-
1
المؤلفون: Chang Kai-Sheng, Hung-Ming Lin, Chi-Sheng Wu, Yan-Kai Chiou, Chen-Chan Wang, Meng-Yen Tsai, Ming-Chin Kuo, Ching-Tang Tsai, Tien-Szu Chen, Zi-Jun Chen, Walt K.W. Huang, Ming-Chun Lin, Yi-Cin Chen
المصدر: Energy Procedia. 8:435-442
مصطلحات موضوعية: Materials science, business.industry, selective emitter, Nanotechnology, reactive ion etching, law.invention, solar cell, light induced plating, Energy(all), law, Plating, double print, Solar cell, Light induced, Optoelectronics, Reactive-ion etching, business, Common emitter
-
2
المؤلفون: Chun Yuan Lu, Chun Heng Chen, Huey-Liang Hwang, Raynien Kwo, Chun Chang Lu, Tai Bor Wu, Kun Yu Lee, Chen Chan Wang, Fu Chien Chiu, Joseph Ya-min Lee, Yan Kai Chiou, Albert Chin, Minghwei Hong, Kuei Shu Chang-Liao, Che-Hao Chang
المصدر: Applied Surface Science. 254:236-241
مصطلحات موضوعية: Launched, General Physics and Astronomy, Nanotechnology, Surfaces and Interfaces, General Chemistry, Dielectric thin films, Condensed Matter Physics, Ic industry, Surfaces, Coatings and Films, Management, Time frame, Graduate students, Political science, Christian ministry, China, Front (military)
-
3
المؤلفون: Lin-Jung Wu, Jiun-Yi Tseng, Tai-Bor Wu, Yan-Kai Chiou, Chun-Yu Chen, Chen-Chan Wang, Che-Hao Chang
المصدر: Journal of Physics D: Applied Physics. 40:1673-1677
مصطلحات موضوعية: Hardware_MEMORYSTRUCTURES, Materials science, Acoustics and Ultrasonics, business.industry, Oxide, Hardware_PERFORMANCEANDRELIABILITY, Integrated circuit, Condensed Matter Physics, Capacitance, Surfaces, Coatings and Films, Electronic, Optical and Magnetic Materials, law.invention, Non-volatile memory, chemistry.chemical_compound, Capacitor, Semiconductor, chemistry, Nanocrystal, Hardware_GENERAL, law, Hardware_INTEGRATEDCIRCUITS, Optoelectronics, business, Hardware_LOGICDESIGN, Voltage
-
4Academic Journal
المؤلفون: Chen-Chan Wang1, Jiun-Yi Tseng1, Tai-Bor Wu1 tbwu@mse.nthu.edu.tw, Lin-Jung Wu1, Chun-Sheng Liang1, Jenn-Ming Wu1
المصدر: Journal of Applied Physics. 1/15/2006, Vol. 99 Issue 2, p026102. 3p. 1 Black and White Photograph, 3 Graphs.
مصطلحات موضوعية: *METAL oxide semiconductors, *NANOCRYSTALS, *SEMICONDUCTORS, *PARTICLES (Nuclear physics), *ELECTROMAGNETIC induction, *AGGLOMERATION (Materials)
-
5Academic Journal
المؤلفون: Chiou, Y.-K., Che-Hao Chang, Chen-Chan Wang, Kun-Yu Lee, Tai-Bor Wu, Kwo, R., Minghwei Hong
المساهمون: 郭瑞年
مصطلحات موضوعية: THIN-FILMS, SI, SILICON, CAPACITORS, GROWTH, OXIDES, AL2O3
Time: 33
Relation: JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Electrochemical Society, Volume 154, Issue 4, 2007, Pages G99-G102; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/56038
-
6Academic Journal
المؤلفون: Chen-Chan Wang, Jyun-Yi Wu, Yan-Kai Chiou, Che-Hao Chang, Tai-Bor Wua
المساهمون: 吳泰伯
مصطلحات موضوعية: alumina, elemental semiconductors, gold, hafnium compounds, high-k dielectric thin films, MOS capacitors, nanoelectronics, nanostructured materials, self-assembly, silicon, thin film capacitors, transmission electron microscopy
Time: 3
وصف الملف: 98 bytes; text/html
Relation: Appl. Phys. Lett., Vol.91, pp. 202110-1-3.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/52697
-
7Academic Journal
المؤلفون: Chen-Chan Wang, Chun-Sheng Liang, Jiun-Yi Tseng, Tai-Bor Wu
المساهمون: 吳泰伯
مصطلحات موضوعية: gold, barium compounds, strontium compounds, nanostructured materials, dissolving, self-assembly, tunnelling, energy gap, high-k dielectric thin films, metal-insulator boundaries
Time: 3
وصف الملف: 98 bytes; text/html
Relation: Applied Physics Letters,Browse,Volume 90,Issue 18,ELECTRONIC TRANSPORT AND SEMICONDUCTORS; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/52675
-
8Academic Journal
المؤلفون: Chen-Chan Wang, Yan-Kai Chiou, Che-Hao Chang, Jiun-Yi Tseng, Lin-Jung Wu, Chun-Yu Chen, Tai-Bor Wu
المساهمون: 吳泰伯
مصطلحات موضوعية: MOS
Time: 3
وصف الملف: application/pdf; 886003 bytes
Relation: Journal of Physics D: Applied Physics , Volume 40, Number 6 , PP.1673; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/52669
-
9Academic Journal
المؤلفون: Chun-Kai Huang, Chen-Chan Wang, Tai-Bor Wu
المساهمون: 吳泰伯
مصطلحات موضوعية: Dry etching
Time: 3
وصف الملف: application/pdf; 1211125 bytes
Relation: Journal of Physics D: Applied Physics , Volume 40, Number 6; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/52663
-
10Academic Journal
المؤلفون: Yan-Kai Chiou, Che-Hao Chang, Chen-Chan Wang, Kun-Yu Lee, Tai-Bor Wu, Raynien Kwo, Minghwei Hong
المساهمون: 吳泰伯
مصطلحات موضوعية: hafnium compounds, aluminium compounds, dielectric thin films, atomic layer deposition, thermal stability, amorphous state, noncrystalline structure, leakage currents, interface states
Time: 3
وصف الملف: 98 bytes; text/html
Relation: J. Electrochem.Soc., Vol.154, pp. G99-G102.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/52648
-
11Dissertation/ Thesis
-
12
المؤلفون: Yi-Hsien Lee, Chia-Ching Lee, Chun-Sheng Liang, Shih-Wei Chen, Fang-Chen Chou, Chen-Chan Wang, Jenn-Ming Wu
المصدر: Journal of The Electrochemical Society. 158:G231
مصطلحات موضوعية: Materials science, Renewable Energy, Sustainability and the Environment, Condensed Matter Physics, Electrochemistry, Surfaces, Coatings and Films, Electronic, Optical and Magnetic Materials, law.invention, Capacitor, law, Cavity magnetron, Materials Chemistry, Thin film, Exponential law, Composite material, Leakage (electronics)
-
13
المؤلفون: Chen-Chan Wang, Tai-Bor Wu
المصدر: ECS Meeting Abstracts. :64-64
-
14
المؤلفون: Yan-Kai Chiou, T. B. Wu, Che-Hao Chang, Minghwei Hong, Chen-Chan Wang, Raynien Kwo, Kun-Yu Lee
المصدر: Journal of The Electrochemical Society. 154:G99
مصطلحات موضوعية: Materials science, Silicon, Renewable Energy, Sustainability and the Environment, Gate dielectric, Alloy, chemistry.chemical_element, engineering.material, Condensed Matter Physics, Surfaces, Coatings and Films, Electronic, Optical and Magnetic Materials, Amorphous solid, Atomic layer deposition, chemistry, Materials Chemistry, Electrochemistry, engineering, Thermal stability, Composite material, Thin film, Layer (electronics)
-
15Academic Journal
المؤلفون: Yan-Kai Chiou, Che-Hao Chang, Chen-Chan Wang, Kun-Yu Lee, Tai-Bor Wu, Raynien Kwo, Minghwei Hong
المصدر: Journal of The Electrochemical Society; Apr2007, Vol. 154 Issue 4, pG99-G102, 4p, 7 Graphs
مصطلحات موضوعية: ALUMINUM, STABILITY (Mechanics), DIELECTRICS research, THIN film research, SURFACE analysis, ATMOSPHERIC deposition, AMORPHOUS substances, COMPLEMENTARY metal oxide semiconductors, ELECTROCHEMICAL research
-
16
المؤلفون: 王振展, Chen Chan Wang
المساهمون: 吳泰伯, Tai-Bor Wu
مصطلحات موضوعية: 金, 奈米晶, 非揮發記憶體, Au, nanocrystals, non-volatile memory
Time: 27
وصف الملف: 155 bytes; text/html
Relation: Reference 1. M. Lines and A. Glass, “Principles and applications of ferroelectrics and related devices”, Clarendon Press, Oxford, 87(1977). 2. J. Daughton, “Magnetoresistive Random Access Memory (MRAM)”, NVE Web page < http://www.nve.com/>, (2000). 3. E. Y. Chen, S. Tehrani, T. Zhu, M. Durlam, and H. Goronkin, “Submicron spin valve magnetoresistive random access memory cell”, J. Appl. Phys. 81, 3992(1997). 4. S. Tehrani, E. Chen, M. Durlam, M. DeHerrera, J. M. Slaughter, J. Shi, and G. Kerszykowski, “High density submicron magnetoresistive random access memory”, J. Appl. Phys. 85, 5822(1999). 5. D.D. Tang, P.K. Wang, V. S. Speriosu, S. Le, R.E. Fontana, S. Rishton, “An IC process compatibie nonvolatile magnetic RAM”, IEDM Tech. Dig. 997(1995). 6. S. Tehrani, E. Chen, M. Durlam, T. Zhu, and H. Goronkin, “High density nonvolatile magnetoresistive RAM”, IEDM Tech. Dig. 193(1996). 7. J. De Boeck and G. Boughs, IEC, permission of IEEE, (1999). 8. S. Parkin, “Origin of enhanced magnetoresistance of magnetic multilayers: spin-denpendent scattering from magnetic interface states”, Phys. Rev. Lett. 71, 1641(1993). 9. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett. 61, 2472(1988). 10. B. Prince, “Application for emerging memories”, Memory Strategies International, (2001). 11. W. J. Gallagher, S. Parkin, Yu Lu, X. P. Bian, A. Marley, K. P. Roche, R. A. Altman, S. A. Rishton, C. Jahnes, T. M. Shaw, and Gang Xiao, “Microstructured magnetic tunnel junctions” J. Appl. Phys. 81, 3741(1997). 12. S. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Yu Lu, M. Rooks,P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory”, J. Appl. Phys. 85, 5828(1999) 13. S. R. Ovskinsky, “Reversible Electrical Switching Phenomena in Disordered Structures”, Phys. Rev. Lett. 21, 1450(1968). 14. S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Appl. Phys. Lett. 76, 2749(2000). 15. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO film”, Appl. Phys. Lett. 85, 5655(2004). 16. A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. 77, 139(2000). 17. M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, “Nonvolatile memory with multilevel switching: a basic model”, Phys. Rev. Lett. 92, 178302(2004). 18. S. Tiwari, F. Rana, K. Chan, H. Hanafi W. Chan, and D. Buchanan, “Volatile and Non-Volatile Memories in Silicon with Nano-Crystal Storage”, IEDM Tech. Dig., 521(1995). 19. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377(1996). 20. Y. C. King, T. J. King and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEDM Tech. Dig. 115(1998) 21. S. Habermehl, R. D. Nasby, and M. J. Rightley, “Cycling endurance of silicon-oxide-nitride-oxide-silicon nonvolatile memory stacks prepared with nitrided SiO2/Si(100) interfaces”, Appl. Phys. Lett. 75, 1122(1999). 22. T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, Symposium on VLSI Technology Digest of Technical Papers, 27(2003). 23. W. L. Warren, “Protonic nonvolatile field effect transistor memories in Si/SiO2/Si structures”, IEEE Trans. on Nuclear Science 44, 1789(1997). 24. D. M. Fleetwood, “Nonvolatile memory based on mobile protons”, Nonvolatile Memory Technology Conference(1998). 25. T. S. Yoon, J. Y. Kwon, D. H. Lee, and K. B. Kim, “High spatial density nanocrystal formation using thin layer of amorphous Si0.7Ge0.3 deposited on SiO2”, J. Appl. Phys. 87, 2449(2000). 26. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Room temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis”, Appl. Phys. Lett. 80, 2794(2002). 27. L. Guo, E. Leobandung, and S. Y. Chou, “A silicon single-electron transistor memory operating at room temperature”, Science 275, 649(1997). 28. I. Kim, S. Han, K. Han, J. Lee, and H. Shin, “Room temperature single electron effects in a Si nanocrystal memory”, IEEE Electron Device Letters 20, 630(1999). 29. C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Soc. Symp. Proc. 737, F8.18.1(2003). 30. C. Lee, A. Gorur-Seetharam and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single-and double-layer metal nanocrystals”, IEDM Tech. Dig., 557(2003). 31. Dong-Won Kim, Taehoon Kim, and Sanjay K. Banerjee,” Memory Characterization of SiGe Quantum Dot Flash Memories With HfO2 and SiO2 Tunneling Dielectrics”, IEEE Electron Device, 50, 1823(2003). 32. W. L. Liu, P. F. Lee, J. Y. Dai, J. Wang, H. L. W. Chan, C. L. Choy, Z. T. Song and S. L. Feng, “Self-organized Ge nanocrystals embedded in HfAlO fabricated bypulsed-laser deposition and application to floating gate memory”, Appl. Phys. Lett. 86, 013110 (2005) 33. D. Kahng, and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech. J. 46, 1288(1967). 34. D. Frohman-Bentchkowsky, “A fully decoded 2048-bit electrically programmable MOS-ROM”, IEEE ISSCC Tech. Dig. 80(1971). 35. E. Harari, L. Schmitz, B. Troutman, and S. Wang, “A 256 bit non-volatile static RAM”, IEEE ISSCC Tech. Dig. 108(1978). 36. W. S. Johnson, G. Perlegos, A. Renninger, G. Kuhn, and T. Ranganath, “A 16Kbit electrically erasable nonvolatile memory”, IEEE ISSCC Tech. Dig. 152(1980). 37. V. N. Kynett, A. Baker, M. Fandrich, G. Hoekstrg, O. Jungroth, J. Kreifels, and S. Wells, “An in-system reprogrammable 256K CMOS Flash memory”, IEEE ISSCC Tech. Dig. 132(1988). 38. R. H. Good, Jr. and E. W. Muller, “In Handbuch der Physik”, Springer-Verlag, Berlin, XXI, 176(1956) 39. M. Lenzlinger, E. H. Snow, “Fowler-Nordheim tunneling in thermally grown SiO2”, J. Appl. Phys. 40, 278(1969). 40. L. L. Chang, P. J. Stiles, and L. Esaki, “Electron tunneling between a metal and a semiconductor: characteristics of Al-Al2O3-SnTe and –GeTe junctions”, J. Appl. Phys. 38, 4440(1967). 41. K. F. Schuegraf, C. C. King, and C. Hu, “Ultra-thin dioxide leakage current and scaling limit”, Symp. VLSI Tech. Dig., IEEE, 18(1992). 42. T. Tuomi, M. Tuominen, E. Prieur, J. Lahtinen, and Laakkonen, “Synchrotron section topographic study of czochralski-grown silicon wafers for advanced memory circuits”, J. Electronchem. Soc. 142, 1699(1995). 43. W. Shockley, “Problems related to p-n junctions in silicon”, Solid-State Electron. 2, 35(1961). 44. S. M. Sze, “Physics of semiconductor Devices”, Wiley, New York (1981). 45. A. Sharma, “Semiconductor memories”, IEEE press (1997). 46. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of interface traps on charge retention characteristics in silicon-quantum-dot-based metal-oxide-semiconductor diodes”, J. J. Appl. Phys. 38, 425(1999). 47. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358(1998). 48. G. Crisenza, C. Clementi, G. Ghidini, and M. Tosi, “Floating gate memories reliability”, Quality and Reliability International, 8, 177(1992). 49. S. Haddad, C. Chang, B. Swaminathan, and J. Lien, “Degradation due to hole trapping in Flash memory cells”, IEEE Electron Device Lett. 10, 117(1989). 50. P. Cappelletti, R. Ben, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling”, IEDM Tech. Dig., 291(1994). 51. S. Yamada, Y. Hiura, T. Yamane, K. Amemiya, Y. Oshima, and K. Yoshikawa, “Degradation mechanism of Flash EEPROM programming after program/erase cycles”, IEDM Tech. Dig. 23(1993) 52. P. Olivo, B. Ricco, and E. Sangiorgi, “High field induced voltage dependent oxide charge”, Appl. Phys. Lett. 48, 1135(1986). 53. P. F. Trwoga, A. J. Kenyon, and C. W. Pitt, “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters”, J. Appl. Phys. 83, 3789(1998). 54. A. L. Efros, A. L. Efros, “Interband absorption of light in a semiconductor sphere”, Sov. Phys. Semicond. 16, 772(1982). 55. A. I. Ekimov, Q. Q. Onushchenko, “Quantum size effect in 3-dimension microscopic semiconductor crystals”, JETP Lett. 34, 345(1981). 56. R. T. Collins, P. M. Fauchet, and M. A. Tischler, “Porous Silicon: From Luminescence to LED’s”, Physics Today 50, 24(1997). 57. T. Takagahara, and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, 46, 15578(1992). 58. Y. Niquet, G. Alan, C. Delerue, and M. Lannoo, “Quantum confinement in germanium nanocrystals”, Appl. Phys. Lett. 77, 1182(2000). 59. K. K. Likharev, “Single-electron transistors: Electrostatic analogs of the DC SQUIDS”, IEEE Trans. Magn. 23, 1142(1987). 60. H. Grabert, and M. H. Devoret, “Single charge tunneling”, Plenum, New York, 1992. 61. L. Guo, E. Leobandung, and S. Y. Chou, “A Silicon Single-Electron Transistor Memory Operating at Room Temperature”, Science, 275, 649(1997). 62. J. J. Wasshuber, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett. 18, 278(1997). 63. C. Wasshuber, H. Kosina, and S. Selberherr, “A comparative study of single-electron memories”, IEEE Trans. of Electron Devices, 45, 2365(1998) 64. K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Kure, and K. Seki, “Status of Single-Electron Memories”, IEDM Tech. Dig. 107(1998). 65. W. Kern and J. Vossen et al.,” Thin Film Processes”, Academic Press: New York, (1978). 66. W. Kern et al., “Handbook of Semiconductor Cleaning Technology”, Noyes Publishing: Park Ridge, NJ, (1993). 67. K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science”, New York: Macmillan, (1992). 68. H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory”, IEEE Trans. Electron Devices 43, 1553(1996). 69. S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett. 69, 1232(1996). 70. O. Gonzalez-Varona, B. Garrido, S. Cheylan, A. Perez-Rodriguez, A. Cuadras, and J. R. Morante, “Control of tunnel oxide thickness in Si-nanocrystal array memories obtained by ion implantation and its impact in writing speed and volatility ”, Appl. Phys. Lett. 82, 2151(2003). 71. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part I: device design and fabrication”, IEEE Trans. Electron Devices 49, 1606(2002). 72. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part lI: electrical characteristics”, IEEE Trans. Electron Devices 49, 1614(2002). 73. J. Y. Tseng, C. W. Cheng, S. Y. Wang, T. B. Wu, K. Y. Hsieh and R. Liu, “Memory characteristics of Pt nanocrystals self-assembledfrom reduction of an embedded PtOx ultrathin filmin metal-oxide-semiconductor structures” Appl. Phys. Lett. 85, 2595(2004). 74. S. Kolliopoulou, D. Tsoukalas, P. Dimitrakis, P. Normand, S. Paul, C. Pearson, A. Molloy, and M. C. Petty, “Gold Langmuir-Blodgett deposited nanoparticles for non-volatile memories”, Mater. Res. Soc. Symp. Proc. 830 D6.7.1(2005) 75. B. Garrido, S. Cheylan, O. Gonzalez-Varona, A. Perez-Rodriguez, and J. R. Morante, “The effect of additional oxidation on the memory characteristics of metal-oxide-semiconductor capacitors with Si nanocrystals”, Appl. Phys. Lett. 82, 4818(2003). 76. L. Perniola, B. D. Salvo, G. Ghibaudo, A. F. Para, G. Pananakakis, T. Baron, and S. Lombardo, “Influence of dots size and dots number fluctuations on the electrical characteristics of multi-nanocrystal memory devices”, Solid-State Electronics 47, 1637(2003). 77. K. C. Scheer, R. A. Rao, R. Muralidhar, S. Bagchi, and J. Conner, “Thermal oxidation of silicon nanocrystals in O2 and NO ambient”, J. Appl. Phys. 93, 5637(2003). 78. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si + implantation and annealing”, Appl. Phys. Lett. 77, 3450(2000). 79. E. Landree, D. Grozea, C. Collazo-Davila, and L. D. Marks, “UHV high-resolution electron microscopy and chemical analysis of room-temperature Au deposition on Si.001.-2×1”, Phys. Rev. B 55, 7910(1997) 80. X. F. Lin, K. J. Wan, J. C. Glueckstein, and J. Nogami, “Gold-induced reconstructions of the Si(001) surface: The 5×3 and √26×3 phases”, Phys. Rev. B 47, 3671(1993) 81. D. N. Kouvatsos, V. L. Sougleridis, and A. G. Nassiopoulou, “Charging effects in silicon nanocrystals within SiO2 layers, fabricated by chemical vapor deposition, oxidation, and annealing ”, Appl. Phys. Lett., 82, 397(2003). 82. L. W. Teo, W. K. Choi, W. K. Chim, V. Ho, C. M. Moey, M. S. Tay, C. L. Heng, Y. Lei, D. A. Antoniadis, and E. A. Fitzgerald, “Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 81, 3639(2002). 83. P. Landshoff, A. Metherell, and G. Rees, “Essential Quantum Physics”, Cambridge University Press, Cambridge, 30(1997). 84. J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H. Yu and M. S. Liang, “A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film”, J. Appl. Phys. 92, 3936(2002). 85. H. Sliva, M. K. Kim, U. Avci, A. Kumar, and S. Tiwari,” Nonvolatile silicon memory at the nanoscale”, MRS Bull, 29, 845(2004). 86. Y. C. King, T. J. King and C. M. Hu, “Charge-Trap Memory Device Fabricated by Oxidationof Si1-xGex”, IEEE Trans. Electron Devices 48, 696(2001). 87. C. C. Wang, J. Y. Tseng, T. B. Wu, L. J. Wu, C. S. Liang and J. M. Wu, “Charging characteristics of Au-nanocrystals embedded in metal-oxide-semiconductor structures” J. Appl. Phys. 99, 026102(2006) 88. S. Choi, M. Cho, H. Hwang and J. W. Kim, “Improved metal–oxide–nitride–oxide–silicon-type flash devicewith high- k dielectrics for blocking layer”, J. Appl. Phys. 94, 5408(2003). 89. D. G. Park, H. J. Cho, K. Y. Lim, C. Lim, I. S. Yeo, J. S. Roh and J. W. Park,” Characteristics of n+ polycrystalline-Si/Al2O3/Si metal–oxide– semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys. 89, 6275(2001). 90. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3”, Appl. Phys. Lett., 87,252104(2005). 91. C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim and J. Jeong, “Nitrogen incorporation engineering and electrical properties of high-k gate dielectric (HfO2 and Al2O3) films on Si (100) substrate”, J. Vac. Sci. Technol. B 22, 1838(2004) 92. R. S. Johnson, G. Lucovsky, and I. Baum, “Physical and electrical properties of noncrystalline Al2O3 prepared by remote plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 19, 1353(2001) 93. P. Cappelletti, C. Golla, P. Olivo and E. Zanoni, “Flash Memories”, Norwell, MA: Kluwer (1999) 94. T. C. Chang, S. T. Yan, P. T. Liu, C.W. Chen, S. H. Lin and S. M. Sze, “A Novel Approach of Fabricating Germanium Nanocrystals for Nonvolatile Memory Application”, Electrochem. Solid-State Lett. 7, G17(2004) 95. C. Lee, J Meteer, V. Narayanan, and E. C. Kan, “Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications”, J. Electro. Mat. 34, 1(2005) 96. P. Blomme, J. V. Houdt, K. D. Meyer, “Write/erase cycling endurance of memory cells with SiO2/HfO2 tunnel dielectric”, IEEE Trans. Device and Materials Reliability, 4, 345(2004). 97. K. K. Likharev, “Layered tunnel barriers for nonvolatile memory devices”, Appl. Phys. Lett. 73, 2137(1998). 98. K. S. Seol, S. J. Choi, J. Y. Choi, E. J. Jang, B. K. Kim, S. J. Park, D. G. Cha, I. Y. Song, J. B. Park, Y. Park, S. H. Choi, “Pb-nanocrystals-based nonvolatile memory structures with asymmetric SiO2/HfO2 tunnel barrier”, Appl. Phys. Lett. 89, 083109(1996). 99. R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Non-Volatile Si Quantum Memory with Self-Aligned Doubly-Stacked Dots”, IEDM Tech. Dig., 313(2000). 100. Y. Taur and T. H. Ning “Fundamentals of Modern VLSI Devices”, Cambridge University, New York, 96(1998). 101. C. C. Wang, Y. K. Chiou, C. H. Chang, J. Y. Tseng, L. J. Wu, C. Y. Chen and T. B. Wu, “Memory characteristics of Au nanocrystals embedded in metal-oxide-semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide”, J. Phys. D: Appl. Phys, 40, 1673(2007) 102. H. W. Wang, S. W. Nien and K. C. Lee, “Enhanced tunability and electrical properties of barium strontium titanate thin films by gold doping in grains”, Appl. Phys. Lett. 84, 2874(2004). 103. Y. B. Zheng, S. J. Wang, A. C. H. Huan, S. Tripathy, J. W. Chai, L. B. Kong and C. K. Ong, “Band-gap energies and structural properties of doped Ba0.5Sr0.5TiO3 thin films”, J. Appl. Phys. 99, 014106(2006). 104. B. Panda, A. Dhar, G. D. Nigam, D. Bhattacharya and S. K. Ray, “Optical properties of RF sputtered strontium substituted barium titanate thin films”, Thin Solid Films 332, 46(1998). 105. ITRS 2003 edition, http://www.itrs.net/Links/2003ITRS/Home2003.htm. 106. Y. K. Chiou, C. H. Chang, C. C. Wang, K. Y. Lee, T. B. Wu, R. Kwo, and M. Hong, “Effect of Al incorporation in the thermal stability of Atomic-Layer-Deposited HfO2 for gate dielectric applications”, J. Electrochem. Soc. 154, G99 (2007). 107. C. C. Wang, C. S. Liang, J. Y. Tseng and T. B. Wu, “Improvement in charge retention in Au-nanocrystals-based memory structures by employing (Ba0.5Sr0.5)TiO3 as control oxide”, Appl. Phys. Lett. 90, 182101(2007). 108. M. Lenzlinger, E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2”, J. Appl. Phys. 40, 278(1969). 109. D. K. Ferry, and S. M. Goodnick, “Transport in nanostructures”, Cambridge University Press, Cambridge, 232(1997). 110. L. Manchanda , M. D. Morris, M. L. Green, R. B. van Dover, F. Klemens, T. W. Sorsch, P. J. Silverman, G. Wilk, B. Busch, S. Aravamudhan, “Multi-component high-K gate dielectrics for the silicon industry”, Microelect. Eng., 59, 351(2001). 111. M. S. Joo, B. Jin Cho, C. C. Yeo, D. S. H. Chan, S. J. Whoang, S. Mathew, L. K. Bera, N. Balasubramanian, and D. L. Kwong, “Formation of hafnium–aluminum–oxide gate dielectric using single cocktail liquid source in MOCVD process”, IEEE Trans. Electron Devices 50, 2088(2003). 112. K. Shiraishi, Y. Akasaka, S. Miyazaki, T. Nakayama, T. Nakaoka, G. Nakamura, K. Torii, H. Furutou, A. Ohta, P. Ahmet, K. Ohmori, H. Watanabe, T. Chikyow, M. L. Green, Y. Nara, and K. Yamada, “Universal theory of workfunctions at metal/Hf-based high-k dielectrics interfaces—Guiding principles for gate metal selection—”, IEDM Tech. Dig., 39(2005). 113. R. F. Steimle, R. Rao, M. Sadd, B. Hardsky, S. Straub, C. T. Swift, B. E. White, J. Yater, E. J. Prinz, T. Merchant, S. Bagchi, B. Acred, and R. Muralidhar, “Silicon nanocrystal memories”, Motorola, digital DNA laboratories. 114. Y. K. King, “handout of semiconductor memories”, NTHU, (2005). 115. Y. Liu, S. Dey, S. Tang, D. Q. Kelly, J. Sarkar, and K. Banerjee, “Improved performance of SiGe nanocrystal memory with VARIOT tunnel barrier”, IEEE Trans. Electron Devices 53, 2598(2006). 116. B. Govoreanu, P. Blomme, M. Rosmeulen, J. V. Houdt, and K. D. Mwyer, “VARIOT: A novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices”, IEEE Electron Device Lett, 24, 99(2003). 117. T. Z. Lu, M. Alexe, R. Scholz, V. Talelaev, and M. Zacharias, ”Multilevel charge storage in silicon nanocrystal multilayers”, Appl. Phys. Lett. 87, 202110(2005). 118. R.Ramesh, “Science and Technology of Complex Oxides”, Department of Materials Science and Engineering and Department of Physics University of California, Berkeley.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/35586