يعرض 1 - 20 نتائج من 146 نتيجة بحث عن '"Comportamiento reológico"', وقت الاستعلام: 0.68s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol 12 (2024): Special 5 (December); 96-102 ; Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI; Vol. 12 (2024): Especial 5 (Diciembre); 96-102 ; 2007-6363 ; 10.29057/icbi.v12iEspecial5

    وصف الملف: application/pdf

  4. 4
    Conference
  5. 5
    Conference
  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Dissertation/ Thesis
  11. 11
    Dissertation/ Thesis
  12. 12
    Dissertation/ Thesis

    المؤلفون: Herrera Cardona, Andrea

    المساهمون: Rincón Prat, Sonia Lucía, García Muñoz, María Cristina, Biomasa y Optimización Térmica de Procesos Biot, Innovación tecnológica de procesos agroindustriales para el desarrollo rural (Agrosavia)

    وصف الملف: xiv, 101 páginas; application/pdf

    Relation: Acuña Pinto, H. M. (2012). Extracción, caracterización y aplicación de almidón de ñame variedad blanco (dioscorea trifida) originario de la región amazónica colombiana para la elaboración de productos horneados [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/9785/; Aleixandre, A., & Rosell, C. M. (2022). Starch gels enriched with phenolics: Effects on paste properties, structure and digestibility. Lwt, 161(October 2021), 113350. https://doi.org/10.1016/j.lwt.2022.113350; Alvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis Físico-Químico y Morfológico de Almidones de Ñame, Yuca y Papa y Determinación de la Viscosidad de las Pastas Physicochemical and Morphological Analyses of Yam, Cassava and Potato Starches and Determination of their Viscosity. Información Tecnológica, 19(1), 19–28; Anderson, R. A., Conway, H. F., & Peplinski, A. J. (1970). Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. In Starch - Stärke (Vol. 22, Issue 4). https://doi.org/10.1002/star.19700220408; AOAC. (2019). Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International (21st Editi). AOAC; AOAC INTERNATIONAL. (1997). Official Method 996.11 : Starch (Total) in Cereal Products - Amyloglucosidase- -Amylase Method. First Action 1996 AOAC-AACC Method, 32.2.05a. In Journal of AOAC International.; Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51(12), 3669–3679. https://doi.org/10.1007/s13197-012-0915-5; Aristizábal, J., & Sánchez, T. (2007). Guía técnica para producción y análisis de almidón de yuca. Fao, 163, 134. https://doi.org/9253056770-9789253056774; Ávila Martín, L. (2018). Efecto de la adición de ácido cítrico y proteína de lactosuero en la elaboración de películas basadas en almidón de Canna indica L [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/68666/1015401865.2018.pdf?sequence=1&isAllowed=y; Bertolini, A. (2010). Starches: Characterization, properties, and applications. CRC Press, Taylor & Francys group; Caicedo, G., Rozo, S., & Rengifo, G. (2003). La Achira: Alternativa agroindustrial para áreas de economía campesina. In Corpoica. CORPOICA; Canton Trevisol, T., Oliveira Henriques, R., Antunes Souza, A. J., Cesca, K., & Furigo, A. (2023). Starch- and carboxymethyl cellulose-based films as active beauty masks with papain incorporation. International Journal of Biological Macromolecules, 231(July 2022), 123258. https://doi.org/10.1016/j.ijbiomac.2023.123258; Chai, K., Lu, K., Xu, Z., Tong, Z., & Ji, H. (2018). Rapid and selective recovery of acetophenone from petrochemical effluents by crosslinked starch polymer. Journal of Hazardous Materials, 348(July 2017), 20–28. https://doi.org/10.1016/j.jhazmat.2018.01.034; Chen, N., Wang, Q., Wang, M. X., Li, N. yang, Briones, A. V., Cassani, L., Prieto, M. A., Carandang, M. B., Liu, C., Gu, C. M., & Sun, J. Y. (2022). Characterization of the physicochemical, thermal and rheological properties of cashew kernel starch. Food Chemistry: X, 15(July), 100432. https://doi.org/10.1016/j.fochx.2022.100432; Chen, P., Xie, F., Zhao, L., Qiao, Q., & Liu, X. (2017). Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocolloids, 69, 359–368. https://doi.org/10.1016/j.foodhyd.2017.03.003; Chibuogwu, C., Amadi, B., Anyaegbunam, Z., Emesiani, B., & Ofoefule, S. (2019). Application of Starch and Starch Derivatives in Pharmaceutical Formulation. IntechOpen, 13. http://dx.doi.org/10.1039/C7RA00172J%0Ahttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics%0Ahttp://dx.doi.org/10.1016/j.colsurfa.2011.12.014; Chiranthika, N. N. G., Chandrasekara, A., & Gunathilake, K. D. P. P. (2022). Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocolloids, 124(PA), 107272. https://doi.org/10.1016/j.foodhyd.2021.107272; Choque-Quispe, D., Ligarda-Samanez, C. A., Ramos-Pacheco, B. S., Taipe-Pardo, F., Peralta-Guevara, D. E., & Solano Reynoso, A. M. (2019). Evaluación de las isotermas de sorción de granos y harina de kiwicha (Amaranthus caudatus). Revista ION, 31(2), 67–81. https://doi.org/10.18273/revion.v31n2-2018005; Chuenkamol, B., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2007). Characterization of low-substituted hydroxypropylated canna starch. Food Hydrocolloids, 21(7), 1123–1132. https://doi.org/10.1016/j.foodhyd.2006.08.013; Cisneros, F. H., Zevillanos, R., & Cisneros-Zevallos, L. (2009). Characterization of starch from two ecotypes of andean achira roots (Canna edulis). Journal of Agricultural and Food Chemistry, 57(16), 7363–7368. https://doi.org/10.1021/jf9004687; Craig, S. A. S., Maningat, C. C., Seib, P. A., & Hoseney, R. C. (1989). Starch paste clarity. In Cereal Chem (Vol. 66, Issue 3, pp. 173–182); Cui, C., Jia, Y., Sun, Q., Yu, M., Ji, N., Dai, L., Wang, Y., Qin, Y., Xiong, L., & Sun, Q. (2022). Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydrate Polymers, 291(May). https://doi.org/10.1016/j.carbpol.2022.119624; Digaitis, R., Falkman, P., Oltner, V., Briggner, L. E., & Kocherbitov, V. (2022). Hydration and dehydration induced changes in porosity of starch microspheres. Carbohydrate Polymers, 291(February), 1–10. https://doi.org/10.1016/j.carbpol.2022.119542; Enesi, R. O., Pypers, P., Kreye, C., Tariku, M., Six, J., & Hauser, S. (2022). Effects of expanding cassava planting and harvesting windows on root yield, starch content and revenue in southwestern Nigeria. Field Crops Research, 286(July), 108639. https://doi.org/10.1016/j.fcr.2022.108639; Fan, D., Liu, Y., Hu, B., Lin, L., Huang, L., Wang, L., Zhao, J., Zhang, H., & Chen, W. (2016). Influence of microwave parameters and water activity on radical generation in rice starch. Food Chemistry, 196, 34–41. https://doi.org/10.1016/j.foodchem.2015.09.012; FAOSTAT. (2020). Datos sobre alimentación y agricultura. Producción de cultivos. FAO. http://www.fao.org/faostat/es/#data/QC; Fonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017a). Gelling of amaranth and achira starch blends in excess and limited water. Lwt, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061; Fonseca-Florido, H. A., Gómez-Aldapa, C. A., Velazquez, G., Hernández-Hernández, E., Mata-Padilla, J. M., Solís-Rosales, S. G., & Méndez-Montealvo, G. (2017b). Gelling of amaranth and achira starch blends in excess and limited water. LWT - Food Science and Technology, 81, 265–273. https://doi.org/10.1016/j.lwt.2017.03.061; Fuentes, C., Perez-Rea, D., Bergenståhl, B., Carballo, S., Sjöö, M., & Nilsson, L. (2019). Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules, 125, 829–838. https://doi.org/10.1016/j.ijbiomac.2018.12.120; García Acosta, O. R., Pinzón Fandiño, M. I., & Sánchez Ante, L. T. (2013). Extracción y propiedades funcionales del almidón de yuca, manihot esculenta, variedad ica, como materia prima para la elaboración de películas comestibles. @limentech, Ciencia y Tecnología Alimentaria, 11(1), 13–21. http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/ALIMENTECH/article/view/382; García, Y., Cabrera, D., & Fuenmayor, C. A. (2020). Obtención y caracterización de harinas compuestas de Cucurbita moschata D . y Cajanus cajan L . como fuentes alternativas de proteína y vitamina A Obtaining and characterizing composite flours from Cucurbita moschata D . Obtención de harinas. 69, 89–96. https://doi.org/0.15446/acag.v69n2.80412; Garnica, A. M., Romero, A. R., Cerón, M. D. S., & Prieto Contreras, L. (2010). Características funcionales de almidones nativos extraídos de clones promisorios de papa (Solanum tuberosum l. subespecie andigena ) para la industria de alimentos. Revista Alimentos Hoy, 19(21), 3–15. http://alimentoshoy.acta.org.co/index.php/hoy/article/view/1/10; Granados, C., Guzmán, L., Acevedo, D., Díaz, M., & Herrera, A. (2014). PROPIEDADES FUNCIONALES DEL ALMIDON DE SAGU (Maranta arundinacea). Biotecnología En El Sector Agropecuario y Agroindustrial, 12(2), 90–96. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200010&lng=en&nrm=iso&tlng=es; Guízar Miranda, A., Montañéz Sotoa, J. L., & García Ruiza, I. (2008). Parcial caracterización de nuevos almidones obtenidos del tubérculo de camote del cerro (Dioscorea spp). Revista Iberoamericana de Tecnología Postcosecha, 9(March 2014), 81–88; Gutiérrez, T. J. (2018). Biological Macromolecule Composite Films Made from Sagu Starch and Flour / Poly ( ε-Caprolactone ) Blends Processed by Blending / Thermo. Journal of Polymers and the Environment, 26(9), 3902–3912. https://doi.org/10.1007/s10924-018-1268-6; Hedayati, S., & Niakousari, M. (2018). Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food Hydrocolloids, 81, 1–5. https://doi.org/10.1016/j.foodhyd.2018.02.024; Herceg, Z., Batur, V., Jambrak, A. R., Badanjak, M., Brnčić, S. R., & Lalas, V. (2010). Modification of rheological, thermophysical, textural and some physical properties of corn starch by tribomechanical treatment. Carbohydrate Polymers, 80(4), 1072–1077. https://doi.org/10.1016/j.carbpol.2010.01.026; Hernández Medina, M., Torruco Uco, J. G., Chel Guerrero, L., & Betancur Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101-20612008000300031; Hoover R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267; Hoseney, R. C. (1991). Principios de ciencia y tecnología de los cereales (S. A. ACRIBIA (ed.)). American Association of Cereals Chemists; Huang, Y., Jin, Y., Fang, Y., Li, Y., & Zhao, H. (2013). Simultaneous utilization of non-starch polysaccharides and starch and viscosity reduction for bioethanol fermentation from fresh Canna edulis Ker. tubers. Bioresource Technology, 128, 560–564. https://doi.org/10.1016/j.biortech.2012.09.134; Irani, M., Razavi, S. M. A., Abdel-Aal, E. S. M., Hucl, P., & Patterson, C. A. (2019). Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. International Journal of Biological Macromolecules, 124, 270–281. https://doi.org/10.1016/j.ijbiomac.2018.11.216; Jan, N., Naik, H. R., Gani, G., Bashir, O., Amin, T., Wani, S. M., & Sofi, S. A. (2022). Influence of replacement of wheat flour by rice flour on rheo ‑ structural changes , in vitro starch digestibility and consumer acceptability of low ‑ gluten pretzels. Food Production, Processing and Nutrition, 4(9), 1–12. https://doi.org/10.1186/s43014-022-00088-y; Jaramillo Montenegro, L. P. (2013). Obtención de almidones modificados de achira y caracterrización de sus propiedades de interés en la industria de alimentos [Universdidad del Valle]. https://doi.org/10.1190/segam2013-0137.1; Kaur, L., Singh, J., & Liu, Q. (2007). Starch - A potential biomaterial for biomedical applications. Nanomaterials and Nanosystems for Biomedical Applications, 83–98. https://doi.org/10.1007/978-1-4020-6289-6_5; Kaur, P., Kaur, K., Basha, S. J., & Kennedy, J. F. (2022). Current trends in the preparation, characterization and applications of oat starch — A review. International Journal of Biological Macromolecules, 212(March), 172–181. https://doi.org/10.1016/j.ijbiomac.2022.05.117; Kayode, B. I., Kayode, R. M. O., Salami, K. O., Obilana, A. O., George, T. T., Dudu, O. E., Adebo, O. A., Njobeh, P. B., Diarra, S. S., & Oyeyinka, S. A. (2021). Morphology and physicochemical properties of starch isolated from frozen cassava root. LWT, 147, 111546. https://doi.org/10.1016/j.lwt.2021.111546; Kheto, A., Das, R., Deb, S., Bist, Y., Kumar, Y., Tarafdar, A., & Saxena, D. C. (2022). Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. International Journal of Biological Macromolecules, 222(PA), 636–651. https://doi.org/10.1016/j.ijbiomac.2022.09.191; Kuakpetoon, D., & Wang, Y. J. (2001). Characterization of different starches oxidized by hypochlorite. Starch/Staerke, 53(5), 211–218. https://doi.org/10.1002/1521-379X(200105)53:53.0.CO;2-M; Lan, T., Wang, J., Lei, Y., Lei, J., Sun, X., & Ma, T. (2023). A new source of starchy flour : Physicochemical and nutritional properties of starchy kiwifruit flour. Food Chemistry. https://doi.org/10.1016/j.foodchem.2023.137627; Lares, M., & Pérez, E. (2006). Determination of the mineral fraction and rheological properties of microwave modified starch from canna edulis. Plant Foods for Human Nutrition, 61(3), 109–113. https://doi.org/10.1007/s11130-006-0007-7; Leonel, M., Bolfarini, A. C. B., Rodrigues da Silva, M. J., Souza, J. M. A., & Leonel, S. (2020). Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilization. International Journal of Biological Macromolecules, 150, 1020–1026. https://doi.org/10.1016/J.IJBIOMAC.2019.10.217; Leonel, M., Del Bem, M. S., dos Santos, T. P. R., & Franco, C. M. L. (2021). Preparation and properties of phosphate starches from tuberous roots. International Journal of Biological Macromolecules, 183, 898–907. https://doi.org/10.1016/j.ijbiomac.2021.05.045; Leonel, M., Sarmiento, S., Cereda, M. P., & Guerreiro, L. (2002). Extração E Caracterização Do Amido De Starch Extraction and Characterization of. Brazilian Journal of Food Technology, 5(January), 23–32.; Li, S., Ye, F., Zhou, Y., Lei, L., & Zhao, G. (2019). Rheological and textural insights into the blending of sweet potato and cassava starches: In hot and cooled pastes as well as in fresh and dried gels. Food Hydrocolloids, 89(August 2018), 901–911. https://doi.org/10.1016/j.foodhyd.2018.11.041; Lobo Arias, M., Medina Cano, C. I., Grisales Arias, J. D., Yepes Agudelo, A. F., & Álvarez Guzmán, J. A. (2017). Caracterización y evaluación morfológicas de la colección colombiana de achira, Canna edulis Ker Gawl. (Cannaceae). Corpoica Ciencia y Tecnologia Agropecuaria, 18(1), 47–73. https://doi.org/10.21930/rcta.vol18_num1_art:558; Lourith, N., & Kanlayavattanakul, M. (2023). Sustainable approach to natural makeup cosmetics containing microencapsulated butterfly pea anthocyanins. Sustainable Chemistry and Pharmacy, 32(January), 101005. https://doi.org/10.1016/j.scp.2023.101005; Maldonado, G., Romero, J. V., Mojica, S. L., Garnica, J. P., & Volverás, B. (2018). EVALUACION AGRONOMICA DE SIETE CLONES DE ACHIRA PARA TRES SUBREGIONES PRODUCTORAS DE ALMIDON EN CUNDINAMARCA, HUILA Y NARIÑO, DURANTE EL PERIODO 2016-2017 (Vol. 2, Issue 6). https://www.ptonline.com/articles/how-to-get-better-mfi-results%0Amuhammadkahfi16060474066@mhs.unesa.ac.id; Malki, M. K. S., Wijesinghe, J. A. A. C., Ratnayake, R. H. M. K., & Thilakarathna, G. C. (2023). Characterization of arrowroot (Maranta arundinacea) starch as a potential starch source for the food industry. Heliyon, 9(9), e20033. https://doi.org/10.1016/j.heliyon.2023.e20033; Medina, J. A., & Salas, J. C. (2008). Caracterización morfológica del granulo de almidón nativo: Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, 27, 56–62. https://doi.org/10.16924/revinge.27.6; Mendez, G., Velazquez, G., Fonseca, H. A., Morales, E., & Soler, A. (2022). Insights on the acid hydrolysis of achira (Canna edulis) starch: Crystalline and double-helical structure changes impacting functionality. Lwt, 153(September 2021), 112509. https://doi.org/10.1016/j.lwt.2021.112509; Mex, R., Garma, P., Bolivar, N., & Guillén, M. (2016). análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-. Revista Latinoamericana de Recursos Naturales, 12(2), 74–80. https://www.itson.mx/publicaciones/rlrn/Documents/v12-n2-4-análisis-Proximal-y-Fitoquímico-de-Cinco-Variedades-de-Maíz-del-Estado-de-Campeche-%28México%29.pdf; Minagricultura. (2022). Reporte: Área, producción y rendimiento nacional por cultivo. Biblioteca Digital – Agronet. Estadísticas. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; Montes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J., & Meza, I. (2009). Modelado de las isotermas de desorción del ñame (Dioscorea rotundata). DYNA (Colombia), 76(157), 145–152.; Montoya López, J., & Giraldo Giraldo, G. A. (2010). Caracterización Físico-Química De Harina De Trigo, Masa Y Pan. Revista de Investigaciones Universidad Del Quindío, 20(1), 29–35. https://doi.org/10.33975/riuq.vol20n1.703; NTC. Instituto Colombiano de Normas Técnicas y certificación. (2015). Norma Técnica Colombiana, NTC 440:2015. Productos alimenticios. Métodos de ensayo. (p. 6). ICONTEC. https://doi.org/ICS: 67.050; Obadi, M., Qi, Y., & Xu, B. (2023). High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydrate Polymers, 299(October 2022), 120185. https://doi.org/10.1016/j.carbpol.2022.120185; OCDE/FAO. (2020). OCDE-FAO Perspectivas Agrícolas 2019‑2028. In OCDE-FAO Perspectivas Agrícolas 2019‑2028. Organización para la Cooperación y el Desarrollo Económicos (OCDE) y la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). https://doi.org/10.4060/ca4076es; Ospitia Ferrer, N. A. (2019). Determinación de la actividad desintegrante en tabletas, de almidones obtenidos de plantas nativas colombianas, modificados químicamente por carboximetilación:achira (Canna edulis) y arracacha (Arracacia xanthorrhiza) [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/72854/2/NoraAlejandraOspitiaFerrer.2019.pdf; Otegbayo, B., Oguniyan, D., & Akinwumi, O. (2014). Physicochemical and functional characterization of yam starch for potential industrial applications. Starch/Staerke, 66(3–4), 235–250. https://doi.org/10.1002/star.201300056; Pardo C, O. H., Castañeda, J. C., & Ortiz, C. A. (2013). Caracterización estructural y térmica de almidones provenientes de diferentes variedades de papa. Acta Agronomica, 62(4), 289–295.; Pedrosa, M. T., Sampaio, U. M., & Schmiele, M. (2018). Identification and analysis of starch. In Starches for Food Application: Chemical, Technological and Health Properties. https://doi.org/10.1016/B978-0-12-809440-2.00002-2; Pérez-Santos, D. M., Velazquez, G., Canonico-Franco, M., Morales-Sanchez, E., Gaytan-Martínez, M., Yañez-Limon, J. M., & Herrera-Gomez, A. (2016). Modeling the limited degree of starch gelatinization. Starch/Staerke, 68(7–8), 727–733. https://doi.org/10.1002/star.201500220; Perez, E., & Lares, M. (2005). Chemical Composition , Mineral Profile , and Functional Properties of Canna ( Canna edulis ) and Arrowroot ( Maranta spp .) Starches. Plant Foods for Human Nutrition, 60, 113–116. https://doi.org/10.1007/s11130-005-6838-9; Pérez, E., & Lares, M. (2005). Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches. Plant Foods for Human Nutrition, 60(3), 113–116. https://doi.org/10.1007/s11130-005-6838-9; Peroni, F. H. G., Rocha, T. S., & Franco, C. M. L. (2006). Some structural and physicochemical characteristics of tuber and root starches. Food Science and Technology International, 12(6), 505–513. https://doi.org/10.1177/1082013206073045; Piyachomkwan, K., Chotineeranat, S., Kijkhunasatian, C., Tonwitowat, R., Prammanee, S., Oates, C. G., & Sriroth, K. (2002). Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Industrial Crops and Products, 16(1), 11–21. https://doi.org/10.1016/S0926-6690(02)00003-1; Prieto Chacón, E. M. (2007). Estudios de las transiciones térmicas del almidón y el almidón termoplástico mediante análisis térmicos (DSC y TGA) (Issue 69). Universidad de los Andes.; Priyan V, V., & Narayanasamy, S. (2022). Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by Corn starch nanoparticles: An ecotoxicological assessment. Environmental Toxicology and Pharmacology, 94(September 2021), 103930. https://doi.org/10.1016/j.etap.2022.103930; Przetaczek-Rożnowska, I., Fortuna, T., Wodniak, M., Łabanowska, M., Pająk, P., & Królikowska, K. (2019). Properties of potato starch treated with microwave radiation and enriched with mineral additives. International Journal of Biological Macromolecules, 124, 229–234. https://doi.org/10.1016/j.ijbiomac.2018.11.153; Purwitasari, L., Wulanjati, M. P., Pranoto, Y., & Witasari, L. D. (2023). Characterization of porous starch from edible canna (Canna edulis Kerr.) produced by enzymatic hydrolysis using thermostable α-amylase. Food Chemistry Advances, 2, 100152. https://doi.org/10.1016/J.FOCHA.2022.100152; Radley, J. A. (1976). Industrial uses of starch and its derivatives. https://doi.org/10.1007/978-94-010-1329-1; Rahman, S. M. (2007). Handbook of Food Preservation. In International Journal of Food Science & Technology. Taylor & Francis Group. https://doi.org/10.1046/j.1365-2621.2001.00462.x; Ramírez-Miranda, M., Cruz y Victoria, M. T., Vizcarra-Mendoza, M. G., & Anaya-Sosa, I. (2014). Determination of moisture sorption isotherms and their thermodynamics properties of nixtamalized maize flour. Revista Mexicana de Ingeniera Quimica, 13(1), 165–178.; Rockland, L. B., & Beuchat, L. R. (1987). Water Activity: Theory and Applications to Food (2nd ed.). Marcell Dekker.; Rodríguez, D., Espitia, M., Caicedo, Y., & Baena, Y. (2005). Caracterización de algunas propiedades fisicoquímicas y farmacotécnicas del almidón de arracacha ( Arracacia xanthorriza ). Revista Colombiana de Ciencias Químico-Farmacéuticas, 34(2), 140–146.; Rodríguez, G. (2003). Concepción de un modelo de agroindustria rural para la elaboración de harina y almidón a partir de raíces y tubérculos promisorios, con énfasis en los casos de achira (Canna edulis), arracacha (Arracacia xanthorriza) y ñame (Dioscorea sp.). CORPOICA. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Concepción+de+un+modelo+de+agroindustria+rural+para+la+elaboración+de+harina+y+almidón+a+partir+de+raíces+y+tubérculos+promisorios+,+con+énfasis+en+los+casos+de+achira+(+Canna+edulis+),+arracac; Rodríguez, G., García, H., Camacho, J. H., & Arias, F. L. (2003). El almidón de Achira o Sagú (Canna Edulis, Ker) (Vol. 47, Issue 12, pp. 1086–1093). CORPOICA. https://doi.org/10.1134/S106935131112007X; Rojas Rivera, M. A. (2012). Estudios de las caracterisricas fisiologicas de la yuca (Vol. 1, Issue 1, p. 111).; Rostamabadi, H., Rohit, T., Karaca, A. C., Nowacka, M., Colussi, R., Feksa Frasson, S., Aaliya, B., Valiyapeediyekkal Sunooj, K., & Falsafi, S. R. (2022). How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends in Food Science and Technology, 128(July), 217–237. https://doi.org/10.1016/j.tifs.2022.08.009; Saartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211–221. https://doi.org/10.1016/j.carbpol.2005.05.024; Salas Cuestas, S. Y. (2018). Caracterización fisicoquímica y propiedades funcionales del almidón de arracacha (arracacia xanthorrhiza ) modificado por irradiación UV-C. Universidad del Tolima.; Salazar, D., Arancibia, M., Ocaña, I., Rodríguez-Maecker, R., Bedón, M., López-Caballero, M. E., & Montero, M. P. (2021). Characterization and technological potential of underutilized ancestral andean crop flours from ecuador. Agronomy, 11(9). https://doi.org/10.3390/agronomy11091693; Sánchez Rivera, M. M., & Bello Pérez, L. A. (2008). Efecto de la temperatura en la reacción de oxidación del almidón de plátano (Musa paradisiaca L.). Estimacipon de la energía de activación. Revista Mexicana de Ingeniería Química, 7(3), 275–281; Sanguino, D., & Salazar, Z. (2013). Determinación De Actividad De Agua En Un Alimento. 1, 1–4.; Satin, M. (1998). Functional properties of starches. AGSI Agriculture, 1–9. http://www.academia.edu/download/33271247/starches.pdf; Silveira Thys, R. C., Zapata Noreña, C. P., Ferreira Marczak, L. D., Gomes Aires, A., & Cladera-Olivera, F. (2010). Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. Journal of Food Engineering, 100(3), 468–473. https://doi.org/10.1016/j.jfoodeng.2010.04.033; Singh, N., Ogunseitan, O. A., Wong, M. H., & Tang, Y. (2022). Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustainable Horizons, 2(April), 100016. https://doi.org/10.1016/j.horiz.2022.100016; Singla, D., Singh, A., Dhull, S. B., Kumar, P., Malik, T., & Kumar, P. (2020). Taro starch: Isolation, morphology, modification and novel applications concern - A review. International Journal of Biological Macromolecules, 163, 1283–1290. https://doi.org/10.1016/j.ijbiomac.2020.07.093; Sun, X., Sun, Z., Saleh, A. S. M., Zhao, K., Ge, X., Shen, H., Zhang, Q., Yuan, L., Yu, X., & Li, W. (2021). Understanding the granule, growth ring, blocklets, crystalline and molecular structure of normal and waxy wheat A- and B- starch granules. Food Hydrocolloids, 121(April), 107034. https://doi.org/10.1016/j.foodhyd.2021.107034; Sundaram, B., Kumar, P., Suganthy, N., Kesika, P., & Chaiyasut, C. (2022). Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. Journal of Drug Delivery Science and Technology, 77(July), 103890. https://doi.org/10.1016/j.jddst.2022.103890; Takahashi, S., Maningat, C. C., & Seib, P. A. (1986). Acetylated and hydroxypropylated wheat starch: paste and gel properties compared with modified maize and tapioca starches.pdf. In Cereal Chemistry (Vol. 66, Issue 6, pp. 499–506).; Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch - Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165. https://doi.org/10.1016/j.jcs.2003.12.001; Thitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003a). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I: Chemical composition and physicochemical properties. Carbohydrate Polymers, 53(3), 317–324. https://doi.org/10.1016/S0144-8617(03)00081-X; Thitipraphunkul, K., Uttapap, D., Piyachomkwan, K., & Takeda, Y. (2003b). A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydrate Polymers, 54(4), 489–498. https://doi.org/10.1016/j.carbpol.2003.08.003; Tien, C. (2019). Adsorption Equilibrium Relationships, Isotherm Expressions, Their Determinations, and Predictions. In Introduction to Adsorption. https://doi.org/10.1016/b978-0-12-816446-4.00003-8; Timm, N. da S., Coradi, P. C., Lang, G. H., Ramos, A. H., Cañizares, L. da C. C., Ferreira, C. D., & de Oliveira, M. (2023). Effects of drying temperature of corn from the center and extremities of the corncob on morphology and technological, thermal, and pasting properties of isolated starch. Journal of Food Engineering, 336(June 2022). https://doi.org/10.1016/j.jfoodeng.2022.111215; Utrilla-Coello, R. G., Hernández-Jaimes, C., Carrillo-Navas, H., González, F., Rodríguez, E., Bello-Pérez, L. A., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Acid hydrolysis of native corn starch: Morphology, crystallinity, rheological and thermal properties. Carbohydrate Polymers, 103(1), 596–602. https://doi.org/10.1016/j.carbpol.2014.01.046; Van Hung, P., & Morita, N. (2005). Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohydrate Polymers, 61(3), 314–321. https://doi.org/10.1016/j.carbpol.2005.04.021; Villa, C. C., Galus, S., Nowacka, M., Magri, A., Petriccione, M., & Gutiérrez, T. J. (2020). Molecular sieves for food applications: A review. Trends in Food Science and Technology, 102(January), 102–122. https://doi.org/10.1016/j.tifs.2020.05.027; Vilpoux, O. F., Brito, V. H., & Cereda, M. P. (2019). Starch Extracted From Corms , Roots , Rhizomes , and Tubers for Food Application. In Solid Waste Landfilling. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809440-2.00004-6; Vilpoux, O. F., & Santos Silveira Junior, J. F. (2023). Global production and use of starch. In Starchy Crops Morphology, Extraction, Properties and Applications (pp. 43–66). Elsevier. https://doi.org/10.1016/B978-0-323-90058-4.00014-1; Wang, D., Zheng, X., Liu, W., Sun, Q., Chen, H. H., & Mu, H. (2023). Preparation and characterization of debranched starches: Influence of botanical source and debranching time. Food Chemistry, 407(December 2022), 135141. https://doi.org/10.1016/j.foodchem.2022.135141; Wang, S., Zhang, P., Li, Y., Li, J., Li, X., Yang, J., Ji, M., Li, F., & Zhang, C. (2023). Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers, 307(January), 120627. https://doi.org/10.1016/j.carbpol.2023.120627; Wang, Y., Wang, X., Hu, G., Al-Romaima, A., Liu, X., Bai, X., Li, J., Li, Z., & Qiu, M. (2022). Effect of green coffee oil as a natural active emulsifying agent on the properties of corn starch-based films. Lwt, 170(October), 114087. https://doi.org/10.1016/j.lwt.2022.114087; Watcharatewinkul, Y., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2009). Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydrate Polymers, 75(3), 505–511. https://doi.org/10.1016/j.carbpol.2008.08.018; Wu, C., Sun, R., Zhang, Q., & Zhong, G. (2020). Synthesis and characterization of citric acid esterified canna starch ( RS4 ) by semi-dry method using vacuum-microwave-infrared assistance. Carbohydrate Polymers, 250(June), 116985. https://doi.org/10.1016/j.carbpol.2020.116985; Xiao, W., Shen, M., Ren, Y., Wen, H., Li, J., Rong, L., Liu, W., & Xie, J. (2022). Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocolloids, 123(235), 107136. https://doi.org/10.1016/j.foodhyd.2021.107136; Xie, F., Ren, X., Wu, H., Zhang, H., Wu, Y., Song, Z., & Ai, L. (2022). Pectins of different resources influences cold storage properties of corn starch gels: Structure-property relationships. Food Hydrocolloids, 124(PA), 107287. https://doi.org/10.1016/j.foodhyd.2021.107287; Xie, F., Yuan, C., Zhang, H., Wu, Y., & Ai, L. (2023). Structure-function relationship between galactomannans and their effects on freeze-thaw stability, retrogradation, and texture of corn starch gels during cold storage. Food Chemistry, 398(August 2022), 133915. https://doi.org/10.1016/j.foodchem.2022.133915; Yaruro Cáceres, N. C. (2018). Evaluación de las propiedades fisicoquímicas, térmicas y microestructurales del almidón de Achira (Canna edulis) [Universidad Nacional de Colombia]. In Universidad Nacional de Colombia Facultad. https://repositorio.unal.edu.co/bitstream/handle/unal/69533/1143232250.2019.pdf?sequence=1&isAllowed=y; Yaruro Cáceres, N. C., Suarez Mahecha, H., de Francisco, A., Vásquez Mejia, S. M., & Diaz Moreno, C. (2021). Physicochemical, thermal, microstructural and paste properties comparison of four achira (Canna edulis sp.) starch ecotypes. International Journal of Gastronomy and Food Science, 25(June). https://doi.org/10.1016/j.ijgfs.2021.100380; Zamudio, P. B., Vargas, A., Gutiérrez, F., & Bello, L. A. (2010). Caracterización fisicoquímica de almidones doblemente modificados de plátano. Agrociencia, 44(3), 283–295.; Zárate Polanco et al, L. (2014). Extracción y caracterización de almidón nativo de clones promisorios de papa criolla (Solanum tuberosum, Grupo Phureja). Revista Latinoamericana de La Papa, 18(1), 1–24. https://doi.org/10.37066/ralap.v18i1.206; Zhang, C., Qiu, M., Wang, T., Luo, L., Xu, W., Wu, J., Zhao, F., Liu, K., Zhang, Y., & Wang, X. (2021). Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis. Food Chemistry, 351(11), 129340. https://doi.org/10.1016/j.foodchem.2021.129340; Zhang, H., Jing, W. jiang, Xu, J. ju, Ma, B. ju, Wang, W. lu, Zhang, W. yang, Gu, J. fei, Liu, L. jun, Wang, Z. qin, & Yang, J. chang. (2020). Changes in starch quality of mid-season indica rice varieties in the lower reaches of the Yangtze River in last 80 years. Journal of Integrative Agriculture, 19(12), 2983–2996. https://doi.org/10.1016/S2095-3119(20)63431-1; Zhang, J., Wang, Z., & Shi, X. (2010). Canna edulis Ker By-product : Chemical Composition and Characteristics of the Dietary Fiber. Food Science and Technology International, 16(4), 305–313. https://doi.org/10.1177/1082013209353832; Zhang, J., Wang, Z. W., & Yang, J. A. (2010). Physicochemical properties of Canna edulis ker starch on heat-moisture treatment. International Journal of Food Properties, 13(6), 1266–1279. https://doi.org/10.1080/10942910903061828; Zhang, J., Wang, Z. W., Yu, W. J., & Wu, J. H. (2011). Pectins from Canna edulis Ker residue and their physicochemical characterization. Carbohydrate Polymers, 83(1), 210–216. https://doi.org/10.1016/j.carbpol.2010.07.043; Zhao, T., Pan, X., Ou, Z., Li, Q., & Zhang, W. (2022). Comprehensive evaluation of waterlogging tolerance of eleven Canna cultivars at flowering stage. Scientia Horticulturae, 296(June 2021), 110890. https://doi.org/10.1016/j.scienta.2022.110890; Zhou, L., Chai, K., Yao, X., & Ji, H. (2021). Enhanced recovery of acetophenone and 1-phenylethanol from petrochemical effluent by highly porous starch-based hypercrosslinked polymers. Chemical Engineering Journal, 418(January), 129351. https://doi.org/10.1016/j.cej.2021.129351; https://repositorio.unal.edu.co/handle/unal/86109; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  13. 13
    Dissertation/ Thesis

    المساهمون: Cortés Correa, Farid B., Fenómenos de superficie - Michael Polanyi

    وصف الملف: 103 páginas; application/pdf

    Relation: LaReferencia; Shafiee, S. and E. Topal, When will fossil fuel reserves be diminished? Energy policy, 2009. 37(1): p. 181-189.; Hirsch, R.L., R. Bezdek, and R. Wendling, Peaking of World Oil Production and Its Mitigation. Driving Climate Change: Cutting Carbon from Transportation, 2010: p. 9.; Williams, B., Heavy hydrocarbons playing key role in peak-oil debate, future energy supply. Oil & Gas Journal, 2003. 101(29): p. 20-27.; Chew, K.J., The future of oil: unconventional fossil fuels. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2006): p. 20120324.; Hinkle, A., et al., Correlating the chemical and physical properties of a set of heavy oils from around the world. Fuel, 2008. 87(13): p. 3065-3070.; Meyer, R.F. and E.D. Attanasi, Heavy oil and natural bitumen-strategic petroleum resources. World, 2003. 434: p. 650-7.; Jaspers, H.F., et al. Performance Review of Polymer Flooding in a Major Brown Oil Field of Sultanate of Oman. in SPE Enhanced Oil Recovery Conference. 2013. Society of Petroleum Engineers.; Rana, M.S., et al., A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007. 86(9): p. 1216-1231.; Savage, P.E., M.T. Klein, and S.G. Kukes, Asphaltene reaction pathways. 1. Thermolysis. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(4): p. 1169-1174.; Maity, S., J. Ancheyta, and G. Marroquín, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: a review. Energy & Fuels, 2010. 24(5): p. 2809-2816.; Das, S.K., Vapex: An efficient process for the recovery of heavy oil and bitumen. SPE journal, 1998. 3(03): p. 232-237.; Cook, E.L. and A.W. Talash, In situ combustion process. 1969, Google Patents.; Gateau, P., et al., Heavy oil dilution. Oil & gas science and technology, 2004. 59(5): p. 503-509.; Pebdani, F.N. and W.R. Shu, Heavy oil recovery process using cyclic carbon dioxide steam stimulation. 1986, Google Patents.; Cyr, T., R. Coates, and M. Polikar, Steam-assisted gravity drainage heavy oil recovery process. 2001, Google Patents.; Italo Bahamon, J., et al. Successful Implementation of Hydraulic Fracturing Techniques in High Permeability Heavy Oil Wells in the Llanos Basin-Colombia. in SPE Latin American and Caribbean Petroleum Engineering Conference. 2015. Society of Petroleum Engineers.; Zabala, R., C. Franco, and F. Cortés. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: a field test. in SPE Improved Oil Recovery Conference. 2016. Society of Petroleum Engineers.; Franco, C.A., et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy & Fuels, 2013. 27(12): p. 7336-7347.; Le, D.H., et al., Removal of fracturing gel: A laboratory and modeling investigation accounting for viscous fingering channels. Journal of Petroleum Science and Engineering, 2012. 88: p. 145-155.; Uren, L.C., Petroleum production engineering. 1934: McGraw-Hill Book Company.; Weaver, J.D., N.C. Schultheiss, and F. Liang. Fracturing Fluid Conductivity Damage and Recovery Efficiency. in SPE European Formation Damage Conference & Exhibition. 2013. Society of Petroleum Engineers.; Quintero, L., et al. Cases history studies of production enhancement in cased hole wells using microemulsion fluids. in 8th European Formation Damage Conference. 2009. Society of Petroleum Engineers.; Zelenev, A.S., et al. Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.; Penny, G.S., T.A. Dobkins, and J.T. Pursley. Field study of completion fluids to enhance gas production in the Barnett Shale. in SPE Gas Technology Symposium. 2006. Society of Petroleum Engineers.; Chen, Z., et al. Formation damage induced by fracture fluids in coalbed methane reservoirs. in SPE Asia Pacific Oil & Gas Conference and Exhibition. 2006. Society of Petroleum Engineers.; Huang, T., J.B. Crews, and G. Agrawal. Nanoparticle pseudocrosslinked micellar fluids: Optimal solution for fluid-loss control with internal breaking. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.; Hawkins, G. Laboratory Study of Proppant-Pack Permeability Reduction Caused by Fracturing Fluids Concentrated During Closure. in SPE Annual Technical Conference and Exhibition. 1988. Society of Petroleum Engineers.; Bostrom, N., et al. The time-dependent permeability damage caused by fracture fluid. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.; Huang, T. and J.B. Crews, Nanotechnology applications in viscoelastic surfactant stimulation fluids. SPE Production & Operations, 2008. 23(04): p. 512-517.; Worlow, D. and S. Holditch. Rheologic Measurements of a Crosslinked Fracture Fluid Under Conditions Expected During a Fracture Treatment. in Low Permeability Reservoirs Symposium. 1989. Society of Petroleum Engineers.; Husein, M., et al. Application of In-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.; Christian, C.F., et al. Production Enhancement of Cased-Hole Wells Using Mesophase Fluids. in SPE Saudia Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.; Montgomery, C., Fracturing fluid components. Effective and Sustainable Hydraulic Fracturing. InTech Publishing. Available at: http://www. intechopen. com/books/effective-and-sustainablehydraulic-fracturing (Accessed February 2014), 2013: p. 25-45.; Paktinat, J., et al., Field case studies: Damage preventions through leakoff control of fracturing fluids in marginal/low-pressure gas reservoirs. SPE Production & Operations, 2007. 22(03): p. 357-367.; Dos Santos, J.A.C., R.C.B. De Melo, and G.F. Di Lullo, Case-History Evaluation of RPMs on Conformance Fracturing Applications. Society of Petroleum Engineers.; Diaz, G., et al., Fracture Conformance Treatments Using RPM: Efficiency and Durability Evaluation. Society of Petroleum Engineers.; Castano, R., et al., Relative Permeability Modifier and Scale Inhibitor Combination in Fracturing Process at San Francisco Field in Colombia, South America. Society of Petroleum Engineers.; Leal, J.A., et al., Unconventional RPM Applications in Hydraulic Fracturing. Society of Petroleum Engineers.; Bennetzen, M.V. and K. Mogensen. Novel applications of nanoparticles for future enhanced oil recovery. in International petroleum technology conference. 2014. International Petroleum Technology Conference.; Martín-Palma, R.J. and A. Lakhtakia. Nanotechnology: A Crash Course. 2010. SPIE Bellingham, WA.; Taborda, E.A., et al., Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel, 2016. 184: p. 222-232.; Al-Maamari, R.S. and J.S. Buckley, Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reservoir Evaluation & Engineering, 2003. 6(04): p. 210-214.; Giraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665.; Franco, C.A., et al., Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy & Fuels, 2013. 27(6): p. 2899-2907.; Betancur, S., et al., Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs. Industrial & Engineering Chemistry Research, 2016. 55(21): p. 6122-6132.; Zhang, H., A. Nikolov, and D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy & Fuels, 2014. 28(5): p. 3002-3009.; Lafitte, V., et al. Nanomaterials in fracturing applications. in SPE International Oilfield Nanotechnology Conference and Exhibition. 2012. Society of Petroleum Engineers.; Liang, F., et al., Reduced Polymer Loading, High Temperature Fracturing Fluids using Nano-crosslinkers. Society of Petroleum Engineers.; Guzmán, J.D., et al., Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: Reduction of Methanol loading and the associated formation damage. Journal of Natural Gas Science and Engineering, 2017. 40: p. 347-355.; Al-Muntasheri, G.A. A critical review of hydraulic fracturing fluids over the last decade. in SPE Western North American and Rocky Mountain Joint Meeting. 2014. Society of Petroleum Engineers.; Harris, P.C., Fracturing-fluid additives. Journal of petroleum technology, 1988. 40(10): p. 1,277-1,279.; Barnes, H.A., J.F. Hutton, and K. Walters, An introduction to rheology. Vol. 3. 1989: Elsevier.; Barnes, H.A., A handbook of elementary rheology. 2000.; Montgomery, C. Fracturing fluids. in ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. 2013. International Society for Rock Mechanics and Rock Engineering.; Kirkwood, J.G., F.P. Buff, and M.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. The Journal of Chemical Physics, 1949. 17(10): p. 988-994.; Ewell, R.H. and H. Eyring, Theory of the Viscosity of Liquids as a Function of Temperature and Pressure. The Journal of Chemical Physics, 1937. 5(9): p. 726-736.; Fox, T., et al., Rheology, Vol. 1. Academic Press, New York, 1956: p. 431-523.; Rha, C., Theories and principles of viscosity, in Theory, determination and control of physical properties of food materials. 1975, Springer. p. 7-24.; Sorbie, K., P. Clifford, and E. Jones, The rheology of pseudoplastic fluids in porous media using network modeling. Journal of Colloid and Interface Science, 1989. 130(2): p. 508-534.; Api, R., Recommended Practice on Measuring the Viscous Properties of a Crosslinked Water-based Fracturing Fluid”. 1998, May.; Kuhlbusch, T.A., et al., Nanoparticle exposure at nanotechnology workplaces: a review. Particle and fibre toxicology, 2011. 8(1): p. 22.; Poole Jr, C.P. and F.J. Owens, Introduction to nanotechnology. 2003: John Wiley & Sons.; Sanchez, F. and K. Sobolev, Nanotechnology in concrete–a review. Construction and building materials, 2010. 24(11): p. 2060-2071.; Amanullah, M. and A.M. Al-Tahini. Nano-technology-its significance in smart fluid development for oil and gas field application. in SPE Saudi Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.; Nabhani, N., M. Emami, and A.T. Moghadam. Application of nanotechnology and nanomaterials in oil and gas industry. in AIP Conference Proceedings. 2011. American Institute of Physics.; Esmaeili, A. Applications of nanotechnology in oil and gas industry. in AIP conference proceedings. 2011. American Institute of Physics.; Peng, B., et al., Applications of nanotechnology in oil and gas industry: Progress and perspective. The Canadian Journal of Chemical Engineering, 2018. 96(1): p. 91-100.; Hirasaki, G., Wettability: fundamentals and surface forces. SPE Formation Evaluation, 1991. 6(02): p. 217-226.; Castro, S., Análisis petrofísicos básicos y especiales. 2009: Universidad Nacional de Colombia Sede Medellín.; Abdallah, W., et al., Fundamentals of wettability. Technology, 1986. 38(1125-1144): p. 268.; Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.; Maghzi, A., et al., Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Experimental Thermal and Fluid Science, 2012. 40: p. 168-176.; Nazari Moghaddam, R., et al., Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 2015. 29(4): p. 2111-2119.; Al-Anssari, S., et al., Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel, 2017. 206: p. 34-42.; Dehghan Monfared, A., et al., Potential application of silica nanoparticles for wettability alteration of oil–wet calcite: A mechanistic study. Energy & Fuels, 2016. 30(5): p. 3947-3961.; Cortés, F.B., et al., Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(4): p. 89-106.; Li, R., et al., Experimental investigation of silica-based nanofluid enhanced oil recovery: the effect of wettability alteration. Energy & Fuels, 2017. 31(1): p. 188-197.; Ghannam, M.T., et al., Rheological properties of heavy & light crude oil mixtures for improving flowability. Journal of Petroleum Science and Engineering, 2012. 81: p. 122-128.; Ali, L.H., K.A. Al-Ghannam, and J.M. Al-Rawi, Chemical structure of asphaltenes in heavy crude oils investigated by nmr. Fuel, 1990. 69(4): p. 519-521.; Alboudwarej, H., et al., La importancia del petróleo pesado. Oilfield review, 2006. 18(2): p. 38-58.; Martínez-Palou, R., et al., Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of petroleum science and engineering, 2011. 75(3-4): p. 274-282.; Schmidt, R., Thermal enhanced oil recovery current status and future needs. Chemical Engineering Progress;(USA), 1990. 86(1).; Hong, K., Recent advances in steamflood technology. 1989.; Hart, A., A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 2014. 4(3): p. 327-336.; Sheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing.; Caudle, B. and A. Dyes, Improving miscible displacement by gas-water injection. 1958.; Sheng, J., Enhanced oil recovery field case studies. 2013: Gulf Professional Publishing.; Schramm, L.L., E.N. Stasiuk, and D.G. Marangoni, 2 Surfactants and their applications. Annual Reports Section" C"(Physical Chemistry), 2003. 99: p. 3-48.; Mai, A. and A. Kantzas, Heavy oil waterflooding: effects of flow rate and oil viscosity. Journal of Canadian Petroleum Technology, 2009. 48(03): p. 42-51.; Jiang, Q., Recovery of heavy oil and bitumen using vapex process in homogeneous and heterogenous reservoirs. 1997: University of Calgary.; Montes, D., et al., Development of nanofluids for perdurability in viscosity reduction of extra-heavy oils. Energies, 2019. 12(6): p. 1068.; Montes, D., et al., Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. ACS omega, 2020. 5(10): p. 5085-5097.; Taborda, E.A., V. Alvarado, and F.B. Cortés, Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Conversion and Management, 2017. 148: p. 30-42.; Medina, O.E., et al., Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies, 2019. 12(24): p. 4671.; Shokrlu, Y.H. and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. Journal of Petroleum Science and Engineering, 2014. 119: p. 210-220.; Wei, L., J.-H. Zhu, and J.-H. Qi, Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. Journal of Fuel Chemistry and Technology, 2007. 35(2): p. 176-180.; Montes, D., F.B. Cortés, and C.A. Franco, Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO2 nanoparticles. Dyna, 2018. 85(207): p. 153-160.; Taborda, E.A., et al., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels, 2017. 31(2): p. 1329-1338.; Civan, F., Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. 2015: Gulf Professional Publishing.; MANUEL, G.E.J., NOMBRE DE TESIS: DAÑO A LA FORMACIÓN EN POZOS PETROLEROS. 2014, Universidad Nacional Autónoma de México.; Civan, F., Overview of formation damage. Reservoir Formation Damage, 2016: p. 1-6.; Civan, F. Formation damage mechanisms and their phenomenological modeling-an overview. in European formation damage conference. 2007. Society of Petroleum Engineers.; Economides, M.J. and K.G. Nolte, Reservoir stimulation. Vol. 2. 1989: Prentice Hall Englewood Cliffs, NJ.; Li, L., et al. Vital role of nanotechnology and nanomaterials in the field of oilfield chemistry. in IPTC 2013: International Petroleum Technology Conference. 2013. European Association of Geoscientists & Engineers.; Betancur, S., C.A. Franco, and F.B. Cortés, Magnetite-silica nanoparticles with a core-shell structure for inhibiting the formation damage caused by the precipitation/deposition of asphaltene. Journal of Magnetohydrodynamics and Plasma Research, 2016. 21(3): p. 289-322.; Lopez, D., et al., Cardanol/SiO2 Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part I: Novel Nanocomposite Design Based on SiO2–Cardanol Interactions. Energy & Fuels, 2020. 34(6): p. 7048-7057.; Belcher, C.K., et al. Maximizing production life with the use of nanotechnology to prevent fines migration. in International Oil and Gas Conference and Exhibition in China. 2010. Society of Petroleum Engineers.; Mansour, M., et al., Using nanotechnology to prevent fines migration while production. Petroleum, 2020.; Mady, M.F. and M.A. Kelland, Review of nanotechnology impacts on oilfield scale management. ACS Applied Nano Materials, 2020. 3(8): p. 7343-7364.; López, D., et al., Well injectivity loss during chemical gas stimulation process in gas-condensate tight reservoirs. Fuel, 2021. 283: p. 118931.; Filgueiras, P.R., et al., Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration. Fuel, 2014. 116: p. 123-130.; Institute, E., IP 469: Determination of Saturated, Aromatic and Polar Compounds in Petroleum Products by Thin Layer Chromatography and Flame Ionization Detection. 2006, Energy Institute Publications United Kingdom.; Austrich, A., E. Buenrostro-Gonzalez, and C. Lira-Galeana, ASTM D-5307 and ASTM D-7169 SIMDIS standards: a comparison and correlation of methods. Petroleum Science and Technology, 2015. 33(6): p. 657-663.; Nassar, N.N., A. Hassan, and P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. Journal of colloid and interface science, 2011. 360(1): p. 233-238.; Hosseinpour, N., et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir, 2013. 29(46): p. 14135-14146.; Xu, R., Particle characterization: light scattering methods. Vol. 13. 2001: Springer Science & Business Media.; López, D., et al., Metal oxide nanoparticles supported on macro-mesoporous aluminosilicates for catalytic steam gasification of heavy oil fractions for on-site upgrading. Catalysts, 2017. 7(11): p. 319.; Waseda, Y., E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems. 2011: Springer Science & Business Media.; Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018. 51: p. 53-64.; Clogston, J.D. and A.K. Patri, Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. 2011, Springer. p. 63-70.; Jan, API Recommended Practices for Standard Procedures for Evaluation of Hydraulic Fracturing Fluids , API RP 39, in Dallas. 1983.; Roskes, B., SketchUp 2015 Hands-On: LayOut. 2015.; Guzmán, J.D., et al., Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy & Fuels, 2016. 30(3): p. 2052-2059.; Fink, J., Hydraulic Fracturing Chemicals and Fluids Technology. 2013: Gulf Professional Publishing.; Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018.; Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 1-error analysis. Society of Petroleum Engineers Journal, 1984. 24(02): p. 209-214.; Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 2-algorithms. Society of Petroleum Engineers Journal, 1984. 24(02): p. 215-223.; Sigmund, P. and F. McCaffery, An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media (includes associated papers 8028 and 8777). Society of petroleum engineers journal, 1979. 19(01): p. 15-28.; Mortazavi-Manesh, S. and J.M. Shaw, Thixotropic rheological behavior of Maya crude oil. Energy & fuels, 2014. 28(2): p. 972-979.; Nik, W.W., et al., Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Industrial Crops and Products, 2005. 22(3): p. 249-255.; Simanzhenkov, V. and R. Idem, Crude oil chemistry. 2003: Crc Press.; Musić, S., N. Filipović-Vinceković, and L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Brazilian journal of chemical engineering, 2011. 28(1): p. 89-94.; Mehlhorn, H., Nanoparticles–Definitions, in Nanoparticles in the Fight Against Parasites. 2016, Springer. p. 1-14.; Isernia, L.F., FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite. Materials Research, 2013. 16(4): p. 792-802.; Topsoe, N. and H. Topsoe, FTIR studies of Mo/Al2O3-based catalysts: II. Evidence for the presence of SH groups and their role in acidity and activity. Journal of catalysis, 1993. 139(2): p. 641-651.; Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.; Salopek, B., D. Krasic, and S. Filipovic, Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik, 1992. 4(1): p. 147.; Sposito, G., On points of zero charge. Environmental science & technology, 1998. 32(19): p. 2815-2819.; Ballard, M., R. Buscall, and F. Waite, The theory of shear-thickening polymer solutions. Polymer, 1988. 29(7): p. 1287-1293.; Cortés, F.B., et al., Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energy & Fuels, 2012. 26(3): p. 1725-1730.; Adams, J.J., Asphaltene adsorption, a literature review. Energy & Fuels, 2014. 28(5): p. 2831-2856.; Moghadam, A.M. and M.B. Salehi, Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles. Reviews in Chemical Engineering, 2019. 35(4): p. 531-563.; Al-Zahrani, S.M., A generalized rheological model for shear thinning fluids. Journal of Petroleum Science and Engineering, 1997. 17(3): p. 211-215.; Song, K.-W., Y.-S. Kim, and G.-S. Chang, Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. Fibers and Polymers, 2006. 7(2): p. 129-138.; Laguna, M.T.R., M.P. Tarazona, and E. Saiz, The use of molecular dynamics for the study of solution properties of guar gum. The Journal of chemical physics, 2003. 119(2): p. 1148-1156.; Montoya, T., et al., A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”. Energy & Fuels, 2014. 28(8): p. 4963-4975.; Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87(9-10): p. 1051-1069.; Giraldo, L.J., et al., Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration. Journal of Petroleum Science and Engineering, 2019. 174: p. 40-48.; Li, S. and O. Torsæter. The impact of nanoparticles adsorption and transport on wettability alteration of intermediate wet berea sandstone. in SPE Middle East Unconventional Resources Conference and Exhibition. 2015. OnePetro.; Almubarak, T., et al., Insights on potential formation damage mechanisms associated with the use of gel breakers in hydraulic fracturing. Polymers, 2020. 12(11): p. 2722.; Al-Hajri, S., et al., Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS omega, 2022. 7(9): p. 7431-7443.; Zheng, X., et al., Effect of proppant distribution pattern on fracture conductivity and permeability in channel fracturing. Journal of Petroleum Science and Engineering, 2017. 149: p. 98-106.; Byrne, M.T. and C.A. Mcphee. The extinction of skin. in SPE International Conference and Exhibition on Formation Damage Control. 2012. SPE.; Yudin, I.K. and M.A. Anisimov, Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions, in Asphaltenes, Heavy Oils, and Petroleomics. 2007, Springer. p. 439-468.; Nassar, N.N., et al., Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates. Industrial & Engineering Chemistry Research, 2015. 54(33): p. 8201-8211.; Canh, S.T., et al., Organic and inorganic formation damage and remediation. Petrovietnam Journal, 2017. 6: p. 39-44.; Budd, N., et al. The Remediation of Oilfield Asphaltenic Deposits: Near-Well-Bore Application. in SPE International Conference and Exhibition on Formation Damage Control. 2018. SPE.; Mehana, M. and M.O. Bashir, Diagnostic fracture injection test (DFIT). Petroleum Today, 2015. 11: p. 26.; Earlougher Jr, R.C., R. Kersch, and H. Ramey Jr, Wellbore effects in injection well testing. Journal of Petroleum Technology, 1973. 25(11): p. 1244-1250.; Gringarten, A., H. Ramey Jr, and R. Raghavan, Applied pressure analysis for fractured wells. Journal of Petroleum Technology, 1975. 27(07): p. 887-892.; Yew, C.H. and X. Weng, Mechanics of hydraulic fracturing. 2014: Gulf Professional Publishing.; Cleary, J.M., Hydraulic fracture theory. Vol. 251. 1958: Division of the Illinois State Geological Survey.; Barree, R.D., V.L. Barree, and D. Craig. Holistic fracture diagnostics. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 2007. SPE.; Cheremisinoff, N.P. and A. Davletshin, Hydraulic fracturing operations: handbook of environmental management practices. 2015: John Wiley & Sons.; Martinez, A., C. Wright, and T. Wright. Field Application of Real-Time Hydraulic Fracturing Analysis. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 1993. SPE.; Montgomery, C.T. and M.B. Smith, Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 2010. 62(12): p. 26-40.; https://repositorio.unal.edu.co/handle/unal/86422; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  14. 14
    Academic Journal
  15. 15
    Book

    المساهمون: Ministerio de Economía y Competitividad

    Relation: HAC 2018. V Congreso Iberoamericano de hormigón autocompactable y hormigones especiales; info:eu-repo/grantAgreement/MINECO//BIA2013-47876-C2-1-P/ES/REOLOGIA DE CEMENTOS Y HORMIGONES ALCALINOS. BASES CIENTIFO-TECNOLOGICAS PARA SU OPTIMIZACION Y NORMALIZACION/; HAC2018 - V Congreso Iberoamericano de Hormigón Autocompactable y Hormigones Especiales; March 05-06,2018; Valencia, Spain; http://ocs.editorial.upv.es/index.php/HAC-BAC/HAC2018/paper/view/6002; urn:isbn:9788490485910; http://hdl.handle.net/10251/101082

  16. 16
    Academic Journal
  17. 17
    Conference
  18. 18
    Academic Journal
  19. 19
  20. 20
    Conference