يعرض 1 - 20 نتائج من 85 نتيجة بحث عن '"Chein, Orin"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    Report
  2. 2
    Report

    المصدر: Results Math. 43 (2003), no. 1-2, 74--78

    مصطلحات موضوعية: Mathematics - Group Theory, 20N05

  3. 3
    Book

    المؤلفون: Chein, Orin

    المصدر: The Course Portfolio ; page 39-45 ; ISBN 9781003447733

  4. 4
    Academic Journal

    المؤلفون: Chein, Orin

    المصدر: Transactions of the American Mathematical Society, 1970 Apr 01. 148(2), 533-548.

  5. 5
    Academic Journal

    المؤلفون: Chein, Orin

    المصدر: Transactions of the American Mathematical Society, 1974 Feb 01. 188, 31-51.

  6. 6
    Academic Journal

    المؤلفون: Chein, Orin

    المصدر: Proceedings of the American Mathematical Society, 1972 Jan 01. 31(1), 1-9.

  7. 7
    Academic Journal

    المؤلفون: Chein, Orin, Robinson, D. A.

    المصدر: Proceedings of the American Mathematical Society, 1972 May 01. 33(1), 29-32.

  8. 8
    Book

    المؤلفون: Chein, Orin, Goodaire, Edgar

    المصدر: Lecture Notes in Pure and Applied Mathematics ; Groups, Rings and Group Rings ; page 73-80 ; ISSN 2154-7041 ; ISBN 9781584885818 9781420010961

  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Book
  14. 14
    Academic Journal

    المؤلفون: Chein, Orin, Goodaire, Edgar G.

    وصف الملف: application/pdf

    Relation: mr:MR2426884; zbl:Zbl 1192.20051; reference:[CG86] Chein O., Goodaire E.G.: Loops whose loop rings are alternative.Comm. Algebra 14 (1986), 2 293-310. Zbl 0582.17015, MR 0817047, 10.1080/00927878608823308; reference:[CG90] Chein O., Goodaire E.G.: Code loops are RA$2$ loops.J. Algebra 130 (1990), 2 385-387. MR 1051309, 10.1016/0021-8693(90)90088-6; reference:[GJM96] Goodaire E.G., Jespers E., Polcino Milies C.: Alternative Loop Rings.North-Holland Math. Studies, vol. 184, Elsevier, Amsterdam, 1996. Zbl 0878.17029, MR 1433590; reference:[Goo83] Goodaire E.G.: Alternative loop rings.Publ. Math. Debrecen 30 (1983), 31-38. Zbl 0537.17006, MR 0733069; reference:[GR82] Goodaire E.G., Robinson D.A.: Loops which are cyclic extensions of their nuclei.Compositio Math. 45 (1982), 341-356. Zbl 0488.20057, MR 0656610; reference:[GR95] Goodaire E.G., Robinson D.A.: A class of loops with right alternative loop rings.Comm. Algebra 22 (1995), 14 5623-5634. MR 1298738, 10.1080/00927879408825150; reference:[Kun98] Kunen K.: Alternative loop rings.Comm. Algebra 26 (1998), 557-564. Zbl 0895.20053, MR 1604107, 10.1080/00927879808826147; reference:[Moo] Moorhouse G.E.: {{http://everest.uwyo.edu/$^{\sim}$moorhous/pub/bol.html}}.; reference:[Pai55] Paige L.J.: A theorem on commutative power associative loop algebras.Proc. Amer. Math. Soc. 6 (1955), 279-280. Zbl 0064.02903, MR 0068529, 10.1090/S0002-9939-1955-0068529-9; reference:[Pfl90] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767; reference:[Voj04] Vojtěchovský P.: A class of Bol loops with a subgroup of index two.Comment. Math. Univ. Carolin. 45 (2004), 371-381. Zbl 1101.20048, MR 2075284

  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal

    المؤلفون: Chein, Orin, Goodaire, Edgar G.

    وصف الملف: application/pdf

    Relation: mr:MR1903302; zbl:Zbl 1068.20069; reference:[Bru58] Bruck R.H.: A survey of binary systems.Ergeb. Math. Grenzgeb., vol. 20, Springer-Verlag, 1958. Zbl 0141.01401, MR 0093552; reference:[CG86] Chein O., Goodaire E.G.: Loops whose loop rings are alternative.Comm. Algebra 14 (1986), 2 293-310. Zbl 0582.17015, MR 0817047; reference:[CG90a] Chein O., Goodaire E.G.: Loops whose loop rings in characteristic $2$ are alternative.Comm. Algebra 18 (1990), 3 659-688. Zbl 0718.20034, MR 1052760; reference:[CG90b] Chein O., Goodaire E.G.: Moufang loops with a unique nonidentity commutator (associator, square).J. Algebra 130 (1990), 2 369-384. Zbl 0695.20040, MR 1051308; reference:[Che74] Chein O.: Moufang loops of small order I.Trans. Amer. Math. Soc. 188 (1974), 31-51. Zbl 0286.20088, MR 0330336; reference:[Che78] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 13 (1978), 197 1-131. Zbl 0378.20053, MR 0466391; reference:[CR72] Chein O., Robinson D.A.: An ``extra'' law for characterizing Moufang loops.Proc. Amer. Math. Soc. 33 (1972), 29-32. Zbl 0215.40302, MR 0292987; reference:[Fen68] Fenyves F.: Extra loops I.Publ. Math. Debrecen 15 (1968), 235-238. Zbl 0172.02401, MR 0237695; reference:[GJM96] Goodaire E.G., Jespers E., Polcino Milies C.: Alternative loop rings.North-Holland Math. Studies, vol. 184, Elsevier, Amsterdam, 1996. Zbl 0878.17029, MR 1433590; reference:[GP87] Goodaire E.G., Parmenter M.M.: Semi-simplicity of alternative loop rings.Acta Math. Hungar. 50 (1987), 3-4 241-247. Zbl 0634.17014, MR 0918159; reference:[JLM95] Jespers E., Leal G., Polcino Milies C.: Classifying indecomposable RA loops.J. Algebra 176 (1995), 5057-5076. MR 1351625; reference:[MM03] Miller G.A., Moreno H.C.: Nonabelian groups in which every subgroup is abelian.Trans. Amer. Math. Soc. 4 (1903), 398-404. MR 1500650; reference:[Pfl90] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767

  18. 18
    Academic Journal

    المؤلفون: Chein, Orin, Goodaire, Edgar G.

    المصدر: Communications in Algebra ; volume 30, issue 7, page 3559-3564 ; ISSN 0092-7872 1532-4125

  19. 19
    Academic Journal
  20. 20
    Academic Journal

    المؤلفون: Chein, Orin, Rajah, Andrew

    وصف الملف: application/pdf

    Relation: mr:MR1780867; zbl:Zbl 1038.20045; reference:[1] Bol G.: Gewebe und Gruppen.Math. Ann. 114 (1937), 414-431. Zbl 0016.22603, MR 1513147; reference:[2] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245-354. (MR 8, p.134). Zbl 0061.02201, MR 0017288; reference:[3] Bruck R.H.: A Survey of Binary Systems.Ergeb. Math. Grenzgeb., vol. 20, Springer Verlag, 1968. (MR 20 # 76). Zbl 0141.01401, MR 0093552; reference:[4] Chein O.: Moufang loops of small order. I.Trans. Amer. Math. Soc. 188 (1974), 31-51. (MR 48 # 8673). Zbl 0286.20088, MR 0330336; reference:[5] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 197 , Vol 13, Issue 1 (1978), 1-131. (MR 57 # 6271). Zbl 0378.20053, MR 0466391; reference:[6] Chein O., Pflugfelder H.O.: The smallest Moufang loop.Archiv der Mathematik 22 (1971), 573-576. (MR 45 # 6966). Zbl 0241.20061, MR 0297914; reference:[7] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393-414. (MR 36 # 5250). Zbl 0155.03901, MR 0222198; reference:[8] Leong F.: Moufang loops of order $p^{4}$.Nanta Math. 7 (1974), 33-34. (MR 51 # 5826). MR 0369593; reference:[9] Leong F., Rajah A.: On Moufang loops of odd order $pq^{2}$.J. Algebra 176 (1995), 265-270. (MR 96i # 20082). MR 1345304; reference:[10] Leong F., Rajah A.: Moufang loops of odd order $p_{1}^{2}p_{2}^{2}.p_m^{2}$.J. Algebra 181 (1996), 876-883 (MR 97i # 20083). MR 1386583; reference:[11] Leong F., Rajah A.: Moufang loops of odd order $p^{4}q_{1}.q_n$.J. Algebra 184 (1996), 561-569. (MR 97k # 20118). Zbl 0860.20054, MR 1409228; reference:[12] Leong F., Rajah A.: Moufang loops of odd order $p^{\alpha }q_{1}^{2}.q_n^{2}r_{1}.r_m$.J. Algebra 190 (1997), 474-486. (MR 98b # 20115). Zbl 0874.20046, MR 1441958; reference:[13] Leong F., Teh P.E.: Moufang loops of orders $2pq$.Bull. of the Malaysian Math. Soc. 15 (1992), 27-29. (MR 93j # 20142). Zbl 0766.20025, MR 1196349; reference:[14] Leong F., Teh P.E.: Moufang loops of even order.J. Algebra 164 (1994), 409-414. (MR 95b # 20097). Zbl 0804.20050, MR 1271244; reference:[15] Leong F., Teh P.E., Lim V.K.: Moufang loops of odd order $p^mq_{1}.q_n$.J. Algebra 168 (1994), 348-352. (MR 95g # 20068). Zbl 0814.20054, MR 1289104; reference:[16] Purtill M.: On Moufang loops of order the product of three primes.J. Algebra 112 (1988), 122-128. (MR 89c # 20120). MR 0921968; reference:[17] Purtill M.: Corrigendum.J. Algebra 145 (1992), p.262. (MR 92j # 20066). Zbl 0742.20068, MR 1144674; reference:[18] Rajah A.: Which Moufang loops are associative.Doctoral Dissertation, University Sains Malaysia, 1996. Zbl 1006.20501; reference:[19] Rajah A., Jamal E.: Moufang loops of order $2m$.Publ. Math. Debrecen 55 (1999), 47-51. Zbl 0933.20053, MR 1708430; reference:[20] Scott W.R.: Group Theory.Prentice Hall, Englewood Cliffs, NJ, 1964. Zbl 0897.20029, MR 0167513; reference:[21] Wright C.R.B.: Nilpotency conditions for finite loops.Illinois J. Math. 9 (1965), 399-409. (MR 31 # 5918). Zbl 0135.03701, MR 0181691; reference:[22] Zorn M.: The theory of alternative rings.Hamb. Abhandl. 8 (1930), 123-147.