early Jurassic period, Nature, 437, 396 – 399.; Kemp, D. B., A. L. Coe, A. S. Cohen, and G. P. Weedon ( 2011 ), Astronomical forcing and chronology of the early Toarcian (Early Jurassic) oceanic anoxic event in Yorkshire, UK, Paleoceanography, 26, PA4210, doi:10.1029/2011PA002122.; Kenig, F., J. M. Hayes, B. N. Popp, and R. E. Summons ( 1994 ), Isotopic biogeochemistry of the Oxford Clay Formation (Jurassic), UK, J. Geol. Soc. London, 151, 139 – 152.; Kerr, A. C. ( 1998 ), Oceanic plateau formation: A cause of mass extinction and black shale deposition around the Cenomanian‐Turonian boundary?, J. Geol. Soc. London, 155, 619 – 626.; Killops, S. D., and V. Killops ( 2005 ), Introduction to Organic Geochemistry, 2nd ed., Blackwell, Oxford, U. K.; Kolonic, S., et al. ( 2005 ), Black shale deposition on the northwest African shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial, Paleoceanography, 20, PA1006, doi:10.1029/2003PA000950.; Korte, C., and H. W. Kozur ( 2010 ), Carbon‐isotope stratigraphy across the Permian‐Triassic boundary: A review, J. Asian Earth Sci., 39, 215 – 235.; Korte, C., P. Pande, P. Kalia, H. W. Kozur, M. M. Joachimski, and H. Oberhänsli ( 2010 ), Massive volcanism at the Permian‐Triassic boundary and its impacts on the isotopic composition of the ocean and atmosphere, J. Asian Earth Sci., 37, 293 – 311.; Krall, P., C. P. Slomp, A. Foster, and M. M. M. Kuypers ( 2010 ), Phosphorus cycling from the margin to abyssal depths in the proto‐Atlantic during oceanic anoxic event 2, Palaeogeogr. Palaeoclimatol. Palaeoecol., 295, 42 – 54.; Kump, L. R., and M. A. Arthur ( 1999 ), Interpreting carbon‐isotope excursions: Carbonates and organic matter, Chem. Geol., 161, 181 – 198.; Kuroda, J., N. O. Ogawa, M. Tanimizu, M. E. Coffin, H. Tokuyama, H. Kitazato, and N. Ohkouchi ( 2007 ), Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2, Earth Planet. Sci. Lett., 256, 211 – 223.; Küspert, W. ( 1982 ), Environmental change during oil shale deposition as deduced from stable isotope ratios, in Cyclic and Event Stratification, edited by S. Einsele and A. Seilacher, pp. 482 – 501, Springer, N. Y.; Kuypers, M. M. M., P. Blokker, E. C. Hopmans, H. Kinkel, R. D. Pancost, S. Schouten, and J. S. Sinninghe‐Damsté ( 2002b ), Archaeal remains dominate marine organic matter from the early Aptian oceanic anoxic event 1b, Palaeogeogr. Palaeoclimatol. Palaeoecol., 185, 211 – 234.; Kuypers, M. M. M., R. D. Pancost, I. A. Nijenhuis, and J. S. Sinninghe‐Damsté ( 2002a ), Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event, Paleoceanography, 17 ( 4 ), 1051, doi:10.1029/2000PA000569.; Kuypers, M. M. M., Y. van Breugel, S. Schouten, E. Erba, and J. S. Sinninghe‐Damsté ( 2004 ), N 2 ‐fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events, Geology, 32, 853 – 856.; Kvenvolden, K. A. ( 1993 ), Gas hydrates: Geological perspective and global change, Rev. Geophys., 31, 173 – 187.; LaPorte, D. F., C. Holmden, W. P. Patterson, J. D. Loxton, M. J. Melchin, C. E. Mitchell, S. C. Finney, and H. D. Sheets ( 2009 ), Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciations, Palaeogeogr. Palaeoclimatol. Palaeoecol., 276, 182 – 195.; Larson, R. L. ( 1991 ), Geological consequences of superplumes, Geology, 19, 963 – 966.; Larson, R. L., and E. Erba ( 1999 ), Onset of the mid‐Cretaceous greenhouse in the Barremian‐Aptian: Igneous events and the biological, sedimentary, and geochemical responses, Paleoceanography, 14, 663 – 678.; Maynard, J. B. ( 1981 ), Carbon isotopes as indicators of dispersal patterns in Devonian‐Mississipian shales of the Appalachian Basin, Geology, 9, 262 – 265.; Mazzini, A., H. Svenson, H. A. Leanza, F. Corfu, and S. Planke ( 2010 ), Early Jurassic shale chemostratigraphy and U‐Pb ages from the Neuquen Basin (Argentina): Implications for the Toarcian Oceanic Anoxic Event, Earth Planet. Sci. Lett., 297, 633 – 645.; McElwain, J. C., J. Wade‐Murphy, and S. P. Hesselbo ( 2005 ), Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals, Nature, 435, 479 – 482.; Menegatti, A., H. Weissert, R. S. Brown, R. V. Tyson, P. Farrimond, A. Strasser, and M. Caron ( 1998 ), High‐resolution δ 13 C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys, Paleoceanography, 13, 530 – 545.; Menzel, D., E. C. Hopmans, P. F. van Bergen, J. W. de Leeuw, and J. S. Sinninghe‐Damsté ( 2002 ), Development of photic zone euxinia in the eastern Mediterranean Basin during deposition of Pliocene sapropels, Mar. Geol., 189, 215 – 226.; Menzel, D., P. F. van Bergen, S. Schouten, and J. S. Sinninghe‐Damsté ( 2003 ), Reconstruction of changes in export productivity during Pliocene sapropel deposition: A biomarker approach, Palaeogeogr. Palaeoclimatol. Palaeoecol., 190, 273 – 287.; Meyer, K. M., and L. R. Kump ( 2008 ), Oceanic euxinia in Earth history: Causes and consequences, Annu. Rev. Earth Planet. Sci., 36, 251 – 288.; Meyers, P. A. ( 1994 ), Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem. Geol., 114, 289 – 302.; Meyers, P. A. ( 2006 ), Paleoceanographic and paleoclimatic similarities between Mediterranean sapropels and Cretaceous black shales, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235, 305 – 320.; Meyers, P. A., and M. Arnaboldi ( 2008 ), Paleoceanographic implications of nitrogen and organic carbon isotopic excursions in mid‐Pleistocene sapropels from the Tyrrhenian and Levantine Basins, Mediterranean Sea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 266, 112 – 118.; Meyers, P. A., and R. Ishiwatari ( 1993 ), Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments, Org. Geochem., 20, 867 – 900.; Meyers, P. A., M. J. Leenheer, and R. A. Bourbonniere ( 1995 ), Diagenesis of vascular plant organic matter components during burial in lake sediments, Aquat. Geochem., 1, 35 – 52.; Meyers, P. A., S. M. Bernasconi, and A. Forster ( 2006 ), Origins and accumulation of organic matter in Albian to Santonian black shale sequences on the Demerara Rise, South American margin, Org. Geochem., 37, 816 – 1830.; Meyers, P. A., S. M. Bernasconi, and J.‐G. Yum ( 2009 ), 20 My of nitrogen fixation during deposition of mid‐Cretaceous black shales on the Demerara Rise, equatorial Atlantic Ocean, Org. Geochem., 40, 158 – 166.; Milkov, A. V. ( 2004 ), Global estimates of hydrate‐bound gas in marine sediments: how much is really out there? Earth‐Sci. Rev.,, 66, 183 – 197.; Minagawa, M., and E. Wada ( 1986 ), Nitrogen isotope ratios of red tide organisms in the East China Sea: A characterization of biological nitrogen fixation, Mar. Chem., 19, 245 – 259.; Morante, R., and A. Hallam ( 1996 ), Organic carbon isotopic record across the Triassic‐Jurassic boundary in Austria and its bearing on the cause of mass extinction, Geology, 24, 391 – 394.; Morgans‐Bell, H. S., A. L. Coe, S. P. Hesselbo, H. C. Jenkyns, G. P. Weedon, J. E. A. Marshall, R. V. Tyson, and C. J. Williams ( 2001 ), Integrated stratigraphy of the Kimmeridge Clay Formation (Upper Jurassic) based on exposures and boreholes in south Dorsett, UK, Geol. Mag., 138, 511 – 539.; Mort, H. P., T. Adatte, K. B. Föllmi, G. Keller, P. Steinmann, V. Matera, Z. Berner, and D. Stüben ( 2007 ), Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2, Geology, 35, 483 – 486.; Müller, P. J., and E. Suess ( 1979 ), Productivity, sedimentation rate, and sedimentary organic matter in the oceans, Deep Sea Res., Part A, 26, 1347 – 1362.; Negri, A., T. Wagner, and P. A. Meyers ( 2006 ), Introduction to “Causes and consequences of organic carbon burial through time,” Palaeogeogr. Palaeoclimatol. Palaeoecol., 235, 1 – 7.; O'Leary, M. H. ( 1988 ), Carbon isotopes in photosynthesis, Bioscience, 38, 328 – 336.; Pancost, R. D., K. H. Freeman, and M. E. Patzkowsky ( 2013a ), Organic‐matter source variation and the expression of a late Middle Ordovician carbon isotope excursion, Geology, 27, 1015 – 1018.; Pancost, R. D., K. H. Freeman, A. D. Herrmann, M. E. Patzkowsky, L. Ainsaar, and T. Marma ( 2013b ), Reconstructing Late Ordovician carbon cycle variations, Geochim. Cosmochim. Acta, 105, 433 – 454.; Popp, B. N., R. Takigiku, J. M. Hayes, J. W. Louda, and E. W. Baker ( 1989 ), The post‐Paleozoic chronology and mechanism of 13 C‐depletion in primary marine organic matter, Am. J. Sci., 289, 436 – 454.; Prahl, F. G., G. J. de Lange, S. Scholten, and G. L. Cowie ( 1997 ), A case of post‐depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain, Org. Geochem., 27, 141 – 152.; Quan, T. M., E. N. Adigwe, N. Riedinger, and J. Puckette ( 2013 ), Evaluating nitrogen isotopes as proxies for depositional environmental conditions in shales: Comparing Caney and Woodford Shales in Arkoma Basin, Oklahoma, Chem. Geol., 360–361, 231 – 240.; Rau, G. H. ( 1978 ), Carbon‐13 depletion in a subalpine lake: Carbon flow implications, Science, 201, 901 – 902.; Rau, G. H., T. Takahashi, and D. J. DesMarais ( 1989 ), Latitudinal variations in plankton δ 13 C: Implications for CO 2 and productivity in past oceans, Nature, 341, 516 – 518.; Riccardi, A., L. R. Kump, M. A. Arthur, and S. D'Hondt ( 2007 ), Carbon isotopic evidence for chemocline upward excursions during the end‐Permian event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 248, 73 – 81.; Robinson, R. S., and P. A. Meyers ( 2002 ), Biogeochemical changes within the Benguela Current upwelling system during the Matuyama Diaton Maximum: Nitrogen isotope evidence from Ocean Drilling Program Sites 1082 and 1084, Paleoceanography, 17 ( 4 ), 1064, doi:10.1029/2001PA000659.; Robinson, R. S., P. A. Meyers, and R. W. Murray ( 2002 ), Geochemical evidence for variations in delivery and deposition of sediment in Pleistocene light‐dark color cycles under the Benguela Current Upwelling System, Mar. Geol., 180, 249 – 270.; Röhl, H.‐J., A. Schmid‐Röhl, W. Oschmann, A. Frimmel, and L. Schwark ( 2001 ), Erratum to “The Posidonia Shale (Lower Toarcian) of SW‐Germany: An oxygen‐depleted ecosystem controlled by sea level and paleoclimate,” Palaeogeogr. Palaeoclimatol. Palaeoecol., 169, 273 – 299.; Royer, D. L., R. A. Berner, and D. J. Beerling ( 2001 ), Phanerozoic CO 2 change: Evaluating geochemical and paleobiological approaches, Earth Sci. Rev., 54, 349 – 392.; Royer, D. L., R. A. Berner, and J. Park ( 2007 ), Climate sensitivity constrained by CO 2 concentrations over the past 420 million years, Nature, 446, 530 – 532.; Ruhl, M., W. M. Kürschner, and L. Krystyn ( 2009 ), Triassic‐Jurassic organic carbon stratigraphy of key sections in the western Tethys realm (Austria), Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 169 – 187.; Saelen, G., R. V. Tyson, M. R. Talbot, and N. Telnaes ( 1998 ), Evidence of recycling of isotopically light CO 2 (aq) in stratified black shale basins: contrasts between the Whitby Mudstone and Kimmeridge Clay formations, United Kingdom, Geology, 26, 747 – 750.; Saelen, G., R. V. Tyson, N. Telnæs, and M. R. Talbot ( 2000 ), Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic), Palaeogeogr. Palaeoclimatol. Palaeoecol., 163, 163 – 196.; Saun, G., B. Pittet, I. Bour E. Mattioli, L. V. Duarte, and S. Mailliot ( 2008 ), Duration of the Early Toarcian carbon isotopic excursion deduced from spectral analysis: Consequence for its possible causes, Earth Planet. Sci. Lett., 267, 666 – 679.; Schimmelmann, A., M. Lawrence, and G. E. Michael ( 2001 ), Stable isotope ratios of organic H, C, and N in Miocene Monterey Formation, California, in The Monterey Formation: From Rocks to Molecules, edited by C. M. Isaacs and J. Rullkötter, pp. 86, Columbia Univ. Press, N. Y.; Schlanger, S. O., and H. C. Jenkyns ( 1976 ), Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179 – 184.; Schneebell‐Hermann, E., W. M. Kürschner, P. A. Hochuli, D. Ware, H. Weissert, S. M. Bernasconi, G. Roohi, K. ur‐Rehman, N. Goudemand, and H. Bucher ( 2013 ), Evidence for atmospheric carbon injection during the end‐Permian extinction, Geology, 41, 579 – 582.; Schouten, S., W. C. M. Klein Breteler, P. Blokker, N. Shogt, W. I. C. Rijpstra, K. Grice, M. Baas, and J. S. Sinninghe‐Damsté ( 1998 ), Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: Implications for deciphering the carbon isotopic biomarker record, Geochim. Cosmochim. Acta, 62, 1397 – 1406.; Schubert, B. A., and A. H. Jahren ( 2012 ), The effect of atmospheric CO 2 concentration on carbon isotope fractionation in C 3 land plants, Geochim. Cosmochim. Acta, 96, 29 – 43.