-
1Dissertation/ Thesis
-
2Dissertation/ Thesis
-
3Academic Journal
المصدر: Applied Mathematics & Information Sciences
مصطلحات موضوعية: Competitive learning, SOFM, Fuzzy modeling
وصف الملف: application/pdf
Relation: https://digitalcommons.aaru.edu.jo/amis/vol08/iss3/34; https://digitalcommons.aaru.edu.jo/cgi/viewcontent.cgi?article=1632&context=amis
-
4
-
5
-
6Conference
المؤلفون: Su, Wen-Poh, Chen, Kuang-Yuan
المساهمون: Edmond C. Prakash
-
7Conference
المؤلفون: Su, Veronica, Chen, Kuang-Yuan
مصطلحات موضوعية: Information and Computing Sciences not elsewhere classified
جغرافية الموضوع: Singapore
Time: 2010-04-06 to 2010-04-07
Relation: Computer Games, Multimedia and Allied Technology Proceedings; 3rd Annual International Conference on Computer Games, Multimedia and Allied Technology (CGAT 2010); http://www.cgames.com.sg/; http://hdl.handle.net/10072/38024
الاتاحة: http://hdl.handle.net/10072/38024
-
8Conference
المصدر: 2009 IEEE Congress on Evolutionary Computation ; page 1169-1176
-
9Conference
المؤلفون: Chen, Kuang-Yuan, Lindsay, Peter A.
المساهمون: Kevin Korb, Marcus Randall, Tim Hendtlass
مصطلحات موضوعية: XCS, Learning Classifier Systems, Aliasing states problem, Credit assignment, Maze problems, E1, 880399 Aerospace Transport not elsewhere classified, 080101 Adaptive Agents and Intelligent Robotics
Relation: orcid:0000-0002-0608-8969
-
10Conference
المؤلفون: Lin, Chuan-Sheng, Chen, Kuang-Yuan, Wang, Yu-Hsian, Dung, Lan-Rong
المصدر: 2006 13th IEEE International Conference on Electronics, Circuits and Systems
-
11Academic Journal
المصدر: Sensor Letters ; volume 10, issue 5, page 1068-1074 ; ISSN 1546-198X
-
12Academic Journal
المصدر: Advanced Science Letters ; volume 8, issue 1, page 106-111 ; ISSN 1936-6612 1936-7317
-
13Academic Journal
المؤلفون: Chiang, Jen-Shiun, Chen, Kuang-Yuan
المصدر: IEEE Transactions on Circuits & Systems Part II: Analog & Digital Signal Processing. Jul1999, Vol. 46 Issue 7, p945. 6p. 1 Black and White Photograph, 5 Diagrams, 2 Charts, 2 Graphs.
مصطلحات موضوعية: PHASE-locked loops, ELECTRIC oscillators
-
14
المؤلفون: 陳光原, Chen, Kuang-Yuan
المساهمون: 淡江大學電機工程學系博士班, 江正雄, Chiang, Jen-Shiun
مصطلحات موضوعية: 模糊系統, 群聚分析演算法:奔應系統, Fuzzy Systems, Clustering Algorithms, SOFM, Burn-In System
Relation: [1] Y. J. Chen and C. C. Teng, “Rule combination in a fuzzy neural network,” Fuzzy Sets and Systems, vol. 82, no. 2, pp. 161-166, September 1996. [2] E. T. Kim, M. K. Park, S. W. Ji, and M. N. Park, “A new approach to fuzzy modeling,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 3, pp. 328-337, Augest 1997. [3] H. Ishibrchi, R. Fujioka, and H. Tanaka, “Neural networks that learn from fuzzy if-then rules,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, pp. 85-97, May 1993. [4] B. Kosko, “Global stability of generalized additive fuzzy systems,” IEEE Transactions on Systems, Man & Cybernetics, vol. 28, no. 3, pp. 441-452, Augest 1998. [5] Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, “Fuzzy system modeling by fuzzy partition and GA hybrid schemes,” Fuzzy Sets and Systems, vol. 86, no. 3, pp. 279-288, March 1997. [6] B. Kosko, Fuzzy Engineer, Prentice Hall, New Jersey, USA, 1997. [7] A. Kroll, “Identification of functional fuzzy models using multidimensional reference fuzzy sets,” Fuzzy Sets and Systems, vol. 80, no. 2, pp. 149-158, June 1996. [8] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, vol. 28, no. 1, pp. 15-33, October 1988. [9] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,” IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, pp. 7-31, February 1993. [10] R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control, John Wiley, New Jersey, USA, 1994. [11] R. R. Yager and D. P. Filev, “Approximate clustering via the mountain method,” IEEE Transactions on Systems, Man & Cybernetics, vol. 24, no. 8, pp. 1279-1284, Augest 1994. [12] T. Takago and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man & Cybernetics, vol. SMC-15, no. 1, pp. 116-132, January/February 1985. [13] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, New Jersey, USA, 1997. [14] R. N. Dave and R. Krishnapuram, “Robust clustering methods: a united view,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 2, pp. 270-293, May 1997. [15] X. Kong, R. Wang, and G. Li, “Fuzzy clustering algorithms based on resolution and their application in image compression,” Pattern Recognition, vol. 35, no. 11, pp. 2439-2444, November 2002. [16] G. Hamerly, Learning Structure and Concepts in Data using Data Clustering, Ph.D. Dissertation, University of California, San Diego, 2003. [17] G. Hamerly and C. Elkan, “Alternatives to the k-means algorithm that find better clusterings,” Proceedings of the ACM Conference on Information and Knowledge Management (CIKM-2002), McLean, VL, USA, pp. 600-607, November 4-9, 2002. [18] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Book Company, New York, USA, 1976. [19] A. K. Jain, M. N.Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, September 1999. [20] C. H. Chou, The Development of Learning Mechanisms and Their Applications, Ph.D. Dissertation, University of Tamkang, Taiwan, 2003. [21] R. H. Turi, Clustering-Based Colour Image Segmentation, Ph.D. Dissertation, University of Monash, Australia, 2001. [22] E. Forgy, “Cluster analysis of multivariate data: efficiency versus interpretability of classification,” Biometrics, vol. 21, no. 3, pp. 768-780, 1965. [23] J. H. Huang and J. Y. Zhang, “Fuzzy c-means clustering algorithm with spatial constraints for distributed WSN data stream,” International Journal of Advancements in Computing Techonlogy, vol. 3, no. 2, pp. 165-175, March 2011 [24] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algoritms, Plenum Press, New York, USA, 1981. [25] J. C. Bezdek and N. R. Pal, “Some new indexes of cluster validity,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 28, no. 3, pp. 301-315, June 1998. [26] J. C. Bezdek, “Numerical taxonomy with fuzzy sets,” Journal of Mathematical Biology, vol. 1, no. 1, pp. 57-71, 1974. [27] A. M. Bensaid, L. O. Hall, J. C. Bezdek, L. P. Clarke, M. L. Silbiger, J. A. Arrington, and R. F. Murtagh, “Validity-guided clustering with applications to image segmentation,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 2, pp. 112-123, May 1996. [28] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841-847, Augest 1991. [29] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, New Jersey, USA, 1988. [30] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2, pp. 224-227, April 1979. [31] D. E. Rumelhart, G. E. Hinton, and R. J. Willimans, “Learning representations by backpropagating errors,” Nature, vol. 323, pp. 533-536, October 1986. [32] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York, USA, 1995. [33] J. Moody and C. J. Darkin, “Fast learning in networks of locally-tuned processing units,” Neural Computation, vol. 1, no. 2, pp. 281-294, 1989. [34] M. Powell, Radial basis functions for multivariable interpolation: a review,, Clarendon Press, New York, USA, 1987. [35] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32-57, 1973. [36] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means clustering algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp. 191-203, 1984. [37] S. Krinidis and V. Chatzis, “A robust fuzzy local information c-means clustering algorithm,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1328-1337, May 2010. [38] R. J. Hathaway and J. C. Bezdek, “Fuzzy c-means clustering of incomplete data,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 31, no. 5, pp. 735-744, October 2001. [39] S. P. Du, J. Wang, and Y. M. Wei , “A training algorithms of third-order hidden markov model based on FCM-FE,” International Journal of Advancements in Conputing Technology, vol. 3, no. 7, pp. 160-168, Augest 2011. [40] J. Vellingiri and S. Chenthur Pandian, “Fuzzy possibilistic c-means algorithm for clustering on web usage mining to predict the user behavior,” European Journal of Scientific Research, vol. 58, no. 2, pp. 222-230, 2011. [41] C. Y. Chen, H. M. Feng, and F. Ye, “Hybrid recursive particle swarm optimization learning algorithm in the design of radial basis function networks,” Journal of Marine Science and Technology, vol. 15, no. 1, pp. 31-40, March 2007. [42] H. M. Feng, C. Y. Chen, and J. H. Horng, “Dynamic evolutional clustering-based learning fuzzy systems design,” 2008 Conference on Information Technology and Applications in Outlying Islands, Kingmen, Taiwan, pp. 359-364, May 30-31, 2008. [43] C. H. Chou, M. C. Su, and E. Lai, “A new cluster validity measure and its application to image compression,” Pattern Analysis and Applications, vol. 7, no. 2, pp. 205-220, July 2004. [44] C. C. Wong and C. C. Chen, “A clustering-based method for fuzzy modeling”, IEICE Transactions INF.& SYST., vol. E82-D, no. 6, pp. 1058-1065, June 1999. [45] M. S. Al-Batah, N. A. Mat Isa, K. Z. Zamli, and K. A. Azizli, "Modified recursive least squares algorithm to train the hybrid multilayered perceptron (HMLP) network," Applied Soft Computing, vol. 10, no. 1, pp. 236-244, January 2010. [46] C. C. Wong and H. R. Lai, “A grey-based clustering algorithm and its application on fuzzy system design,” International Journal of Systems Science, vol. 34, no. 4, pp. 269-281, March 2003. [47] C. C. Chen, Design of Fuzzy Systems Based on Partitioning Input Spaces, Ph. D. Dissertation, University of Tamkang, 2000. [48] M. Delgado, A. F. Gomez-Skarmeta, and F. Martin, “A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling,” IEEE Transactions Fuzzy Systems, vol. 5, no. 2, pp. 223-232, May 1997. [49] S. Haykin, Neural Networks and Learning Machines Third Edition, Prentice Hall, New Jersey, USA, 2009. [50] W. J. Hwang, F. J. Lin, S. C. Liao, and J. H. Huang, “Efficient pipelined architecture for competitive learning,” Journal of Parallel and Distributed Computing, vol. 71, no. 2, pp. 236-244, February 2011. [51] T. Kohonen, Self-Organization and Associative Memory Third Edition, Springer-Verlag Berlin Heidelberg, New York, USA, 1988. [52] M. A. Kraaijveld, J. Mao, and A. K. Jain, “A nonlinear projection method based on Kohonen’s topology preserving maps,” IEEE Transactions on Neural Network, vol. 6, no. 3, pp. 548-559, May 1995. [53] C. C. Wong, C. C. Chen, and M. C. Su, “A novel algorithm for data clustering,” Pattern Recognition, vol. 34, no. 2, pp. 425-442, February 2001. [54] C. C. Chen, “A PSO-based method for extracting fuzzy rules directly from numerical data,” Cybernetics and Systems: An International Journal. vol. 37, no. 7, pp. 707-723, October 2006. [55] K. L. Wu and M. S. Yang, “Alternative c-means clustering algorithms,” Pattern Recognition, vol. 35, no. 10, pp. 2267-2278, October 2002. [56] C. C. Wong and C. C. Chen, “A GA-based method for constructing fuzzy systems directly from numerical data,” IEEE Transactions on Systems, Man and Cybernetics. vol. 30, no. 6, pp. 905-911, December 2000. [57] J. T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man & Cybernetics, vol. 15, no. 1, pp. 116-132, January 1985. [58] J. S. Jang, “ANFIS: Adaptive-network-fuzzy inference system,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665-685, May 1993. [59] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information, Prentice Hall, New Jersey, USA, 1999. [60] J. H. Cha, “An extended model for optimal Burn-In procedures,” IEEE Transactions on Reliability, vol. 55, no. 2, pp. 189-198, June 2006. [61] W. Kuo and T. Kim “An overview of manufacturing yield and reliability modeling for semiconductor products,” Proceedings of the IEEE, vol. 87, no. 8, pp. 1329-1344, Augest 1999. [62] Y. H. Ng, Y. H. Low, and S. Demidenko, “Improving efficiency of IC Burn-In testing,” Instrumentation and Measurement Technology Conference Proceedings, Victoria, BC, Canada, pp. 1685- 1689, May 12-15, 2008. [63] A. Vassighi, O. Semenov, M. Sachdev, and A. Keshavarzi, “Thermal management of high performance micro- processors in Burn-In environment,” Proceedings of the 18th IEEE International Symposium Defect and Fault Tolerance VLSI System, Boston, MA, USA, pp. 313-319, November 3-5, 2003. [64] M. Miller, “Next generation Burn-In & test systems for athlon microprocessor: hybrid Burn-In,” Proceedings of the Burn-In and Test Socket Workshop, Mesa, Arizona, USA, March 6, 2001. [65] A. Vassighi and M. Sachdev, “Thermal runaway in integrated circuits,” IEEE Transactions on Device and Materials Reliability, vol. 6, no. 2, pp. 300-305, June 2006. [66] Q. G. Wang, T. H. Lee, H. W. Fung, Q. Bi, and Y. Zhang, “PID tuning for improved performance”, IEEE Transactions on Control System Technology, vol. 7, no. 4, pp. 457-465, July 1999. [67] K. H. Ang, G. Chong, and Y. Li, "PID control system analysis, design and technology," IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559-576, July 2005. [68] Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 384-391, June 2004. [69] R. Krohling, H. Jaschek, and J. Rey, “Designing PI/PID controller for a motion control system based on genetic algorithm,” Proceedings of the 1997 IEEE International Symposium on Intelligent Control, Istanbul, Turkey, pp. 125-130, July 16-18, 1997. [70] Y. Mitsukura, T. Yamamoto, and M. Kaneda, “A genetic tuning algorithm of PID Parameters,” IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, pp. 923-928, October 12-15, 1997. [71] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965. [72] E. Cox, “Fuzzy fundamentals,” IEEE Spectrum, vol. 29, no. 10, pp. 58-61, October 1992. [73] J. Jantzen, Foundations of Fuzzy Control, John Wiley, New Jersey, USA, 2007.; U0002-2607201213464100; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/88136; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/88136/-1/index.html
-
15
المؤلفون: Chen, Ching-Yi, Li, Shin-An, Liu, Ta-Kang, Chen, Kuang-Yuan, Wong, Ching-Chang
المساهمون: 淡江大學電機工程學系
مصطلحات موضوعية: Clustering-Based Algorithm, Fuzzy Inference System, System Modeling
Relation: International Journal of Advancements in Computing Technology 3(11), pp.394-401; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/75246; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/75246/2/index.html
-
16
المؤلفون: Chen, Ching-yi, Li, Shin-an, Liu, Ta-kang, Chen, Kuang-yuan, Wong, Ching-chang
المساهمون: 淡江大學電機工程學系
Relation: Journal of Harbin Institute of Technology (New Series)=哈爾濱工業大學學報(英文版) 18(1) Suppl.1, pp.328-333; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/75230
-
17
المؤلفون: Su, Wen-Poh, Chen, Kuang-Yuan
المصدر: PsycEXTRA Dataset
-
18
المؤلفون: 江正雄, Chiang, Jen-shiun, Chen, Kuang-yuan
المساهمون: 淡江大學電機工程學系
وصف الملف: 448089 bytes; application/pdf
Relation: Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on (Volume:3 ), pp.554-557; Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on; http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/38553; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/38553/1/0780344553_3p554-557.pdf; http://tkuir.lib.tku.edu.tw:8080/dspace/bitstream/987654321/38553/-1/index.html