-
1Report
المؤلفون: Li, Heng-Yu, Jia, Hao-Jun, Zhao, Yan-Zhen, Svyatkin, L. A., Chernov, I. P.
مصطلحات موضوعية: Condensed Matter - Materials Science
URL الوصول: http://arxiv.org/abs/1811.09856
-
2Report
المؤلفون: Tang, Qicheng, Svyatkin, L. A., Chernov, I. P.
المصدر: Phys. Rev. B 99, 205152 (2019)
مصطلحات موضوعية: Condensed Matter - Materials Science
URL الوصول: http://arxiv.org/abs/1806.00847
-
3Academic Journal
المؤلفون: Alekseenko, I. V., Kondratyeva, L. G., Chernov, I. P., Sverdlov, E. D.
المصدر: Russian Journal of Genetics; Dec2024, Vol. 60 Issue 12, p1603-1610, 8p
مصطلحات موضوعية: MEDICAL personnel, COVID-19 pandemic, MEDICAL sciences, METABOLIC reprogramming, SARS-CoV-2
-
4Academic Journal
المؤلفون: Alekseenko, I. V., Kondratyeva, L. G., Chernov, I. P., Sverdlov, E. D.
المصدر: Russian Journal of Bioorganic Chemistry; Dec2024, Vol. 50 Issue 6, p2209-2218, 10p
مصطلحات موضوعية: IMMUNOLOGIC memory, MEDICAL sciences, LONG-term memory, NATURAL immunity, LIFE sciences
-
5Academic Journal
المؤلفون: Koroteev, Yuri M., Silkin, Igor V., Chernov, I. P., Chulkov, Eugene V., Silkin, Viatcheslav M.
المساهمون: Ministry of Education and Science of the Russian Federation, Saint Petersburg State University, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España)
مصطلحات موضوعية: Nickel, Plasmons, Hydrides, Electronic excitations
وصف الملف: application/pdf
Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105488GB-I00/ES/EXCITACIONES ELECTRONICAS Y DINAMICA EN SUPERFICIES Y NANOESTRUCTURAS/; Publisher's version; https://doi.org/10.3390/nano13010141; Sí; Nanomaterials 13(1): 141 (2023); http://hdl.handle.net/10261/342117
-
6Academic Journal
المؤلفون: Denisova, E. I., Zvereva, O. V., Lipin, D. V., Makhmudov, R. R., Chernov, I. N., Denislamova, E. S., Shipilovskikh, D. A., Igidov, N. M.
المصدر: Russian Journal of Organic Chemistry; Nov2024, Vol. 60 Issue 11, p2162-2169, 8p
مصطلحات موضوعية: CHEMICAL synthesis, ALKYLAMINES, HYDRAZIDES, AMINES, ACIDS
-
7Academic Journal
المؤلفون: Komarov, R. N., Shumakov, D. V., Chernov, I. I., Belov, V. A., Chragyan, V. A., Ismailbaev, A. M., Tlisov, B. M., Enginoev, S. T., Kadyraliev, B. K., Didyk, V. P., Tarayan, M. V., Kurasov, N. O., Abzalova, D. M., Richmond, Owusu, Benetti, Frederico
المصدر: Journal of Cardiac Surgery; 10/30/2024, Vol. 2024, p1-8, 8p
مصطلحات موضوعية: AORTIC valve surgery, SURGICAL therapeutics, PEDIATRIC therapy, PEDIATRIC surgery, AORTIC valve
-
8Academic Journal
Alternate Title: ВПЛИВ ТЕМПЕРАТУРИ СПІКАННЯ НА МІКРОСТРУКТУРУ ТА ВЛАСТИВОСТІ КЕРАМІКИ З ОКСИДУ ЦИРКОНІЮ ДЛЯ ПОТРЕБ ЯДЕРНОЇ ЕНЕРГЕТИКИ
المؤلفون: Chernov, I. O.1, Lobach, K. V.1 lobach0709@gmail.com, Sayenko, S. Yu.1, Kolodiy, I. V.1, Lytovchenko, S. V.2, Pylypenko, O. V.1, Kholomieiev, H. O.1, Mazilin, B. O.2
المصدر: East European Journal of Physics. 2024, Issue 4, p208-214. 7p.
مصطلحات موضوعية: *SINTERING, *ZIRCONIUM oxide, *NUCLEAR energy, *CERAMICS, *MICROSTRUCTURE, *HARDNESS testing
-
9Academic Journal
المؤلفون: R. Zelchan V., A. Medvedeva A., O. Bragina D., A. Ribina N., A. Ryabova I., V. Chernov I., E. Choynzonov L., Р. Зельчан В., А. Медведева А., А. Рыбина Н., О. Брагина Д., А. Рябова И., В. Чернов И., Е. Чойнзонов Л.
المساهمون: Работа выполнена в рамках Федеральной целевой программы «Развитие фармацевтической и медицинской промышленности Российской Федерации на период до 2020 года и дальнейшую перспективу» по теме «Доклинические исследования радиофармацевтического препарата на основе меченной 99mТс производной глюкозы для радионуклидной диагностики онкологических заболеваний». Шифр «2015-14-№ 08-0008». Государственный контракт 14. № 08.11.0033 от 19.05.2015.
المصدر: Bulletin of Siberian Medicine; Том 20, № 4 (2021); 131-142 ; Бюллетень сибирской медицины; Том 20, № 4 (2021); 131-142 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-4
مصطلحات موضوعية: nuclear medicine, brain tumor, dementia, radionuclide diagnosis, radiopharmaceutical, ядерная медицина, опухоль головного мозга, деменция, радионуклидная диагностика, радиофармацевтичекий препарат
وصف الملف: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/4590/3111; Katsanos A.H., Alexiou G.A., Fotopoulos A.D., Jabbour P., Kyritsis A.P., Sioka C. Performance of 18F-FDG, 11C-Methionine, and 18F-FET PET for Glioma Grading: A Meta-analysis. Clin. Nucl. Med. 2019; 44 (11): 864–869. DOI:10.1097/RLU.0000000000002654.; Horky L.L., Treves S.T. PET and SPECT in brain tumors and epilepsy. Neurosurg. Clin. N. Am. 2011; 22 (2): 169–1884. DOI:10.1016/j.nec.2010.12.003. 3. Roelcke U. Imaging brain tumors with PET, SPECT, and ultrasonography. Handb. Clin. Neurol. 2012; 104: 135–142. DOI:10.1016/B978-0-444-52138-5.00010-4.; Inubushi M., Tatsumi M., Yamamoto Y. et al. European research trends in nuclear medicine. Ann. Nucl. Med. 2018; 32 (9): 579–582. DOI:10.1007/S12149-018-1303-7.; Lotan E., Friedman K.P., Davidson T., Shepherd T.M. Brain 18F-FDG-PET: Utility in the Diagnosis of Dementia and Epilepsy. Isr. Med. Assoc. J. 2020; 22 (3): 178–184.; Karpuz M., Silindir-Gunay M., Ozer A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm. 2018; 33 (2): 39–51. DOI:10.1089/CBR.2017.2378.; Terada H., Kamata N. Contribution of the combination of (201)Tl SPECT and (99m)T(c)O(4)(–) SPECT to the differential diagnosis of brain tumors and tumor-like lesions. A preliminary report. J. Neuroradiol. 2003; 30 (2): 91–94.; Le Jeune F.P., Dubois F., Blond S., Steinling M. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J. Neurooncol. 2006; 77 (2): 177–183. DOI:10.1007/s11060-005-9018-8.; Cecchin D., Chondrogiannis S., Della Puppa A. et al. Presurgical 99mTc-sestamibi brain SPET/CT versus SPET: a comparison with MRI and histological data in 33 patients with brain tumours. Nucl. Med. Commun. 2009; 30 (9): 660–668. DOI:10.1097/MNM.0b013e32832ea9b7.; Shibata Y., Yamamoto T., Takano S. et al. Direct comparison of thallium-201 and technetium-99m MIBI SPECT of a glioma by receiver operating characteristic analysis. J. Clin. Neurosci. 2009; 16 (2): 264–269. DOI:10.1016/J.JOCN.2008. 04.010.; Choi J.Y., Kim S.E., Shin H.J., Kim B.T., Kim J.H. Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J. Neurooncol. 2000; 46 (1): 63–70. DOI:10.1023/a:1006391701818.; Alexiou G.A., Fotopoulos A.D., Tsiouris S., Voulgaris S., Kyritsis A.P. 99mTc-tetrofosmin SPECT for the evaluation of cerebral lesions. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37 (12): 2403–2004. DOI:10.1007/s00259-010-1602-2.; Fan Y.X., Luo R.C., Li G.P., Huang K. Di Yi Jun Yi Da Xue Xue Diagnostic value of 99mTc-MIBI brain SPECT for brain glioma. Bao. 2004; 24 (10): 1184–1185.; Bleichner-Perez S., Le Jeune F., Dubois F., Steinling M. 99mTc-MIBI brain SPECT as an indicator of the chemotherapy response of recurrent, primary brain tumors. Nucl. Med. Commun. 2007; 28 (12): 888–894. DOI:10.1097/MNM.0b013e3282f1646c.; Palumbo B., Lupattelli M., Pelliccioli G.P., Chiarini P., Moschini T.O., Palumbo I., Siepi D., Buoncristiani P., Nardi M., Giovenali P., Palumbo R.Q. Association of 99mTc-MIBI brain SPECT and proton magnetic resonance spectroscopy (1H-MRS) to assess glioma recurrence after radiotherapy J. Nucl. Med. Mol. Imaging. 2006; 50 (1): 88–93.; Langen K.J., Coenen H.H., Roosen N., Kling P., Muzik O., Herzog H., Kuwert T., Stöcklin G., Feinendegen L.E. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J. Nucl. Med. 1990; 31 (3): 281–286.; Hellwig D., Ketter R., Romeike B.F., Sell N., Schaefer A., Moringlane J.R., Kirsch C.M., Samnick S. Validation of brain tumour imaging with p-[123I]iodo-L-phenylalanine and SPECT. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (9): 1041– 1049. DOI:10.1007/s00259-005-1807-y.; Pauleit D., Floeth F., Tellmann L., Hamacher K., Hautzel H., Müller H.W., Coenen H.H., Langen K.J. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodoalpha-methyl-L-tyrosine SPECT in brain tumors. J. Nucl. Med. 2004; 45 (3): 374–381.; Langen K.J., Roosen N., Coenen H.H., Kuikka J.T., Kuwert T., Herzog H., Stöcklin G., Feinendegen L.E. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J. Nucl. Med. 1991; 32 (6): 1225–1229.; Rainer E., Wang H., Traub-Weidinger T., Widhalm G., Fueger B., Chang J., Zhu Z., Marosi C., Haug A., Hacker M., Li S. The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (13): 2396–2403. DOI:10.1007/s00259-018-4088-y.; Hellwig D., Ketter R., Romeike B.F., Schaefer A., Farmakis G., Grgic A., Moringlane J.R., Steudel W.I., Kirsch C.M., Samnick S. Prospective study of p-[123I]-iodo-L-phenylalanine and SPECT for the evaluation of newly diagnosed cerebral lesions: specific confirmation of glioma. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37 (12): 2344–2353. DOI:10.1007/s00259-010-1572-4.; Sun D., Liu Q., Liu W., Hu W. Clinical application of 201Tl SPECT imaging of brain tumors. J. Nucl. Med. 2000; 41 (1): 5–10.; Kahn D., Follett K.A., Bushnell D.L., Nathan M.A., Piper J.G., Madsen M., Kirchner P.T. Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. Am. J. Roentgenol. 1994; 163 (6): 1459–1465. DOI:10.2214/ajr.163.6.7992747.; Sugo N., Yokota K., Kondo K., Harada N., Aoki Y., Miyazaki C., Nemoto M., Kano T., Ohishi H., Seiki Y. Early dynamic 201Tl SPECT in the evaluation of brain tumours. Nucl. Med. Commun. 2006; 27 (2): 143–149. DOI:10.1097/01.mnm.0000191853.34574.3f. PMID: 16404227.; Otsuka H., Shinbata H., Hieda M., Yamashita K., Kitamura H., Senba T., Kashihara K., Tagashira H. The retention indices of 201Tl-SPECT in brain tumors. Ann. Nucl. Med. 2002; 16 (7): 455–459. DOI:10.1007/BF02988641.; Nose A., Otsuka H., Nose H., Otomi Y., Terazawa K., Harada M. Visual and semi-quantitative assessment of brain tumors using (201)Tl-SPECT. J. Med. Invest. 2013; 60 (1-2): 121–126. DOI:10.2152/jmi.60.121.; Suchorska B., Tonn J.C., Jansen N.L. PET imaging for brain tumor diagnostics. Curr. Opin. Neurol. 2014; 27 (6): 683–688. DOI:10.1097/WCO.0000000000000143.; How Does It Work? Positron emission tomography. BMJ. 2003; 28: 326 (7404): 1449. DOI:10.1136/bmj.326.7404.1449.; Karpuz M., Silindir-Gunay M., Ozer A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm. 2018; 33 (2): 39–51.; Di Chiro G., Brooks R.A., Patronas N.J. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumor. Ann. Neurol. 1984; 15: 138–146. DOI:10.1002/ana.410150727.; La Fougere C., Suchorska B., Bartenstein P. et al. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol. 2011; 13 (8): 806–819. DOI:10.1093/neuonc/nor054.; Chen W., Silverman D.H., Delaloye S. et al. 18F-FDOPA PET imaging of brain tumours: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med. 2006; 47 (6): 904–911.; Kosaka N., Tsuchida T., Uematsu H. et al. 18F-FDG PET of common enhancing malignant brain tumors. Am. J. Roentgenol. 2008; 190 (6): 365–369. DOI:10.2214/AJR.07.2660.; Yamashita K., Yoshiura T., Hiwatashi A. et al. Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (18)F-fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013; 55 (2): 135–143. DOI:10.1007/s00234-012-1089-6.; Omuro A.M., Leite C.C., Mokhtari K. et al. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 2006; 5 (11): 937– 948. DOI:10.1016/S1474-4422(06)70597-X.; Prieto E., Marti-Climent J.M., Dominguez-Prado I. et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J. Nucl. Med. 2011; 52 (6): 865–872.; Lee J.W., Kang K.W., Park S.H., Lee S.M., Paeng J.C., Chung J.K., Lee M.C., Lee D.S. 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. European Journal of Nuclear Medicine and Molecular Imaging. 2009; 36 (10): 1574–1582. DOI:10.1007/s00259-009-1133-x.; Koç Z.P., Kara P.Ö., Dağtekin A. Detection of unknown primary tumor in patients presented with brain metastasis by F-18 fluorodeoxyglucose positron emission tomography/computed tomography. CNS Oncol. 2018; 7 (2): CNS12. DOI:10.2217/cns-2017-0018.; Colavolpe C., Metellus P., Mancini J. et al. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J. Neurooncol. 2012; 107 (3): 527–535. DOI:10.1007/s11060-011-0771-6.; Colavolpe C., Chinot O., Metellus P. et al. FDG-PET predicts survival in recurrent high-grade gliomas treated with bevaci zumab and irinotecan. Neuro Oncol. 2012; 14 (5): 649–657. DOI:10.1093/neuonc/nos012.; Spence A.M., Muzi M., Graham M.M. et al. 2-[(18)F]Fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin. Cancer Res. 2002; 8 (4): 971–979.; Charnley N., West C.M., Barnett C.M., et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006; 66 (2): 331–338. DOI:10.1016/J.IJROBP.2006.04.043.; Caroline I., Rosenthal M.A. Imaging modalities in highgrade gliomas: pseudoprogression, recurrence, or necrosis? J. Clin. Neurosci. 2012; 19 (5): 633–637. DOI:10.1016/j.jocn.2011.10.003.; Nihashi T., Dahabreh I.J., Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. Am. J. Neuroradiol. 2013; 34 (5): 944–950. DOI:10.3174/ajnr. A3324.; Basu S., Alavi A. Molecular imaging (Pet) of brain tumors? Nneuroimaging. Clin. N. Amer. 2009; 19 (4): 625–646. DOI:10.1016/j.nic.2009.08.012.; Katsanos A.H., Alexiou G.A., Fotopoulos A.D., Jabbour P., Kyritsis A.P., Sioka C. Performance of 18F-FDG, 11C-Methionine, and 18F-FET PET for Glioma Grading: A Meta-analysis. Clinical Nuclear Medicine. 2019; 44 (11): 864–869. DOI:10.1097/RLU.0000000000002654.; Glaudemans A.W., Enting R.H., Heesters M.A. et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging. 2013; 40 (4): 615–635. DOI:10.1007/s00259-012-2295-5.; He Q., Zhang L., Zhang B., Shi X., Yi C., Zhang X. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma. BMC Cancer. 2019: 19 (1): 332. DOI:10.1186/s12885-019-5560-1.; Takenaka S., Asano Y., Shinoda J. et al. Comparison of (11) C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol. Med. Chir. (Tokyo). 2014; 54 (4): 280–289. DOI:10.2176/nmc.oa2013-0117.; Filss C.P., Galldiks N., Stoffels G., Sabel M., Wittsack H.J., Turowski B., Antoch G., Zhang K., Fink G.R., Coenen H.H. et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J. Nucl. Med. 2014; 55 (4): 540–545. DOI:10.2967/jnumed.113.129007.; Kebir S., Weber M., Lazaridis L. et al. Hybrid 11C-MET PET/MRI combined with «machine learning» in glioma diagnosis according to the revised glioma WHO classification 2016. Clin. Nucl. Med. 2019; 44 (3): 214–220. DOI:10.1097/RLU.0000000000002398.; Jung T.Y., Jung S., Ryu H.S. et al. The application of magnetic resonance imaging-deformed 11c-methionine-positron emission tomography images in stereotactic radiosurgery. Stereotact. Funct. Neurosurg. 2019; 97 (4): 217–224. DOI:10.1159/000503732.; Hotta M., Minamimoto R., Miwa K. 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci. Rep. 2019; 9 (1): 156–166. DOI:10.1038/s41598-019-52279-2.; Skvortsova T.Y., Gurchin A.F., Savintseva Z.I. C-methionine PET in assessment of brain lesions in patients with glial tumors after combined treatment. Zh. Vopr. Neirokhir. im. N.N. Burdenko. 2019; 83 (2): 27–36. DOI:10.17116/neiro20198302127.; Dandois V., Rommel D., Renard L. et al. Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J. Neuroradiol. 2010; 37 (2): 89–97. DOI:10.1016/J.NEURAD.2009.04.005.; Schinkelshoek M., Lopci E., Clerici E. et al. Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors. Tumori. 2018; 104 (6): 480. DOI:10.1700/1778.19268.; Goldbrunner R., Ruge M., Kocher M., Lucas C.W., Galldiks N., Grau S. The treatment of gliomas in adulthood. Dtsch. Arztebl. Int. 2018; 115 (20-21): 356–364. DOI:10.3238/arztebl.2018.0356.; Borbély K., Nyáry I., Tóth M., Ericson K., Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J. Neurol. Sci. 2006; 246 (1-2): 85–94. DOI:10.1016/j.jns.2006.02.015.; Xu W., Gao L., Shao A., Zheng J., Zhang J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget. 2017; 8 (53): 91030–91039. DOI:10.18632/oncotarget.19024.; Muoio B., Giovanella L., Treglia G. Recent Developments of 18F-FET PET in Neurooncology. Curr. Med. Chem. 2018; 25 (26): 3061–3073. DOI:10.2174/0929867325666171123202644.; Jansen N.L., Suchorska B., Wenter V. et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J. Nucl. Med. 2014; 55 (2): 198–203. DOI:10.2967/JNUMED.113.122333.; Jansen N.L., Suchorska B., Wenter V. et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J. Nucl. Med. 2015; 56 (1): 9–15. DOI:10.2967/jnumed.114.144675.; Jansen N.L., Graute V., Armbruster L. et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (6): 1021–1029. DOI:10.1007/s00259-012-2109-9.; Galldiks N., Langen K.J., Holy R. et al. Assessment of treatment response in patients with glioblastoma using O-(2-18Ffluoroethyl)-L-tyrosine PET in comparison to MRI. J. Nucl. Med. 2012; 53 (7): 1048–1057. DOI:10.2967/jnumed.111.098590.; Suchorska B., Jansen N.L., Linn J. et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology. 2015; 84 (7): 710–719. DOI:10.1212/WNL.0000000000001262.; Floeth F.W., Pauleit D., Sabel M. et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J. Nucl. Med. 2007; 48 (4): 519–527. DOI:10.2967/jnumed.106.037895.; Walter F., Cloughesy T., Walter M.A. et al. Impact of 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician’s perspective. J. Nucl. Med. 2012; 53 (3): 393–398. DOI:10.2967/jnumed.111.095711.; Fueger B.J., Czernin J., Cloughesy T. et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J. Nucl. Med. 2010; 51 (10): 1532–1538. DOI:10.2967/jnumed.110.078592.; Shen G., Ma H., Pang F., Ren P., Kuang A. Correlations of 18F-FDG and 18F-FLT uptake on PET with Ki-67 expression in patients with lung cancer: a meta-analysis. Acta Radiol. 2018; 59 (2): 188–195. DOI:10.1177/0284185117706609.; Chen W., Delaloye S., Silverman D.H.S. et al. Predicting treatment response of malignant gliomas to bevacizumaband irinotecan by imaging proliferation with [18F] fluoro-thymidine positron emission tomography: a pilot study. J. Clin. Oncol. 2007; 25 (30): 4714–4721. DOI:10.1200/JCO.2006.10.5825.; Bekaert L., Valable S., Lechapt-Zalcman E. et al. [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (8): 1383–1392. DOI:10.1007/s00259-017-3677-5.; Van Dongen G.A., Huisman M.C., Boellaard R. et al. 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? Q. J. Nucl. Med. Mol. Imaging. 2015; 59 (1): 18–38.; Kim H., Lee S.J., Davies-Venn C. et al. 64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: pharmacokinetic study in a rat model of chronic MI. Nucl. Med. Commun. 2016; 37 (2): 188–196. DOI:10.1097/MNM.0000000000000417.; Siitonen R., Peuhu E., Autio A. et al. 68Ga-DOTA-E[c(RGDfK)]2 PET imaging of SHARPIN-regulated integrin activity in mice. J. Nucl. Med. 2019; 60 (10): 1380–1387. DOI:10.2967/jnumed.118.222026.; Soldevilla-Gallardo I., Medina-Ornelas S.S., Davanzo J., Pedrero-Piedras R. 68Ga-DOTA-E-[c(RGDfK)]2 positron emission tomography-computed tomography in the evaluation of hepatic hemangioendothelioma epithelioid. Rare Tumors. 2019; 11: 2036361319831097. DOI:10.1177/2036361319831097; Leе H.-K., Moon D.-H., Ryu J.-S. et al. Radioisotope-labeled complexes of glucose derivatives and kits for the preparation thereof. Patent United States. 2003. Pub. No. 2003/0120046 A.; Cheng D., Rusckowski M., Wang Y., Liu Y., Liu G., Liu X., Hnatowich D. A brief evaluation of tumor imaging in mice with 99mTc-glucarate including a comparison with 18F-FDG. Curr. Radiopharm. 2011; 4 (1): 5–9. DOI:10.2174/1874471011104010005.; Chen X., Li L., Liu F., Liu B. Synthesis and biological evaluation of technetium-99m-labeled deoxyglucose derivatives as imaging agents for tumor. Bioorg. Med. Chem. Lett. 2006; 16 (21): 5503–5506. DOI:10.1016/j.bmcl.2006.08.050.; Chen Y., Huang Z.W., He L., Zheng S.L. et al. Synthesis and evaluation of a technetium-99m-labeled diethylentriaminepentaacetate-deoxyglucose complex 99mTc-DTPA-DG as a potential imaging modality for tumors. Fppl. Radiat. and Isot. 2006; 64 (3): 342–347. DOI:10.1016/j.apradiso.2005.08.004.; Seidensticker M., Ulrich G., Muehlberg F.L., Pethe A., Grosser O.S., Steffen I.G., Stiebler M., Goldschmidt J., Smalla K.H., Seidensticker R., Ricke J., Amthauer H., Mohnike K. Tumor cell uptake of 99mTc-labeled 1-thio-β-D-glucose and 5-thio-D-glucose in comparison with 2-deoxy-2-[18F]fluoro-D-glucose in vitro: kinetics, dependencies, blockage and cell compartment of accumulation. Mol. Imaging Biol. 2014; 16 (2): 189–198. DOI:10.1007/s11307-013-0690-3.; Dapueto R., Aguiar R.B., Moreno M., Machado C.M., Marques F.L., Gambini J.P., Chammas R., Cabral P., Porcal W. Technetium glucose complexes as potential cancer imaging agents. Bioorg. Med. Chem. Lett. 2015; 25 (19): 4254–4259. DOI:10.1016/j.bmcl.2015.07.098.; Chernov V.I., Triss S.V., Skuridin V.S., Lishmanov Yu.B. Thallium-199: a new radiopharmaceutical for myocardial perfusion imaging. The International Journal of Cardiovascular Imaging. 1996; 12 (2): 119–126. DOI:10.1007/bf01880743.; Chernov V.I., Sinilkin I.G., Zelchan R.V., Medvedeva A.A., Lyapunov A.Yu., Bragina O.D., Varlamova N.V., Skuridin V.S. Experimental Study of 99mTc-Aluminum Oxide Use for Sentinel Lymph Nodes Detection. AIP Conference Proceedings. 2016; 1760: 020012. DOI:10.1063/1.4960231; Zeltchan R., Medvedeva А., Sinilkin I., Bragina O., Chernov V., Stasyuk E., Rogov A., Il’ina E., Larionova L., Skuridin V., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conf. Series: Materials Science and Engineering. 2016; 135: 012054. DOI:10.1088/1757-899X/135/1/012054.; Zeltchan R., Chernov V., Medvedeva А., Sinilkin I., Stasyuk Е., Rogov А., Il’ina Е., Skuridin V., Bragina O. Study of a Glucose Derivative Labeled with Technetium-99m as Potential Radiopharmaceutical for Cancer Diagnosis. Congress of the European Association of Nuclear Medicine, Barcelona, Spain in October 15–19, 2016. Eur. J. Nucl. Med. Mol. Imaging. 2016; 43 (Suppl. 1): 466.; Bragina O., Witting E. von, Garousi J., Zelchan R., Sandström M.,Medvedeva A., Orlova A., Doroshenko A., Vorobyeva A., Lindbo S., Borin J., Tarabanovskaya N., Sorensen J., Hober S., Chernov V., Tolmachev V. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. Journal of Nuclear Medicine. 2020. DOI:10.2967/jnumed.120.248799. URL: http://jnm.snmjournals.org/content/early/2020/08/13/jnumed.120.248799.abstract.; Stasyuk E., Sкuridin V., Rogov A., Zelchan R., Sadkin V., Varlamova N., Nestеrov E. 99mTc-labeled monosaccharide kits: Development methods and quality control. Scientific Reports. 2020; 10 (1): 5121. DOI:10.1038/s41598-020-61707-7. URL: https://www.nature.com/articles/s41598-020-61707-7.pdf.; Shivamurthy V.K., Tahari A.K., Marcus C., Subramaniam R.M. Brain FDG PET and the diagnosis of dementia. Am. J. Roentgenol. 2015; 204 (1): 76–85. DOI:10.2214/AJR.13.12363.; Nestor P.J., Altomare D., Festari C., Drzezga A., Rivolta J., Walker Z., Bouwman F., Orini S., Law I., Agosta F., Arbi zu J., Boccardi M., Nobili F., Frisoni G.B. EANM-EAN task force for the prescription of fdg-pet for dementing neurodegenerative disorders. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (9): 1509–1525. DOI:10.1007/s00259-018-4035-y.; Wilson H., Pagano G., Politis M. Dementia spectrum disorders: lessons learnt from decades with PET research. Journal of Neural. Transmission. 2019; 126 (3): 233–251. DOI:10.1007/s00702-019-01975-4.; Zukotynski K., Kuo P.H., Mikulis D., Rosa-Neto P., Strafella A.P., Subramaniam R.M., Black S.E. PET/CT of Dementia. Am. J. Roentgenol. 2018; 211 (2): 246–259. DOI:10.2214/AJR.18.19822.; Masdeu J.C. Neuroimaging of diseases causing dementia. Neurol. Clin. 2020; 38 (1): 65–94. DOI:10.1016/j.ncl.2019.08.003.; Pagano G., Niccolini F., Politis M. Imaging in Parkinson’s disease. Clin. Med. (Lond.). 2016; 16 (4): 371–375. DOI:10.7861/clinmedicine.16-4-371.; Uzuegbunam B.C., Librizzi D., Hooshyar Yousefi B. PET Radiopharmaceuticals for Alzheimer’s disease and Parkinson’s disease diagnosis, the current and future landscape. Molecules. 2020; 25 (4): 977. DOI:10.3390/molecules25040977.; https://bulletin.tomsk.ru/jour/article/view/4590
-
10Academic Journal
المؤلفون: Kalinin, P., Shkarubo, A., Astafieva, L., Kutin, M., Fomichev, D., Sharipov, O., Andreev, D., Chernov, I., Badmaeva, I., Klochkova, I.
المصدر: Brain and Spine ; volume 2, page 101540 ; ISSN 2772-5294
-
11Academic Journal
المؤلفون: Benedek G., Bernasconi M., Campi D., Silkin I. V., Chernov I. P., Silkin V. M., Chulkov E. V., Echenique P. M., Toennies J. P., Anemone G., Al Taleb A., Miranda R., Farias D.
المساهمون: Benedek, G, Bernasconi, M, Campi, D, Silkin, I, Chernov, I, Silkin, V, Chulkov, E, Echenique, P, Toennies, J, Anemone, G, Al Taleb, A, Miranda, R, Farias, D
مصطلحات موضوعية: surface physic, plasmon, atom scattering, density functional theory, FIS/03 - FISICA DELLA MATERIA
Relation: info:eu-repo/semantics/altIdentifier/pmid/33452337; info:eu-repo/semantics/altIdentifier/wos/WOS:000609782400027; volume:11; issue:1; numberofpages:12; journal:SCIENTIFIC REPORTS; http://hdl.handle.net/10281/330241; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85099460180
-
12Report
المؤلفون: Ivanov, Yu. F., Koval, N. N., Krysina, O. V., Baumbach, T., Doyle, S., Slobodskyy, T., Timchenko, N. A., Galimov, R. M., Chernov, I. P., Shmakov, A. N.
مصطلحات موضوعية: Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics
URL الوصول: http://arxiv.org/abs/1101.1754
-
13Academic Journal
المصدر: Inland Water Biology; Jun2024, Vol. 17 Issue 3, p472-482, 11p
-
14Academic Journal
المؤلفون: Rubcova N., Perov S. Yu., Chernov I. A., Makarova-Zemlyanskaya E. N.
-
15Academic Journal
المؤلفون: A. Chernyshova L., L. Kоlomiets A., V. Chernov I., Y. Trushuk M., D. Podolko V., E. Mаrchenko S., T. Chekalkin L., V. Аntipov A., А. Чернышова Л., Л. Коломиец А., В. Чернов И., Ю. Трущук М., Д. Подолько В., Е. Марченко С., Т. Чекалкин Л., В. Антипов А.
المصدر: Siberian journal of oncology; Том 20, № 5 (2021); 179-183 ; Сибирский онкологический журнал; Том 20, № 5 (2021); 179-183 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-5
مصطلحات موضوعية: cervical cancer, trachelectomy, implant, sentinel lymph nodes, reproductive function, рак шейки матки, трахелэктомия, имплантат, сторожевые лимфатические узлы, репродуктивная функция
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1931/923; Hurria A., Levit L.A., Dale W., Mohile S.G., Muss H.B., Fehrenbacher L., Magnuson A., Lichtman S.M., Bruinooge S.S., Soto-Perez-deCelis E., Tew W.P., Postow M.A., Cohen H.J.; American Society of Clinical Oncology. Improving the Evidence Base for Treating Older Adults With Cancer: American Society of Clinical Oncology Statement. J Clin Oncol. 2015 Nov 10; 33(32): 3826–33. doi:10.1200/JCO.2015.63.0319.; Department of Economic and Social Affairs Population Division. Concise Report on the World Population Situation in 2014. New York: United Nations, 2014. 38 p.; Население России до 2030 г.: демографические и функциональные прогнозы [Интернет]. URL: http://www.demoscope.ru/weekly/knigi/ns_09/acrobat/glava6.pdf (дата обращения: 15.12.2016).; Robova H., Rob L., Halaska M.J., Pluta M., Skapa P. Review of neoadjuvant chemotherapy and trachelectomy: which cervical cancer patients would be suitable for neoadjuvant chemotherapy followed by fertility-sparing surgery? Curr Oncol Rep. 2015; 17(5): 446. doi:10.1007/s11912-015-0446-0.; Чернышова А.Л., Коломиец Л.А., Красильников С.Э. Органосохраняющее лечение при инвазивном раке шейки матки. Сибирский онкологический журнал. 2011; 2: 72–78.; Антипов В.А., Новикова Е.Г., Балахонцева О.С., Шевчук А.С. Особенности функциональной и анатомической реабилитации после радикальной абдоминальной трахелэктомии. Проблемы репродукции. 2010; 1: 103–107.; Willows K., Lennox G., Covens A. Fertility-sparing management in cervical cancer: balancing oncologic outcomes with reproductive success. Gynecol Oncol Res Pract. 2016 Oct 21; 3: 9. doi:10.1186/s40661-016-0030-9.; Чернышова А.Л., Коломиец Л.А., Синилкин И.Г., Чернов В.И., Ляпунов А.Ю. Оптимизация подходов к выбору объема хирургического лечения у больных раком шейки матки (роль исследования сторожевых лимфоузлов). Вопросы онкологии. 2016; 62(6): 807–111.; Антипов В.А., Новикова Е.Г., Балахонцева О.С., Шевчук А.С. Радикальная абдоминальная трахелэктомия: технические аспекты. Вопросы онкологии. 2010; 56(1): 36–42.; Чернышова А.Л., Ляпунов А.Ю., Коломиец Л.А., Чернов В.И., Синилкин И.Г. Определение сторожевых лимфатических узлов при хирургическом лечении рака шейки матки. Сибирский онкологический журнал. 2012; 3: 28–33.; https://www.siboncoj.ru/jour/article/view/1931
-
16Academic Journal
المؤلفون: V. Vyazmin V., R. Zukov A., N. Chanchikova G., E. Levchenko A., V. Chernov I., В. Вязьмин В., Р. Зуков А., Н. Чанчикова Г., Е. Левченко А., В. Чернов И.
المساهمون: Работа выполнена при финансовой поддержке проекта 075-15-2019-1925 Министерства науки и высшего образования РФ. Постановление Правительства РФ 220.2019.
المصدر: Siberian journal of oncology; Том 20, № 5 (2021); 115-122 ; Сибирский онкологический журнал; Том 20, № 5 (2021); 115-122 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-5
مصطلحات موضوعية: positron emission computed tomography, prostate cancer, primary diagnosis, metastases, response to treatment, PSMA, позитронная эмиссионная компьютерная томография, рак предстательной железы, первичная диагностика, метастазы, ответ на лечение, псмА
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1925/910; Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М., 2019. 250.; Turpin A., Girard E., Baillet C., Pasquier D., Olivier J., Villers A., Puech P., Penel N. Imaging for Metastasis in Prostate Cancer: A Review of the Literature. Front Oncol. 2020 Jan 31; 10: 55. doi:10.3389/fonc.2020.00055.; Lopes P.M., Sepúlveda L., Ramos R., Sousa P. The role of transrectal ultrasound in the diagnosis of prostate cancer: new contributions. Radiol Bras. 2015 Jan-Feb; 48(1): 7–11. doi:10.1590/0100-3984.2013.0010.; Tangel M.R., Rastinehad A.R. Advances in prostate cancer imaging. F1000Res. 2018; 7: F1000 Faculty Rev-1337. doi:10.12688/f1000research.14498.1.; Ahmed H.U., El-Shater Bosaily A., Brown L.C., Gabe R., Kaplan R., Parmar M.K., Collaco-Moraes Y., Ward K., Hindley R.G., Freeman A., Kirkham A.P., Oldroyd R., Parker C., Emberton M.; PROMIS study group. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017 Feb 25; 389(10071): 815–822. doi:10.1016/S0140-6736(16)32401-1.; Sarkar S., Das S. A Review of Imaging Methods for Prostate Cancer Detection. Biomed Eng Comput Biol. 2016 Mar 2; 7(Suppl 1): 1–15. doi:10.4137/BECB.S34255.; Коссов Ф.А., Камолов Б.Ш., Абдуллин И.И., Баранова Е.О., Шориков М.А., Панов В.О., Тюрин И.Е., Матвеев В.Б., Григорьев Н.А., Долгушин Б.И. Применение МРТ/УЗИ fusion-биопсии в диагностике клинически значимого рака предстательной железы. Онкоурология. 2017; 13(3): 61–70. doi:10.17650/1726-9776-2017-13-3-61-70.; National Comprehensive Cancer Network [Internet]. URL: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (cited 09.04.2020).; Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойнзонов Е.Л. Ядерная медицина в диагностике и адресной терапии злокачественных новообразований. Бюллетень сибирской медицины. 2018; 17(1): 220–231. doi:10.20538/1682-0363-2018-1-220-231.; Глушков Е.А., Кисличенко А.Г., Рамазанова М.С. Эффективность ОФЭКТ/КТ в обнаружении костных метастазов при раке молочной железы и простаты. Сибирский онкологический журнал. 2015; (6): 19–25.; Shen B., Huang T., Sun Y., Jin Z., Li X.F. Revisit 18F-fluorodeoxyglucose oncology positron emission tomography: «systems molecular imaging» of glucose metabolism. Oncotarget. 2017 Jun 27; 8(26): 43536–43542. doi:10.18632/oncotarget.16647.; Shen G., Liu J., Jiang X., Li F., Zeng H., Huang R., Kuang A. 18F-FDG PET/CT is still a useful tool in detection of metastatic extent in patients with high risk prostate cancer. Int J Clin Exp Med 2018; 11 (7): 6905–6913.; Shiiba M., Ishihara K., Kimura G., Kuwako T., Yoshihara H., Sato H., Kondo Y., Tsuchiya S., Kumita S. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. Ann Nucl Med. 2012 Feb; 26(2): 138–45. doi:10.1007/s12149-011-0551-6.; Jadvar H. Is There Use for FDG-PET in Prostate Cancer? Semin Nucl Med. 2016 Nov; 46(6): 502–506. doi:10.1053/j.semnuclmed.2016.07.004.; Minamimoto R., Senda M., Jinnouchi S., Terauchi T., Inoue T. Detection of prostate cancer by an FDG-PET cancer screening program: results from a Japanese nationwide survey. Asia Ocean J Nucl Med Biol. 2014; 2(1): 19–23.; Jadvar H. Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 2013 Jul; 40 Suppl 1(0 1): S5–10. doi:10.1007/s00259-013-2361-7.; Apolo A.B., Pandit-Taskar N., Morris M.J. Novel Tracers and Their Development for the Imaging of Metastatic Prostate Cancer. J Nucl Med. 2008 Dec; 49 (12): 2031–2041. doi:10.2967/jnumed.108.050658.; Farsad M., Schiavina R., Castellucci P., Nanni C., Corti B., Martorana G., Canini R., Grigioni W., Boschi S., Marengo M., Pettinato C., Salizzoni E., Monetti N., Franchi R., Fanti S. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005 Oct; 46(10): 1642–9.; Souvatzoglou M., Weirich G., Schwarzenboeck S., Maurer T., Schuster T., Bundschuh R.A., Eiber M., Herrmann K., Kuebler H., Wester H.J., Hoefler H., Gschwend J., Schwaiger M., Treiber U., Krause B.J. The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res. 2011 Jun 1; 17(11): 3751–9. doi:10.1158/1078-0432.CCR-10-2093.; Beheshti M., Imamovic L., Broinger G., Vali R., Waldenberger P., Stoiber F., Nader M., Gruy B., Janetschek G., Langsteger W. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010 Mar; 254(3): 925–33. doi:10.1148/radiol.09090413.; Schiavina R., Scattoni V., Castellucci P., Picchio M., Corti B., Briganti A., Franceschelli A., Sanguedolce F., Bertaccini A., Farsad M., Giovacchini G., Fanti S., Grigioni W.F., Fazio F., Montorsi F., Rigatti P., Martorana G. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008 Aug; 54(2): 392–401. doi:10.1016/j.eururo.2008.04.030.; Wondergem M., van der Zant F.M., van der Ploeg T., Knol R.J. A literature review of 18F-fluoride PET/CT and 18F-choline or 11Ccholine PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun. 2013; 34(10): 935–45. doi:10.1097/MNM.0b013e328364918a.; Beheshti M., Rezaee A., Geinitz H., Loidl W., Pirich C., Langsteger W. Evaluation of Prostate Cancer Bone Metastases with 18F-NaF and 18F-Fluorocholine PET/CT. J Nucl Med. 2016 Oct; 57(Suppl 3): 55S–60S. doi:10.2967/jnumed.115.169730.; Асланиди И.П.,Пурсанова Д.М.,Мухортова О.В.,Сильченков А.В., Рощин Д.А., Корякин А.В., Иванов С.А., Широкорад В.И. ПЭТ/КТ с 11С-холином в диагностике рецидива рака предстательной железы у пациентов с биохимическим прогрессированием. Онкоурология. 2015; 11(3): 79–86. doi:10.17650/1726-9776-2015-11-3-79-86.; Giovacchini G.,Picchio M.,Coradeschi E.,Bettinardi V.,Gianolli L., Scattoni V., Cozzarini C., Di Muzio N., Rigatti P., Fazio F., Messa C. Predictive factors of [(11)C] choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010 Feb; 37 (2): 301–9. doi:10.1007/s00259-009-1253-3.; Treglia G., Ceriani L., Sadeghi R., Giovacchini G., Giovanella L. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med. 2014 May; 52(5): 725–33. doi:10.1515/cclm-2013-0675.; Fuccio C., Schiavina R., Castellucci P., Rubello D., Martorana G., Celli M., Malizia C., Profitos M.B., Marzola M.C., Pettinato V., Fanti S. Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study. Eur J Nucl Med Mol Imaging. 2011; 38(11): 1985–9. doi:10.1007/s00259-011-1867-0.; Брагина О.Д., Чернов В.И., Ларькина М.С., Зельчан Р.В., Синилкин И.Г., Медведева А.А. Простатический специфический мембранный антиген: современные возможности в диагностике рака предстательной железы Молекулярная медицина. 2018; 16(4): 3–8. doi:10.29296/24999490-2018-04-01.; Afshar-Oromieh A., Zechmann C.M., Malcher A., Eder M., Eisenhut M., Linhart H.G., Holland-Letz T., Hadaschik B.A., Giesel F.L., Debus J., Haberkorn U. Comparison of PET imaging with a (68)Galabelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014 Jan; 41(1): 11–20. doi:10.1007/s00259-013-2525-5.; Maurer T., Gschwend J.E., Rauscher I., Souvatzoglou M., Haller B., Weirich G., Wester H.J., Heck M., Kübler H., Beer A.J., Schwaiger M., Eiber M. Diagnostic Efficacy of (68)Gallium-PSMA Positron Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130 Consecutive Patients with Intermediate to High Risk Prostate Cancer. J Urol. 2016 May; 195(5): 1436–1443. doi:10.1016/j.juro.2015.12.025.; Mottet N., Bellmunt J., Bolla M., Briers E., Cumberbatch M.G., De Santis M., Fossati N., Gross T., Henry A.M., Joniau S., Lam T.B., Mason M.D., Matveev V.B., Moldovan P.C., van den Bergh R.C.N., Van den Broeck T., van der Poel H.G., van der Kwast T.H., Rouvière O., Schoots I.G., Wiegel T., Cornford P. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2017 Apr; 71(4): 618–629. doi:10.1016/j.eururo.2016.08.003.; Afshar-Oromieh A., Debus N., Uhrig M., Hope T.A., Evans M.J., Holland-Letz T., Giesel F.L., Kopka K., Hadaschik B., Kratochwil C., Haberkorn U. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur J Nucl Med Mol Imaging. 2018 Nov; 45(12): 2045–2054. doi:10.1007/s00259-018-4079-z.; Meller B., Bremmer F., Sahlmann C.O., Hijazi S., Bouter C., Trojan L., Meller J., Thelen P. Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res. 2015 Dec; 5(1): 66. doi:10.1186/s13550-015-0145-8.; Ettala O., Malaspina S., Tuokkola T., Luoto P., Löyttyniemi E., Boström P.J., Kemppainen J. Prospective study on the effect of shortterm androgen deprivation therapy on PSMA uptake evaluated with 68Ga-PSMA-11 PET/MRI in men with treatment-naïve prostate cancer. Eur J Nucl Med Mol Imaging. 2020 Mar; 47(3): 665–673. doi:10.1007/s00259-019-04635-7.; Liu C., Liu T., Zhang Z., Zhang N., Du P., Yang Y., Liu Y., Yu W., Li N., Gorin M.A., Rowe S.P., Zhu H., Yan K., Yang Z. 68Ga-PSMA PET/ CT Combined with PET/Ultrasound-Guided Prostate Biopsy Can Diagnose Clinically Significant Prostate Cancer in Men with Previous Negative Biopsy Results. J Nucl Med. 2020 Sep; 61(9): 1314–1319. doi:10.2967/jnumed.119.235333.; Bouchelouche K., Choyke P.L. Advances in prostate-specific membrane antigen PET of prostate cancer. Curr Opin Oncol. 2018 May; 30(3): 189–196. doi:10.1097/CCO.0000000000000439.; Zaman M.U., Fatima N., Zaman A., Sajid M., Zaman U., Zaman S. Diagnostic Challenges in Prostate Cancer and 68Ga-PSMA PET Imaging: A Game Changer? Asian Pac J Cancer Prev. 2017 Oct 26; 18(10): 2625–2628. doi:10.22034/APJCP.2017.18.10.2625.; https://www.siboncoj.ru/jour/article/view/1925
-
17Academic Journal
المؤلفون: O. Bragina D., V. Chernov I., R. Zelchan V., A. Medvedeva A., I. Frolova G., E. Dudnikova A., V. Goldberg E., V. Tolmachev M., О. Брагина Д., В. Чернов И., Р. Зельчан В., А. Медведева А., И. Фролова Г., Е. Дудникова А., В. Гольдберг Е., В. Толмачев М.
المساهمون: This research was financially supported by the Ministry of Science and Higher education of Russian Federetion (grant № 075-15-2019-1925) «Development of target molecules based on scaffold proteins for the diagnosis and therapy of malignant neoplasms: theranostic approach»., Работа выполнена в рамках гранта Министерства науки и высшего образования, соглашение № 075- 15-2019-1925 по теме «Разработка таргетных молекул на основе каркасных белков для диагностики и терапии злокачественных новообразований: тераностический подход».
المصدر: Siberian journal of oncology; Том 20, № 5 (2021); 170-178 ; Сибирский онкологический журнал; Том 20, № 5 (2021); 170-178 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-5
مصطلحات موضوعية: breast cancer, epidermal growth factor receptor Her2/neu, molecular imaging, alternative scaffold proteins, рак молочной железы, рецептор эпидермального фактора роста Her2/neu, молекулярная визуализация, альтернативные каркасные белки
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1930/915; Поляновский О.Л., Лебеденко Е.Н., Деев С.М. ERBB онкогены – мишени моноклональных антител. Биохимия. 2012; 77 (3): 289–311.; Zavyalova M., Vtorushin S.V., Telegina N., Krakhmal N., Savelieva O., Tashireva L., Bragina O., Denisov E.V., Kaigorodova E.V., Slonimskaya E., Choynzonov E.L., Perelmuter V.M. Clinicopathological features of nonspecific invasive breast cancer according to its molecular subtypes. Experimental Oncology. 2016: 38 (2): 122–127.; Гервас П.А., Литвяков Н.В., Попова Н.О., Добродеев А.Ю., Тарасова А.С., Юмов Е.Л., Иванова Ф.Г., Черемисина О.В., Афанасьев С.Г., Гольдберг В.Е., Чердынцева Н.В. Проблемы и перспективы совершенствования молекулярно-генетической диагностики для назначения таргетных препаратов в онкологии. Сибирский онкологический журнал. 2014; 2: 46–55.; Babyshkina N., Malinovskaya E., Patalyak S., Bragina O., Tarabanovskaya N., Doroshenko A., Slonimskaya E., Perelmuter V., Cherdyntseva N. Neoadjuvant chemotherapy for different molecular breast cancer subtypes: a retrospective study in Russian population. Med Oncol. 2014 Sep; 31(9): 165. doi:10.1007/s12032-014-0165-7.; Wolff A.C., Hammond M.E., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M., Bilous M., Fitzgibbons P., Hanna W., Jenkins R.B., Mangu P.B., Paik S., Perez E.A., Press M.F., Spears P.A., Vance G.H., Viale G., Hayes D.F.; American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013 Nov 1; 31(31): 3997–4013. doi:10.1200/JCO.2013.50.9984.; Raica M., Cîmpean A.M., Ceausu R.A., Fulga V., Nica C., Rudico L., Saptefrati L. Hormone receptors and HER2 expression in primary breast carcinoma and corresponding lymph node metastasis: do we need both? Anticancer Res. 2014 Mar; 34(3): 1435–40.; Lower E.E., Glass E., Blau R., Harman S. HER-2/neu expression in primary and metastatic breast cancer. Breast Cancer Res Treat. 2009 Jan; 113(2): 301–6. doi:10.1007/s10549-008-9931-6.; Turner N.H., Di Leo A. HER2 discordance between primary and metastatic breast cancer: assessing the clinical impact. Cancer Treat Rev. 2013 Dec; 39(8): 947–57. doi:10.1016/j.ctrv.2013.05.003.; Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойнзонов Е.Л. Ядерная медицина в диагностике и адресной терапии злокачественных образований. Бюллетень сибирской медицины. 2018; 17(1): 220–231. doi:10.20538/1682-0363-2018-1-220-231.; Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr Pharm Des. 2008; 14(28): 2999–3019. doi:10.2174/138161208786404290.; Tolmachev V., Orlova A., Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol Biol. 2014; 1060: 309–30. doi:10.1007/978-1-62703-586-6_16.; Krasniqi A., D'Huyvetter M., Devoogdt N., Frejd F.Y., Sörensen J., Orlova A., Keyaerts M., Tolmachev V. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. J Nucl Med. 2018 Jun; 59(6): 885–891. doi:10.2967/jnumed.117.199901.; Брагина О.Д., Чернов В.И., Зельчан Р.В., Синилкин И.Г., Медведева А.А., Ларкина М.С. Альтернативные каркасные белки в радионуклидной диагностике злокачественных образований. Бюллетень сибирской медицины. 2019; 18(3): 125–133. doi:10.20538/1682-0363-2019-3-125-133.; Azhar A., Ahmad E., Zia Q., Rauf M.A., Owais M., Ashraf G.M. Recent advances in the development of novel protein scaffolds based therapeutics. Int J Biol Macromol. 2017; 102: 630–641. doi:10.1016/j.ijbiomac.2017.04.045.; Брагина О.Д., Ларькина М.С., Стасюк Е.С., Чернов В.И., Юсубов М.С., Скуридин В.С., Деев С.М., Зельчан Р.В., Булдаков М.А., Подрезова Е.В., Белоусов М.В. Разработка высокоспецифического радиохимического соединения на основе меченных 99mTc рекомбинантных адресных молекул для визуализации клеток с гиперэкспрессией Her2/neu. Бюллетень сибирской медицины. 2017; 16(3): 25–33. doi:10.20538/1682-0363-2017-3-25-33.; Vorobyeva A., Schulga A., Konovalova E., Güler R., Löfblom J., Sandström M., Garousi J., Chernov V., Bragina O., Orlova A., Tolmachev V., Deyev S.M. Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Sci Rep. 2019 Jun 28; 9(1): 9405. doi:10.1038/s41598-019-45795-8.; Nilvebrant J., Åstrand M., Georgieva-Kotseva M., Björnmalm M., Löfblom J., Hober S. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS One. 2014 Aug 4; 9(8): e103094. doi:10.1371/journal.pone.0103094.; Garousi J., Lindbo S., Nilvebrant J., Åstrand M., Buijs J., Sandström M., Honarvar H., Orlova A., Tolmachev V., Hober S. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers. Cancer Res. 2015 Oct 15; 75(20): 4364–71. doi:10.1158/0008-5472.CAN-14-3497.; Lindbo S., Garousi J., Åstrand M., Honarvar H., Orlova A., Hober S., Tolmachev V. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins. Bioconjug Chem. 2016 Mar 16; 27(3): 716–26. doi:10.1021/acs.bioconjchem.5b00677.; Bragina O., von Witting E., Garousi J., Zelchan R., Sandström M., Orlova A., Medvedeva A., Doroshenko A., Vorobyeva A., Lindbo S., Borin J., Tarabanovskaya N., Sörensen J., Hober S., Chernov V., Tolmachev V. Phase I Study of 99mTc-ADAPT6, a Scaffold Protein-Based Probe for Visualization of HER2 Expression in Breast Cancer. J Nucl Med. 2021 Apr; 62(4): 493–499. doi:10.2967/jnumed.120.248799.; Брагина О.Д., Чернов В.И., Гарбуков Е.Ю., Дорошенко А.В., Воробьева А.Г., Орлова А.М., Толмачев В.М. Возможности радионуклидной диагностики Her2-позитивного рака молочной железы с использованием меченных технецием-99m таргетных молекул: первый опыт клинического применения. Бюллетень сибирской медицины. 2021; 20(1): 23–30. doi:10.20538/1682-0363-2021-1-23-30.; Sandström M., Lindskog K., Velikyan I., Wennborg A., Feldwisch J., Sandberg D., Tolmachev V., Orlova A., Sörensen J., Carlsson J., Lindman H., Lubberink M. Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule 68Ga-ABY-025 in Breast Cancer Patients. J Nucl Med. 2016 Jun; 57(6): 867–71. doi:10.2967/jnumed.115.169342.; Sörensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V., Orlova A., Sandström M., Lubberink M., Olofsson H., Carlsson J., Lindman H. Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [68Ga]ABY-025 Affibody PET/CT. Theranostics. 2016 Jan 1; 6(2): 262–71. doi:10.7150/thno.13502.; Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F.P., Gevaert T., Simon P., Schallier D., Fontaine C., Vaneycken I., Vanhove C., De Greve J., Lamote J., Caveliers V., Lahoutte T. Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. J Nucl Med. 2016 Jan; 57(1): 27–33. doi:10.2967/jnumed.115.162024.; https://www.siboncoj.ru/jour/article/view/1930
-
18Academic Journal
المؤلفون: A. Medvedeva A., V. Chernov I., E. Usynin A., R. Zelchan V., O. Bragina D., N. Lushnikova A., А. Медведева А., В. Чернов И., Е. Усынин А., Р. Зельчан В., О. Брагина Д., Н. Лушникова А.
المساهمون: The study was carried out with the financial support of the Ministry of Education and Science of the Russian Federation, grant number in the form of a subsidy 05.604.21.0221, project ID RFMEFI60419X0221, Работа выполнена при финансовой поддержке Минобрнауки России, номер гранта в форме субсидии 05.604.21.0221, уникальный идентификатор проекта – RFMEFI60419X0221.
المصدر: Siberian journal of oncology; Том 20, № 3 (2021); 115-123 ; Сибирский онкологический журнал; Том 20, № 3 (2021); 115-123 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-3
مصطلحات موضوعية: 177Lu, prostate-specific membrane antigen, prostate cancer, castration, resistant, radionuclide therapy, 177lu, ПСМА, рак предстательной железы, кастрационный, резистентный, радионуклидная терапия
وصف الملف: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1817/871; Алексеев Б.Я., Нюшко К.М., Каприн А.Д. Химиотерапия 2-й линии у больных кастрационно-рефрактерным раком предстательной железы. От клинических исследований к практике. Онкоурология. 2019; 15(1): 84–91.; Ahmadzadehfar H., Eppard E., Kürpig S., Fimmers R., Yordanova A., Schlenkhoff C.D., Gärtner F., Rogenhofer S., Essler M. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMADKFZ-617 of castrate- resistant metastatic prostate cancer. Oncotarget. 2016 Mar 15; 7(11): 12477–88. doi:10.18632/oncotarget.7245.; Карякин О.Б., Каприн А.Д., Иванов С.А. Национальный регистр системной терапии пациентов с метастатическим кастрационнорезистентным раком предстательной железы в Российской Федерации. Онкоурология. 2019; 15(3): 78–88.; Гафанов Р.А., Гармаш С.В., Кравцов И.Б., Фастовец С.В. Метастатический кастрационно-резистентный рак предстательной железы: современный взгляд на медикаментозную терапию и альтернативная регуляция опухолевых клеток. Онкоурология. 2018; 14(1): 107–16.; Маркова А.С., Матвеев В.Б., Назранов Б.М. Последовательная терапия метастатического кастрационно-резистентного рака предстательной железы: новые возможности. Онкоурология. 2018; 14(3): 120–7.; Bellmunt J., Carles J., Albanell J. Predictive modelling in hormonerefractory prostate cancer (HRPC). Clin Transl Oncol. 2009 Feb; 11(2): 82–5. doi:10.1007/s12094-009-0318-x.; Benešová M., Schäfer M., Bauder-Wüst U., Afshar-Oromieh A., Kratochwil C., Mier W., Haberkorn U., Kopka K., Eder M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J Nucl Med. 2015 Jun; 56(6): 914–20. doi:10.2967/jnumed.114.147413.; Freedland S.J., Richhariya A., Wang H., Chung K., Shore N.D. Treatment patterns in patients with prostate cancer and bone metastasis among US community-based urology group practices. Urology. 2012 Aug; 80(2): 293–8. doi:10.1016/j.urology.2012.04.007.; Silver D.A., Pellicer I., Fair W.R., Heston W.D., Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997 Jan; 3(1): 81–5.; Pezaro C., Omlin A., Lorente D., Rodrigues D.N., Ferraldeschi R., Bianchini D., Mukherji D., Riisnaes R., Altavilla A., Crespo M., Tunariu N., de Bono J., Attard G. Visceral disease in castration-resistant prostate cancer. Eur Urol. 2014 Feb; 65(2): 270–273. doi:10.1016/j.eururo.2013.10.055.; James N.D., Sydes M.R., Clarke N.W., Mason M.D., Dearnaley D.P., Spears M.R., Ritchie A.W., Parker C.C., Russell J.M., Attard G., de Bono J., Cross W., Jones R.J., Thalmann G., Amos C., Matheson D., Millman R., Alzouebi M., Beesley S., Birtle A.J., Brock S., Cathomas R., Chakraborti P., Chowdhury S., Cook A., Elliott T., Gale J., Gibbs S., Graham J.D., Hetherington J., Hughes R., Laing R., McKinna F., McLaren D.B., O'Sullivan J.M., Parikh O., Peedell C., Protheroe A., Robinson A.J., Srihari N., Srinivasan R., Staffurth J., Sundar S., Tolan S., Tsang D., Wagstaff J., Parmar M.K.; STAMPEDE investigators. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016 Mar 19; 387(10024): 1163–77. doi:10.1016/S0140-6736(15)01037-5.; Poeppel T.D., Handkiewicz-Junak D., Andreeff M., Becherer A., Bockisch A., Fricke E., Geworski L., Heinzel A., Krause B.J., Krause T., Mitterhauser M., Sonnenschein W., Bodei L., Delgado-Bolton R.C., Gabriel M. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2018 May; 45(5): 824–845. doi:10.1007/s00259-017-3900-4.; Horoszewicz J.S., Kawinski E., Murphy G.P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987 Sep-Oct; 7(5B): 927–35.; Israeli R.S., Powell C.T., Corr J.G., Fair W.R., Heston W.D. Expression of the prostate-specific membrane antigen. Cancer Res. 1994 Apr 1; 54(7): 1807–11.; Чехонин В.П., Григорьев М.Э., Жирков Ю.А., Лебедев Д.В. Простатический специфический мембранный антиген и его роль в диагностике рака предстательной железы. Вопросы медицинской химии. 2002; 48: 31–43. [Chekhonin V.P., Grigorev M.E., Zhirkov Yu.A., Lebedev D.V. Prostatic specific membrane antigen and its role in the diagnosis of prostate cancer. Problems of Medical Chemistry. 2002; 48: 31–43. (in Russian)].; Bouchelouche K., Choyke P.L., Capala J. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides. Discov Med. 2010 Jan; 9(44): 55–61.; Uprimny C., Kroiss A., Nilica B., Buxbaum S., Decristoforo C., Horninger W., Virgolini I.J. (68)Ga-PSMA ligand PET versus (18)F-NaF PET: evaluation of response to (223)Ra therapy in a prostate cancer patient. Eur J Nucl Med Mol Imaging. 2015 Feb; 42(2): 362–3. doi:10.1007/s00259-014-2922-4.; Spatz S., Tolkach Y., Jung K., Stephan C., Busch J., Ralla B., Rabien A., Feldmann G., Brossart P., Bundschuh R.A., Ahmadzadehfar H., Essler M., Toma M., Müller S.C., Ellinger J., Hauser S., Kristiansen G. Comprehensive Evaluation of Prostate Specific Membrane Antigen Expression in the Vasculature of Renal Tumors: Implications for Imaging Studies and Prognostic Role. J Urol. 2018 Feb; 199(2): 370–377. doi:10.1016/j.juro.2017.08.079.; Chatalic K.L., Veldhoven-Zweistra J., Bolkestein M., Hoeben S., Koning G.A., Boerman O.C., de Jong M., van Weerden W.M. A Novel ¹¹¹In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer. J Nucl Med. 2015 Jul; 56(7): 1094–9. doi:10.2967/jnumed.115.156729.; Chakraborty P.S., Kumar R., Tripathi M., Das C.J., Bal C. Detection of brain metastasis with 68Ga-labeled PSMA ligand PET/CT: a novel radiotracer for imaging of prostate carcinoma. Clin Nucl Med. 2015 Apr; 40(4): 328–9. doi:10.1097/RLU.0000000000000709.; Gourni E., Henriksen G. Metal-Based PSMA Radioligands. Molecules. 2017 Mar 24; 22(4): 523. doi:10.3390/molecules22040523.; Lütje S., Heskamp S., Cornelissen A.S., Poeppel T.D., van den Broek S.A., Rosenbaum-Krumme S., Bockisch A., Gotthardt M., Rijpkema M., Boerman O.C. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status. Theranostics. 2015 Oct 18; 5(12): 1388–401. doi:10.7150/thno.13348.; Cho S.Y., Gage K.L., Mease R.C., Senthamizhchelvan S., Holt D.P., Jeffrey-Kwanisai A., Endres C.J., Dannals R.F., Sgouros G., Lodge M., Eisenberger M.A., Rodriguez R., Carducci M.A., Rojas C., Slusher B.S., Kozikowski A.P., Pomper M.G. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012 Dec; 53(12): 1883–91. doi:10.2967/jnumed.112.104661.; Брагина О.Д., Чернов В.И., Ларькина М.С., Зельчан Р.В., Синилкин И.Г., Медведева А.А. Простатический специфический мембранный антиген: современные возможности в диагностике рака предстательной железы. Молекулярная медицина. 2018; 16(4): 3–8.; Долгушин М.Б., Мещерякова Н.А., Оджарова А.А., Матвеев В.Б., Невзоров Д.И., Платонова О.Е., Кочергин П.В. Позитронная эмиссионная томография, совмещенная с компьютерной томографией, с 18F-ПСМА-1007 в диагностике рецидива рака предстательной железы: клиническое наблюдение. Онкоурология. 2018; 14(3): 134–138. doi:10.17650/1726-9776-2018-14-3-134-138.; Игнатова М.В., Тлостанова М.С., Станжевский А.А. Первый опыт выполнения совмещенной позитронно-эмиссионной с компьютерной томографией с простатспецифическим мембранным антигеном, меченным галлием-68, у пациентов с минимальным уровнем простатспецифического антигена после радикальной простатэктомии. Вопросы онкологии. 2018; 64(4): 508–514.; Ларенков А.А., Кодина Г.Е. Радионуклидная диагностика рака предстательной железы: позитронно-эмиссионная томография с 68GaPSMA ингибиторами и их фармразработка. Медицинская радиология и радиационная безопасность. 2017; 62(6): 58–74.; Пойда М.Д., Рыжкова Д.В., Станжевский А.А. 68Ga-ПСМА – меченый биомаркер для позитронной эмиссионной томографии (обзор литературы). Трансляционная медицина. 2018; 5(5): 46–52.; Eiber M., Maurer T., Souvatzoglou M., Beer A.J., Ruffani A., Haller B., Graner F.P., Kübler H., Haberkorn U., Eisenhut M., Wester H.J., Gschwend J.E., Schwaiger M. Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. J Nucl Med. 2015 May; 56(5): 668–74. doi:10.2967/jnumed.115.154153.; Afshar-Oromieh A., Haberkorn U., Schlemmer H.P., Fenchel M., Eder M., Eisenhut M., Hadaschik B.A., Kopp-Schneider A., Röthke M. Comparison of PET/CT and PET/MRI hybrid systems using a 68Galabelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014 May; 41(5): 887–97. doi:10.1007/s00259-013-2660-z.; Rahbar K., Weckesser M., Huss S., Semjonow A., Breyholz H.J., Schrader A.J., Schäfers M., Bögemann M. Correlation of Intraprostatic Tumor Extent with 68Ga-PSMA Distribution in Patients with Prostate Cancer. J Nucl Med. 2016 Apr; 57(4): 563–7. doi:10.2967/jnumed.115.169243.; Чернов В.И., Брагина О.Д., Зельчан Р.В., Медведева А.А., Синилкин И.Г., Ларькина М.С., Стасюк Е.С., Нестеров Е.А., Скуридин В.С. Меченые аналоги соматостатина в тераностике нейроэндокринных опухолей. Медицинская радиология и радиационная безопасность. 2017; 62(3): 42–49.; Варламова Н.В., Скуридин В.С., Нестеров Е.А., Чернов В.И., Тицкая А.А. Исследование острой токсичности нового радиофармацевтического препарата «Наноколлоид,99mТc-Аl2О3» для диагностики в онкологии. Экспериментальная и клиническая фармакология. 2015; 78(6): 26–29.; Zeltchan R., Medvedeva A., Sinilkin I., Bragina O., Chernov V., Stasyuk E., Rogov A., Il’ina E., Larionova L., Skuridin V., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering. 2016; 012054.; Zechmann C.M., Afshar-Oromieh A., Armor T., Stubbs J.B., Mier W., Hadaschik B., Joyal J., Kopka K., Debus J., Babich J.W., Haberkorn U. Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014; 41(7): 1280–92. doi:10.1007/s00259-014-2713-y.; Rathke H., Flechsig P., Mier W., Bronzel M., Mavriopoulou E., Hohenfellner M., Giesel F.L., Haberkorn U., Kratochwil C. Dosimetry Estimate and Initial Clinical Experience with 90Y-PSMA-617. J Nucl Med. 2019 Jun; 60(6): 806–811. doi:10.2967/jnumed.118.218917.; Kratochwil C., Bruchertseifer F., Rathke H., Bronzel M., Apostolidis C., Weichert W., Haberkorn U., Giesel F.L., Morgenstern A. Targeted α-herapy of Metastatic Castration-Resistant Prostate Cancer with 225AcPSMA-617: Dosimetry Estimate and Empiric Dose Finding. J Nucl Med. 2019 Jun; 60(6): 806–811. doi:10.2967/jnumed.117.191395.; Okamoto S., Thieme A., Allmann J., D’Alessandria C., Maurer T., Retz M., Tauber R., Heck M.M., Wester H.J., Tamaki N., Fendler W.P., Herrmann K., Pfob C.H., Scheidhauer K., Schwaiger M., Ziegler S., Eiber M. Radiation Dosimetry for 177Lu-PSMA I&T in Metastatic Castration-Resistant Prostate Cancer: Absorbed Dose in Normal Organs and Tumor Lesions. J Nucl Med. 2017 Mar; 58(3): 445–450. doi:10.2967/jnumed.116.178483.; Rahbar K., Schmidt M., Heinzel A., Eppard E., Bode A., Yordanova A., Claesener M., Ahmadzadehfar H. Response and Tolerability of a Single Dose of 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer: A Multicenter Retrospective Analysis. J Nucl Med. 2016 Sep; 57(9): 1334–8. doi:10.2967/jnumed.116.173757.; Rahbar K., Ahmadzadehfar H., Kratochwil C., Haberkorn U., Schäfers M., Essler M., Baum R.P., Kulkarni H.R., Schmidt M., Drzezga A., Bartenstein P., Pfestroff A., Luster M., Lützen U., Marx M., Prasad V., Brenner W., Heinzel A., Mottaghy F.M., Ruf J., Meyer P.T., Heuschkel M., Eveslage M., Bögemann M., Fendler W.P., Krause B.J. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J Nucl Med. 2017 Jan; 58(1): 85–90. doi:10.2967/jnumed.116.183194.; von Eyben F.E., Roviello G., Kiljunen T., Uprimny C., Virgolini I., Kairemo K., Joensuu T. Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging. 2018; 45(3): 496–508. doi:10.1007/s00259-017-3895-x.; Kratochwil C., Fendler W.P., Eiber M., Baum R., Bozkurt M.F., Czernin J., Delgado Bolton R.C., Ezziddin S., Forrer F., Hicks R.J., Hope T.A., Kabasakal L., Konijnenberg M., Kopka K., Lassmann M., Mottaghy F.M., Oyen W., Rahbar K., Schöder H., Virgolini I., Wester H.J., Bodei L., Fanti S., Haberkorn U., Herrmann K. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019 Nov; 46(12): 2536–2544. doi:10.1007/s00259-019-04485-3.; Strosberg J., El-Haddad G., Wolin E., Hendifar A., Yao J., Chasen B., Mittr]a E., Kunz P.L., Kulke M.H., Jacene H., Bushnell D., O'Dorisio T.M., Baum R.P., Kulkarni H.R., Caplin M., Lebtahi R., Hobday T., Delpassand E., Van Cutsem E., Benson A., Srirajaskanthan R., Pavel M., Mora J., Berlin J., Grande E., Reed N., Seregni E., Öberg K., Lopera Sierra M., Santoro P., Thevenet T., Erion J.L., Ruszniewski P., Kwekkeboom D., Krenning E.; NETTER-1 Trial Investigators. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017; 376(2): 125–135. doi:10.1056/NEJMoa1607427.; https://www.siboncoj.ru/jour/article/view/1817
-
19Academic Journal
المؤلفون: O. Bragina D., V. Chernov I., E. Garbukov Yu., A. Doroshenko V., A. Vorobyeva G., A. Orlova M., V. Tolmachev M., О. Брагина Д., В. Чернов И., Е. Гарбуков Ю., А. Дорошенко В., А. Воробьева Г., А. Орлова М., В. Толмачев М.
المصدر: Bulletin of Siberian Medicine; Том 20, № 1 (2021); 23-30 ; Бюллетень сибирской медицины; Том 20, № 1 (2021); 23-30 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-1
مصطلحات موضوعية: lternative scaffold proteins, radionuclide diagnostics, Her2/neu, breast cancer, targeted therapy, альтернативные каркасные белки, радионуклидная диагностика, рак молочной железы, таргетная терапия
وصف الملف: application/pdf
Relation: https://bulletin.tomsk.ru/jour/article/view/4270/2929; https://bulletin.tomsk.ru/jour/article/view/4270/2956; Gebhart G., Lamberts L.E., Wimana Z., Garcia C., Emonts P., Ameye L., Stroobants S., Huizing M., Aftimos P., Tol J., Oyen W.J.G., Vugts D.J., Hoekstra O.S., Schröder C.P., Menke-van der Houven van Oordt C.W., Guiot T., Brouwers A.H., Awada A., de Vries E.G.E., Flamen P. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann. Oncol. 2016; 27 (4): 619–624. DOI:10.1093/annonc/mdv577.; Bartley A.N., Washington M.K., Ventura C.B., Ismaila N., Colasacco C., Benson 3rd A.B., Carrato A., Gulley M.L., Jain D., Kakar S., Mackay H.J., Streutker C., Tang L., Troxell M., Ajani J.A. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline grom the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J. Clin. Oncol. 2017; 35 (4): 446–464. DOI:10.1200/JCO.2016.69.4836.; Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr. Pharm. Des. 2008; 14 (28): 2999–3019. DOI:10.2174/138161208786404290.; Zavyalova M., Vtorushin S.V., Telegina N., Krakhmal N., Savelieva O., Tashireva L., Bragina O., Denisov E.V., Kaigorodova E.V., Slonimskaya E., Choynzonov E.L., Perelmuter V.M. Clinicopathological features of nonspecific invasive breast cancer according to its molecular subtypes. Experimental Oncology. 2016: 38 (2): 122–127.; Wolff A.C., Hammond M.E.H., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M.S., Bilous M., Fitzgibbons P., Hanna W., Jenkins R.B., Mangu P.B., Paik S., Perez E.A., Press M.F., Spears P.A., Vance G.H., Viale G., Hayes D.F. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013; 31 (31): 3997–4013. DOI:10.1200/JCO.2013.50.9984.; Zelchan R., Chernov V., Medvedeva A., Sinilkin I., Stasyuk E., Rogov A., Il’ina E., Skuridin V., Bragina O. Study of a Glucose Derivative Labeled with Technicium-99m as a potential radiopharmaceutical for cancer diagnosis. European Journal of Nuclear Imaging. 2016; 43: 466–466. DOI:10.1063/1.4960291.; Брагина О.Д., Чернов В.И., Зельчан Р.В., Синилкин И.Г., Медведева А.А., Ларкина М.С. Альтернативные каркасные белки в радионуклидной диагностике злокачественных образований. Бюллетень сибирской медицины. 2019; 18 (3): 125–133. DOI:10.20538/1682-0363-2019-3-125-133.; Azhar A., Ahmad E., Zia Q., Rauf M.A., Owais M., Ashraf G.M. Recent advances in the development of novel protein scaffolds based therapeutics. International Journal of Biological Macromolecules. 2017; 102: 630–641. DOI:10.1016/j.ijbiomac.2017.04.045.; Брагина О.Д., Ларькина М.С., Стасюк Е.С., Чернов В.И., Юсубов М.С.О., Скуридин В.С., Деев С.М., Зельчан Р.В., Булдаков М.А., Подрезова Е.В., Белоусов М.В. Разработка высокоспецифического радиохимического соединения на основе меченных 99mTc рекомбинантных адресных молекул для визуализации клеток с гиперэкспрессией Her2/neu. Бюллетень сибирской медицины. 2017; 16 (3): 25–33. DOI:10.20538/1682-0363-2017-3-25–33.; Skuridin V., Stasyuk E., Bragina O., Usubov M., Chernov V., Larkina M., Zelchan R., Rogov A., Sinilkin I., Larionova L. Development of radiopharmaceutical based on mini-antibody for early cancer detection. European Journal of Nuclear Medicine and Molecular Imaging. 2016; 43 (1): 465.; Vorobyeva A., Schulga A., Konovalova E., Güler R., Löfblom J., Sandström M., Garousi J., Chernov V., Bragina O., Orlova A., Tolmachev V., Deyev S. Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Scientific Reports. 2019; 9 (1): 9405. DOI:10.1038/s41598-019-45795-8.; Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойнзонов Е.Ц. Ядерная медицина в диагностике и адресной терапии злокачественных образований. Бюллетень сибирской медицины. 2018; 17 (1): 220–231. DOI:10.20538/1682-0363-2018-1-220-231.; Tolmachev V., Orlova A., Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol. Biol. 2014; 1060: 309–330. DOI:10.1007/978-1-62703-586-6_16.; Krasniqi A., D’Huyvetter M., Devoogdt N., Frejd F.Y., Sorensen J., Orlova A., Keyaerts M., Tolmachev V. Same-day imaging using small proteins: clinical experience and translational prospects in oncology. Journal of Nuclear Medicine. 2018; 59 (6): 885–891. DOI:10.2967/jnumed.117.199901.; Simeon R., Chen Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell. 2018; 9 (1): 3–14. DOI:10.1007/s13238-017-0386-6.; Garousi J., Lindbo S., Nilvebrant J., Åstrand M., Buijs J., Sandström M., Honarvar H., Orlova A., Tolmachev V., Hober S. ADAPT, a novel scaffold Protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res. 2015; 75 (20): 4364–4371. DOI:10.1158/0008-5472.CAN-14-3497.; Lindbo S., Garousi J., Åstrand M., Honarvar H., Orlova A., Hober S., Tolmachev V. Influence of histidine-containing tags on the biodistribution of ADAPT scaffold proteins. Bioconjug. Chem. 2016; 27 (3): 716–726. DOI:10.1021/acs.bioconjchem.5b00677; Bragina O., Witting E., Garousi J., Zelchan R., Sandström M., Medvedeva A., Orlova A., Doroshenko A., Vorobyeva A., Lindbo S., Borin J., Tarabanovskaya N., Sorensen J., Hober S., Chernov V., Tolmachev V. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. J. Nucl. Med. 2021; 62 (1). DOI:10.2967/jnumed.120.248799.; Sandström M., Lindskog K., Velikyan I., Wennborg A., Feldwisch J., Sandberg D., Tolmachev V., Orlova A., Sörensen J., Carlsson J., Lindman H., Lubberink M. Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68GaABY-025 in breast cancer patients. J. Nucl. Med. 2016; 57 (6): 867–871. DOI:10.2967/jnumed.115.169342.; Sörensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V., Orlova A., Sandström M., Lubberink M., Olofsson H., Carlsson J., Lindman H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016; 6 (2): 262–271. DOI:10.7150/thno.13502.; Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F.P., Gevaert T., Simon P., Schallier D., Fontaine C., Vaneycken I., Vanhove C., De Greve J., Lamote J., Caveliers V., Lahoutte T. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med. 2016; 57 (1): 27–33. DOI:10.2967/jnumed.115.162024.; Sörensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V., Orlova A., Sandström M., Lubberink M., Olofsson H., Carlsson J., Lindman H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 Affibody PET/CT. Theranostics. 2016; 6:262–271. DOI:10.7150/thno.13502.; Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F. P., Gevaert T., Simon P., Schallier D., Fontaine C., Vaneycken I., Vanhove C., De Greve J., Lamote J., Caveliers V., Lahoutte T. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med. 2016; 57: 27–33. DOI:10.2967/jnumed.115.162024.; https://bulletin.tomsk.ru/jour/article/view/4270
-
20Academic Journal
المساهمون: Universidad del País Vasco, Eusko Jaurlaritza, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España)
Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107432GB-I00; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019–105488GB–I00; Publisher's version; https://doi.org/10.1103/PhysRevB.103.045407; Sí; Physical Review B 103(4): 045407 (2021); http://hdl.handle.net/10261/250380; http://dx.doi.org/10.13039/501100003086; http://dx.doi.org/10.13039/501100011033