-
1Academic Journal
المؤلفون: Duran-Rivera, Byron, Rojas-Rodas, Felipe, Silva López, Wilber, Gómez-Suárez, Crhistian, Castro Restrepo, Dagoberto
المصدر: Mycobiology ; volume 52, issue 3, page 145-159 ; ISSN 1229-8093 2092-9323
-
2Book
المؤلفون: Vega Garzón, Lina Patricia, Castro Ortegón, Yuddy Alejandra, Acosta Castellanos, Pedro Mauricio, Acevedo Suarez, Luis Fernando, Castro Restrepo, Dagoberto, Daza Pedraza, Andrés Sebastián, Díaz Ariza, Diana Marcela, Dominguez Rave, Maria Isabel, Doria Herrera, Gloria Maria, Franco Soto, Angie Daniela, García Ávila, Carolina, García Castiblanco, Claudia Paola, Grisales Castañeda, David Santiago, Guarín Durán, César Augusto, Jiménez Rojas, Eliana María, Pacheco García, Brigid Hiomara, Parra Ramos, Jeimy Alejandra, Peña García, Julián Armando, Pinzón Muñoz, Carlos Andrés, Posada Mejía, Santiago, Rebollo Barrios, Maria Elena, Ríos Montes, Karina, Rivera, Andrés Felipe, Rodríguez Mesa, Mónica Helena, Salcedo Hurtado, Kellys Nallith, Serna González, Marcela, Silva Cuevas, Helmer Francisco, Tamayo Restrepo, Isabel, Vargas Salas, Guillermo Eduardo
المساهمون: orcid:0000-0002-5184-5383, orcid:0000-0001-7976-8933, orcid:0000-0002-1010-7210, orcid:0000-0002-1672-9440, orcid:0000-0002-6599-9332, orcid:0000-0002-0934-5430, orcid:0000-0002-8606-3234, orcid:0000-0003-3949-3263, orcid:0000-0003-2148-8968, orcid:0000-0002-9582-7080, orcid:0000-0002-3882-5556, orcid:0000-0003-1285-0371, orcid:0000-0002-7630-4153, orcid:0000-0001-6985-8812, orcid:0000-0003-1692-1907, orcid:0000-0002-1221-9400, orcid:0000-0001-8968-045X, orcid:0000-0001-6729-403X, orcid:0000-0002-7448-2810, https://scholar.google.com/citations?user=583nK7kAAAAJ&hl=es, https://scholar.google.com/citations?user=tIGqwQgAAAAJ&hl=es, https://scholar.google.es/citations?user=9Ggnql8AAAAJ&hl=es, https://scholar.google.com/citations?user=P4SFiBMAAAAJ&hl=en, https://scholar.google.es/citations?user=ZMtQ0DcAAAAJ&hl=es, https://scholar.google.com/citations?user=7JT-ZGMAAAAJ&hl=es, https://scholar.google.com/citations?user=o3jk898AAAAJ&hl=es, https://scholar.google.es/citations?user=DdL1R_QAAAAJ&hl=es, https://scholar.google.com/citations?user=Mf2fKbYAAAAJ&hl=es, https://scholar.google.com/citations?user=vdFiGn8AAAAJ&hl=es, https://scholar.google.com/citations?user=OhusAJQAAAAJ&hl=es, https://scholar.google.lu/citations?user=cdtFvdEAAAAJ&hl=fr, https://scholar.google.com/citations?user=2lb-De8AAAAJ&hl=es, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001470324, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001656245, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000723916, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001763453, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000154598, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001709640, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000700916, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000009472, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001249029, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001721364, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001367357, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001374309, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000044531, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000037511, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000218642, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001378393, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001781179, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001335210, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000713724, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001444913, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001477105, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001779406, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001828165, https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001709623, https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002740, Universidad Santo Tomas
مصطلحات موضوعية: sustainable strategies, flow rates, ecological, symbiotic, fungus, mycorrhizal, floors, lead, contaminación, bioamendments, bacterial, Rehabilitation, coal mining, monitoring, fuel cells, Sustainable development, green strategies, Cadmium, Agrochemicals, carbamates, Farmers, Estrategias sostenibles, caudales, ecológicos, simbiótica, hongos, micorrízicos, suelos, plomo, Bioenmiendas
جغرافية الموضوع: CRAI-USTA Tunja
وصف الملف: application/pdf
Relation: Abiodun, A. S., Biotechnology, N., Agency, D., & Abioye, P. O. (2019). Microbial-aided phytoremediation of heavy metals contaminated soil: a review. European Journal of Biological Research, 9(2), 104–125. https://doi.org/10.5281/zenodo.3244176; Abiodun, A. S., Josiah Ijah, U. J., & Abioye, P. O. (2013). Phytoremediation of Lead Polluted Soil by Glycine max L. Applied and Environmental Soil Science. https://doi.org/10.1155/2013/631619; Ahmadpour, P., Ahmadpour, F., Mahmud, T. M. M., Abdu, A., Soleimani, M., & Tayefeh, F. H. (2012). Phytoremediation of heavy metals : A green technology. 11(76), 14036–14043. https://doi.org/10.5897/AJB12.459; Ali, H., & Khan, E. (2019). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment, 25(6), 1353–1376. https://doi.org/10.1080/10807039.2018.1469398; Ali, H., Khan, E., & Anwar, M. (2013). Phytoremediation of heavy metals — Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075; Ali, S. Y., Chaudhury, S., & Banerjee, S. N. (2016). Phytoextraction of cadmium and lead by three vegetable-crop plants. Plant Science Today. https://doi.org/10.14719/pst.2016.3.3.247; Alizadeh, S. M., Etemad, V., Shirvany, A., & Shirmardi, M. (2012). Assisted phytoremediation of Cd-contaminated soil using poplar rooted cuttings. Int. Agrophys, 219–224. https://doi.org/10.2478/v10247-012-0032-8; Bax, L., Ikeda, N., Fukui, N., Yaju, Y., Tsuruta, H., & Moons, K. G. M. (2008). More than numbers: The power of graphs in meta-analysis. American Journal of Epidemiology, 169(2), 249–255. https://doi.org/10.1093/aje/kwn340; Beltrán, G., & Óscar, A. (2005). Revisiones sistémicas de la literatura. Revista Colombiana de Gastroenterología, 20(1), 60–69. http://www.redalyc.org/articulo.oa?id=337729264009; Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120. https://doi.org/10.1016/j.jenvman.2012.04.002; Bosiacki, M., Kleiber, T., & Kaczmarek, J. (2013). Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates. Archives of Environmental Protection, 39(3), 47–59. https://doi.org/10.2478/aep-2013-0022; Buñuel Álvarez, J., & González Rodríguez, M. (2003). Búsquedas biblioFiguras a través de Internet. como encontrar la mejor evidencia disponible: Bases de datos de medicina basada en la evidencia. Revista Pediatría de Atención Primaria, 5(17), 109–132.; Cristaldi, A., Oliveri, G., Hea, E., & Zuccarello, P. (2017). Environmental Technology & Innovation Phytoremediation of contaminated soils by heavy metals and PAHs . A brief review. Environmental Technology & Innovation, 8, 309–326. https://doi.org/10.1016/j.eti.2017.08.002; Eissa, M. A. (2017). Phytoextraction mechanism of Cd by Atriplex lentiformis using some mobilizing agents. Ecological Engineering, 108(January 2016), 220–226. https://doi.org/10.1016/j.ecoleng.2017.08.025; El-Mahrouk, E. S. M., Eisa, E. A. H., Hegazi, M. A., Abdel-Gayed, M. E. S., Dewir, Y. H., El-Mahrouk, M. E., & Naidoo, Y. (2019). Phytoremediation of cadmium-, copper-, and lead-contaminated soil by Salix mucronata (Synonym Salix safsaf). HortScience, 54(7), 1249–1257. https://doi.org/10.21273/HORTSCI14018-19; Elouear, Z., Bouhamed, F., Boujelben, N., & Bouzid, J. (2016). Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustainable Environment Research, 26(3), 131–135. https://doi.org/10.1016/j.serj.2016.04.004; Fattahi, B., Arzani, K., Souri, M. K., & Barzegar, M. (2019). Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Industrial Crops and Products, 138(June), 111584. https://doi.org/10.1016/j.indcrop.2019.111584; Garrido Mora, A. (2005). Estrategia General de Búsqueda. Enfuro, 24(93), 30–32.; Ghori, Z., Iftikhar, H., Bhatti, M. F., Sharma, I., & Kazi, A. G. (2016). Chapter 15 – Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. In Plant Metal Interaction (pp. 385–409). Elsevier. https://doi.org/10.1016/B978-0-12-803158-2.00015-1; Gong, Y., Zhao, D., & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, 440–460. https://doi.org/10.1016/j.watres.2018.10.024; Hammami, H., Parsa, M., Hassan, M., Mohassel, R., Rahimi, S., & Mijani, S. (2016). Weeds ability to phytoremediate cadmium-contaminated soil. International Journal Of Phytoremediation, 18(1), 48–54. https://doi.org/http://dx.doi.org/10.1080/15226514.2015.1058336; Isaura, J.-A. (2010). Capacidad de amortiguación de la contaminación por plomo y por cadmio en suelos de la comunidad de Madrid [Universidad Complutense de Madrid]. https://eprints.ucm.es/12511/; Korzeniowska, J., & Gołda, S. (2016). Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Chrona Srodowiska i Zasobów Naturalnych, 27(1(67)), 8–14. https://doi.org/10.1515/oszn-2016-0003; Lasat, M. M. (1999). Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues. Journal of Hazardous Substance Research Volume, 2. https://doi.org/https://doi.org/10.4148/1090-7025.1015; Li, J., Baker, A. J. M., Ye, Z., Wang, H., & Shu, W. (2012). Phytoextraction of Cd-Contaminated Soils : Current Status and Future Challenges. Critical Reviews in Environmental Science and Technology, 42, 2113–2152. https://doi.org/10.1080/10643389.2011.574105; Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils : a review. Solid Earth, 5, 65–75. https://doi.org/10.5194/se-5-65-2014; Mahdavi, A., Khermandar, K., Ahmady, S., & Tabaraki, R. (2014). Lead Accumulation Potential In Acacia Victoria. International Journal OfPhytoremediation, 582–592. https://doi.org/10.1080/15226514.2013.798624; Martínez Sepúlveda, J. A., & Casallas, M. R. (2018). Contaminación y remediación de suelos en Colombia: aplicación a la minería de oro (U. EAN (ed.); 1a edición). https://doi.org/10.21158/9789587565836; Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2014). Items de referencia para publicar Revisiones Sistemáticas y Metaanálisis: Rev Esp Nutr Hum Diet, 18(3), 172–181. http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es_CO%5Cnwww.renhyd.org; Nascimento, S. M. de S. G., Souza, A. P. de, Lima, V. L. A. de, do Nascimento, C. W. A., & do Nascimento, J. J. V. R. (2016). Phytoextractor potential of cultivated species in industrial area contaminated by lead. Revista Brasileira de Ciencia Do Solo, 40, 1–14. https://doi.org/10.1590/18069657rbcs20140805; Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation Technology : Hyper-Accumulation Metals in Plants Phytoremediation Technology : Hyper-accumulation Metals in Plants. Water Air Soil Pollut, 184(2007), 105–126. https://doi.org/10.1007/s11270-007-9401-5; Rizwan, M., Ali, S., Zia ur Rehman, M., Rinklebe, J., Tsang, D. C. W., Bashir, A., Maqbool, A., Tack, F. M. G., & Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: A review. Science of the Total Environment, 631–632, 1175–1191. https://doi.org/10.1016/j.scitotenv.2018.03.104; Sabeen, M., Mahmood, Q., Irshad, M., Fareed, I., Khan, A., Ullah, F., Hussain, J., Hayat, Y., & Tabassum, S. (2013). Cadmium Phytoremediation by Arundo donax L . from Contaminated Soil and Water. BioMed Research International. https://doi.org/http://dx.doi.org/10.1155/2013/324830; Sarma, H. (2011). Metal Hyperaccumulation in Plants: A Review Focusing on Phytoremediation Technology. Journal of Environmental Science and Technology, 4(2), 118–138. https://doi.org/10.3923/jest.2011.118.138; Saxena, P. K., KrishnaRaj, S., Dan, T., Perras, M. R., & Vettakkorumakankav, N. N. (1999). Phytoremediation of Heavy Metal Contaminated and Polluted Soils. Heavy Metal Stress in Plants, 8, 305–329. https://doi.org/10.1007/978-3-662-07745-0_14; Sewalem, N., Elfeky, S., Shintinawy, F. E.-, Sewalem, N., Elfeky, S., & Shintinawy, F. E.-. (2014). Phytoremediation of Lead and Cadmium Contaminated Soils using Sunflower Plant. Journal of Stress Physiology & Biochemistry, 10(1), 122–134.; Shirkhani, Z., Chehregani Rad, A., Gholami, M., & Mohsenzadeh, F. (2018). Phytoremediation of Cd-contaminated Soils by Datura stramonium L. Toxicology and Environmental Health Sciences, 10(3), 168–178. https://doi.org/10.1007/s13530-018-0361-5; Somasundaram, J., Krishnasamy, R., Mahimairaja, S., & Savithri, P. (2006). Dynamics of lead (Pb) in different soil conditions. Journal of Environmental Science and Engineering, 48(2), 123–128.; Sun, L., Cao, X., Li, M., Zhang, X., Li, X., & Cui, Z. (2017). Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L . with Mucor circinelloides. February 2020. https://doi.org/10.1007/s11356-017-8637-x; Tauqeer, H. M. (2013). Heavy Metals Contamination and what are the Impacts on Living Organisms. Greener Journal of Environmental Management and Public Safety, 2(4), 172–179. https://doi.org/10.15580/GJEMPS.2013.4.060413652; Varun, M., Souza, R. D., & Paul, M. S. (2011). Phytoextraction Potential of Prosopis juliflora ( Sw .) DC . with Specific Reference. July. https://doi.org/10.1007/s00128-011-0305-0; Wanden-Berghe, C., Veiga de Cabo, J., Sanz-Valero, J., Pérez de la Cruz, A., Culebras Fernández, J., García de Lorenzo, A., Gil Hernández, Á., Laborda González, L., & Sánchez-Álvarez, C. (2009). De la pregunta de investigación a la ecuación de búsqueda biblioFigura: los Descriptores en las Ciencias de la Nutrición (Issue January). https://doi.org/10.13140/2.1.4345.1686; World Health Organization. (2019). Exposure to cadmium: a major public health concern. Preventing Disease Through Healthy Environments, 3–6. http://www.who.int/ipcs/features/cadmium.pdf; Zaurov, D. E., Perdomo, P., & Raskin, I. (1999). Optimizing soil fertility and pH to maximize cadmium removed by indian mustard from contaminated soils. Journal of Plant Nutrition, 22(6), 977–986. https://doi.org/10.1080/01904169909365687; Zhang, H., Guo, Q., Yang, J., Ma, J., Chen, G., Chen, T., Zhu, G., Wang, J., Zhang, G., Wang, X., & Shao, C. (2016). Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicology and Environmental Safety, 133, 57–62. https://doi.org/10.1016/j.ecoenv.2016.05.036; Zhong, L., Lin, L., Liao, M., Wang, J., Tang, Y., Sun, G., Liang, D., & Xia, H. (2019). Phytoremediation potential of Pterocypsela laciniata as a cadmium hyperaccumulator. Environmental Science and Pollution Research, 26, 13311–13319. https://doi.org/https://doi.org/10.1007/s11356-019-04702-4; Vega, L. P., Ortegón, A. C., & Castellanos, P. M. (2022). Avances en Ingeniería y su Aporte a la Sostenibilidad. Tunja: Ediciones USTA.; http://hdl.handle.net/11634/50634; reponame:Repositorio Institucional Universidad Santo Tomás; instname:Universidad Santo Tomás
الاتاحة: http://hdl.handle.net/11634/50634
-
3Book
المؤلفون: Osorio-Rios, Elkín, Pérez-Ramírez, Fabián Alonso, Narváez-Gómez, Elkin de Jesús, Ramírez-Valencia, Diana Cristina, Velásquez-Valderrama, Ángela María, Forero-Meza, María Francisca, Vargas-Restrepo, Carlos Mario, Mosquera-Orozco, Jaime de Jesús, Álvarez-López, José Alberto, Castro-Restrepo, Dagoberto, Quijano-Abril, Mario Alberto, Gil-Valencia, Wilmar Evelio, Giraldo-Mejía, Mauricio Eliecer, Ospina-Henao, Mary Estela, Villalba-Morales, Maria Luisa, Roda-Chamorro, Luz Marina, González-Arbeláez, Juan Manuel, Torres-Acosta, Diana Milena, Aguirre-Suárez, Paulina, Correa-Carmona, Juan Carlos, López-Vargas, Omar Alberto, Cadavid-Marín, Obispo. Fidel León, Narváez-Gómez, Pbro. Elkin de Jesús, Acosta-Gómez, Julián, Franco-Montoya, Juan Carlos, Rios-Betancur, Wolfy Leandro
المساهمون: Ríos-Osorio, Elkin, Pérez-Ramírez, Fabián Alonso, Acosta-Gómez, Julián, Ramírez, Julian, Universidad Católica de Oriente, Cadavid-Marín, Obispo. Fidel León, Narváez-Gómez, Pbro. Elkin de Jesús, Velásquez-Valderrama, Ángela María, Castro-Restrepo, Dagoberto, Rodas-Chamorro, Luz Marina, López-Vargas, Pbro. Omar Alberto, Ramírez-Garzón, Luisa Fernanda
مصطلحات موضوعية: Universidad Católica de Oriente (Colombia) – Historia – 1982-2022, Universidad Católica de Oriente (Rionegro- Colombia), Universidad Católica de Oriente (Colombia) - Aniversarios, Universidad Católica de Oriente (Colombia) - History - 1982-2022, Universidad Católica de Oriente (Colombia) - Anniversaries, Memoria colectiva, Memoria histórica, Aniversarios y Centenarios, Historia Oral, Identidad colectiva, Identidad de la comunidad
جغرافية الموضوع: Sudamérica, Colombia, Rionegro, Antioquia
وصف الملف: 200p.; application/pdf
Relation: https://doi.org/10.47286/9786287521421; https://repositorio.uco.edu.co/handle/20.500.13064/1634
-
4Book
المؤلفون: Albalat-Botana, Amparo, Guadarrama-Zugasti, Carlos, Ramírez-Miranda, César A, Alves-da Silva, Luciana Helena, De Almeida, María Geralda, Pineda-Canabal, Aníbal, Quijano-Abril, Mario Alberto, Franco-Ospina, María Cristina, Zapata-Hincapié, Óscar Javier, Castro-Restrepo, Dagoberto, Domínguez-Rave, María Isabel, Quintero-Corredor, Cindy Pamela, Villalba-Morales, María Luisa, Hormecheas-Tapia, Karen Cristina, Ruiz-Castañeda, Walter Lugo, Vargas-Restrepo, Carlos Mario, Vélez-Rivera, Diego Andrés, Gómez-Betancur, Milany Andrea, Quintero-Osorio, Luz Adriana, Franco Montoya, Juan Carlos, Aguirre-Cardona, Diego Andrés, Osorio-Santa, Natalia, Hoyos-Rincón, Luisa Fernanda, Arias, Lleiquin David, Villabona-González, Silvia Lucía, Gil-Guarín, Isabel Cristina, Navarro-Alzate, Rafael, Gaviria-Gutiérrez, Bertha, Trujillo-Ortega, Laura Elena, Aristizábal-Montoya, Ana María
المساهمون: Villabona-González, Silvia Lucía, Castro-Restrepo, Dagoberto, Universidad Católica de Oriente, Retec
مصطلحات موضوعية: Conservación de los recursos naturales, Ecología, Medioambiente, Conservation of natural resources, Ecology, Environment, Recursos naturales - Conservación, Medio ambiente - Protección, Medio ambiente - Conservación, Protección ambiental, Protección del medio ambiente, Educación ambiental, Ciencias medioambientales
جغرافية الموضوع: Sudamérica, Colombia, Rionegro, Antioquia
وصف الملف: application/pdf
Relation: https://doi.org/10.47286/9789585518490; https://repositorio.uco.edu.co/handle20.500.13064/975; Medioambiente: Dinámica y gestión de ecosistemas. Estado y manejo de recursos naturales en diversos territorios. / Silvia Lucía Villabona González y Dagoberto Castro Restrepo, editores académicos. — Rionegro: Fondo Editorial Universidad Católica de Oriente; Retec, 2020. 166 p.
-
5Book
المؤلفون: Lafferrière, Jorge Nicolás, Moya, Graciela, Castro-Restrepo, Dagoberto, Vallejo, J, Jimenez-Hernandez, Gustavo, Álvarez Díaz, Juan Camilo, Quintero Salazar, Libardo de Jesús, Jiménez, Gerardo, Chmielak, Carolina, Ramírez, Diadelis, Simón, Farith, Terán, Enrique, Jung, Helgi, Ramírez, Ronald, Servian, Teresa, Geri, Leonardo, María D’Angelo, Rafael Santa, Lacunza Murillo, Fernando Alberto, Vélez Amocho, Jorge Iván, Arroyo, Nancy, Alfonzo, Felipe, Blanco, Susana
المساهمون: Fondo Editorial Universidad Católica de Oriente, Lafferrière, Jorge Nicolás, Moya, Graciela
مصطلحات موضوعية: Genética humana, Aspectos éticos, Genética, Legislación, Human genetics, Ethical aspects, Genetics, Legislation, Genética médica, Biología, Bioética, Ética, Filosofía moral, Derecho y moral, Desarrollo moral, Desarrollo ético
جغرافية الموضوع: Sudamérica, Colombia, Rionegro, Antioquia
Time: 2021
وصف الملف: application/pdf
Relation: https://doi.org/10.47286/9789585518421; https://repositorio.uco.edu.co/handle20.500.13064/749
-
6Academic Journal
المؤلفون: Zapata-Vahos, Isabel Cristina, Rojas-Rodas, Felipe, David, Dorely, Gutierrez-Monsalve, Jaime A., Castro-Restrepo, Dagoberto
المصدر: Revista Facultad Nacional de Agronomía Medellín; Vol. 73 No. 1 (2020); 9077-9088 ; Revista Facultad Nacional de Agronomía Medellín; v. 73 n. 1 (2020); 9077-9088 ; Revista Facultad Nacional de Agronomía Medellín; Vol. 73 Núm. 1 (2020); 9077-9088 ; 2248-7026 ; 0304-2847
مصطلحات موضوعية: Antioxidants, Anthocyanins, Hydroponics, Aeroponics, Agronomy, Food Engineering, Antioxidantes, Antocianinas, Sistema hidropónico, Sistema aeropónico, Ciencias Agronómicas, Ingeniería de Alimentos
وصف الملف: application/pdf; application/xml
Relation: https://revistas.unal.edu.co/index.php/refame/article/view/77279/73616; https://revistas.unal.edu.co/index.php/refame/article/view/77279/74066; Adesso S, Pepe G, Sommella E, Manfra M, Scopa A, Sofo A, Tenore GC, Russo M, Di Gaudio F, Autore G, Campiglia P and Marzocco S. 2016. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods. Journal of the Science of Food and Agriculture 96(12): 4194-4206. doi:10.1002/jsfa.7622; Alsadon AA, Al-Helal IM, Ibrahim AA, Abdel-Ghany AM, Al-Zaharani SM and Gulrez KH. 2016. Growth response of cucumber under greenhouses covered with plastic films. The Journal of Animal & Plant Sciences 26(1):139-148.; Barbosa GL, Gadelha FDA, Kublik N, Proctor A, Reichelm L, Weissinger E, Wohlleb GM and Halden RU. 2015. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. International Journal of Environmental Research and Public Health 12(6): 6879-6891. doi:10.3390/ijerph120606879; Benzie IF and Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Analytical Biochemistry 239(1): 70-76. doi:10.1006/abio.1996.0292; Brand-Williams W, Cuvelier ME and Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science Technology 28(1): 25-30. doi:10.1016/S0023-6438(95)80008-5; Bunning M and Kendall P. 2012. Health Benefits and Safe Handling of Salad Greens. Fact Sheet No. 9.373. In: Colorado State University Extension, https://extension.colostate.edu/topic-areas/nutrition-food-safety-health/health-benefits-and-safe-handling-of-salad-greens-9-373/ accessed: November 2019.; Cemek B, Demir Y, Uzun S and Ceyhan V. 2006. The effects of different greenhouse covering materials on energy requirement, growth and yield of aubergine. Energy 31(12): 1780–1788. doi:10.1016/j.energy.2005.08.004; Chen Y, Zhou B, Li J, Tang H, Tang J and Yang Z. 2018. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions. International Journal of Molecular Sciences 19(3): 654. doi:10.3390/ijms19030654; Chon SU, Boo HO, Heo BG and Gorinstein S. 2012. Anthocyanin content and the activities of polyphenol oxidase, peroxidase and phenylalanine ammonialyase in lettuce cultivars. International Journal Food Science Nutrition 63(1): 45-8. doi:10.3109/09637486.2011.595704; Cooper A. 1988. The ABC of NFT. Nutrient Film Technique: The World's First Method of Crop Production Without a Solid Rooting Medium. Intl Specialized Book Services, London. pp. 3-123.; Dissanayaka A, Rodriguez TO, Di S, Yan F, Githiri SM, Rojas Rodas F, Abe J and Takahashi R. 2016. Quantitative trait locus mapping of soybean maturity gene E5. Breeding Science 66(3): 407–415. doi:10.1270/jsbbs.15160; FAO. 2013. The state of food and agriculture. Food Systems For Better Nutrition. In: FAO, http://www.fao.org/3/i3300e/i3300e00.htm accessed: November 2019.; FAO. 2017. Crops. In: FAOSTAT, http://www.fao.org/faostat/en/#data/QC/visualize accessed: March 2018.; Gan YZ and Azrina A. 2016. Antioxidant properties of selected varieties of lettuce (Lactuca sativa L.) commercially available in Malaysia. International Food Research Journal 23(6): 2357-2362.; Gazula A, Kleinhenz MD, Scheerens JC and Ling PP. 2007. Anthocyanin Levels in Nine Lettuce (Lactuca sativa) Cultivars: Influence of Planting Date and Relations among Analytic, Instrumented, and Visual Assessments of Color. HortScience 42(2): 232–238.; Gutierrez A, Herrera N, Castro L, Fernandez JM and Rodas FR. 2019 Low Cost Outdoors Climate Monitoring Network Using Zigbee Wireless Technology. Journal Revista Ibérica de Sistemas e Tecnologias de Informação. RISTI(19): 56-68; Hart G. 2005. The Routledge Dictionary of Egyptian Gods and Goddesses. Second edition. Psychology Press, Routledge. 170 p.; Henz GP e Suinaga F. 2009. Tipos de alface cultivados no Brasil. Comunicado Técnico No. 75. Embrapa Hortaliças, Brasília. 7 p.; Holeman E, Sentelhas PC and Mello SC. 2017. Cherry tomato yield in greenhouses with different plastic covers. Ciência Rural 47(10): e20160991. doi:10.1590/0103-8478cr20160991; Hooper L and Cassidy A. 2006. A review of the health care potential of bioactive compounds. Journal of the Science of Food and Agriculture 86(12): 1805-1813. doi:10.1002/jsfa.2599; Huang D, Ou B and Prior RL. 2005. The chemistry behind antioxidant capacity assays. Journal Agriculture Chemistry 53(6): 1841-1856. doi:10.1021/jf030723c; Ilić SZ, Milenković L, Dimitrijević A, Stanojević L, Cvetković D, Kevrešan Ž, Fallik E and Mastilović J. 2017. Light modification by color nets improve quality of lettuce from summer production. Science Horticulture 226: 389-397. doi:10.1016/j.scienta.2017.09.009; Kim DE, Shang X, Assefa AD, Keum YS and Saini RK. 2018. Metabolite profiling of green, green/red, and red lettuce cultivars: Variation in health beneficial compounds and antioxidant potential. Food Research International 105: 361–370. doi:10.1016/j.foodres.2017.11.028; Kong JM, Chia LS, Goh NK, Chia TF and Brouillard R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64(5): 923–933. doi:10.1016/S0031-9422(03)00438-2; Křístková E, Doležalová I, Lebeda A, Vinter V and Novotná A. 2008. Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. Horticultural Science 35(3): 113–129. doi:10.17221/4/2008-HORTSCI; Lebeda A, Ryder EJ, Grube R, Doležalová I And Křístková E. 2007. Lettuce (Asteraceae; Lactuca spp.). pp. 377–472. In: Singh RJ (ed.). Genetic Resources, Chromosome Engineering, and Crop Improvement. Vol. 3. CRC Press, Boca Ratón.; Li J, Wang X, Song W, Huang X, Zhou J, Zeng H, Sun S, Jia H, Li W, Zhou X, Li S, Chen P, Wu C, Guo Y, Han T and Qiu L. 2017. Genetic variation of maturity groups and four E genes in the Chinese soybean mini core collection. PLoS ONE 12(2): e0172106. doi:10.1371/journal.pone.0172106; Liu X, Ardo S, Bunning M, Parry J, Zhou K, Stushnoff C, Stoniker F, Yu L and Kendall P. 2007. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Science and Technology 40(3): 552–557. doi:10.1016/j.lwt.2005.09.007; Llorach R, Martínez-Sánchez A, Tomás-Barberán FA, Gil MI, Ferreres F. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry 108(3):1028-1038. doi:10.1016/j.foodchem.2007.11.032; López A, Javier GA, Fenoll J, Hellín P and Flores P. 2014. Chemical composition and antioxidant capacity of lettuce: Comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. Journal of Food Composition and Analysis 33(1): 39-48. doi:10.1016/j.jfca.2013.10.001; MADR-Ministerio De Agricultura Y Desarrollo Rural. 2014. Informe de la cadena de Hortalizas. En: https://es.scribd.com/document/400140766/006-Inf-Coyuntura-Actualidad-Cadena-Hortalizas-docx consulta: junio 2018.; MADR -Ministerio De Agricultura y Desarrollo Rural. 2006. Plan Hortícola Nacional. En: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwj4k63Hvr3mAhVlrlkKHYIUDHcQFjAAegQIARAC&url=http%3A%2F%2Fwww.asohofrucol.com.co%2Farchivos%2Fbiblioteca%2Fbiblioteca_28_PHN.pdf&usg=AOvVaw0cZUPeq-Ur91lMvrMvcRXx consulta: junio 2018.; Mampholo BM, Maboko MM, Soundy P and Sivakumar D. 2016. Phytochemicals and Overall Quality of Leafy Lettuce (Lactuca sativa L.) Varieties Grown in Closed Hydroponic System. Journal of Food Quality 39(6): 805-815. doi:10.1111/jfq.12234; Manach C, Scalbert A, Morand C, Rémésy C and Jiménez L. 2004. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition 79(5):727–747. doi:10.1093/ajcn/79.5.727; Mello LD and Quadros GP. 2014. Correlation between antioxidant activity and total phenolic content with physicochemical parameters of blended extracts of Camellia sinensis. Acta Scientiarum 36(1):97-103. doi:10.4025/actascihealthsci.v36i1.12615; Mesa-Vanegas AM, Zapata-Uribe S, Arana LM, Zapata IC, Monsalve Z y Rojano B. 2015. Actividad antioxidante de extractos de diferente polaridad de Ageratum conyzoides L. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas 14(1): 1 – 10.; MinSalud – Ministerio de Salud y Protección social de Colombia. 2013. Perfil Nacional De Consumo De Frutas Y Verduras. In: MinSalud, https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjHxIH6wL3mAhVOzlkKHQW7AXwQFjAAegQIARAC&url=https%3A%2F%2Fwww.minsalud.gov.co%2Fsites%2Frid%2FLists%2FBibliotecaDigital%2FRIDE%2FVS%2FPP%2FSNA%2Fperfil-nacional-consumo-frutas-y-verduras-colombia-2013.pdf&usg=AOvVaw133r7xYFQvlB5kahSlu4hb consulta: junio 2018; Mou B. 2008. Lettuce. pp. 75–116. In: Prohens J and Nuez F. (eds). Vegetables I. Asteraceae, Brassicaceae, Chenopodiaceae and Cucurbitaceae. Springer Science, New York. 428 p.; Nishimuro H, Ohnishi H, Sato M, Ohnishi-Kameyama M, Matsunaga I, Naito S, Ippoushi K, Oike H, Nagata T, Akasaka H, Saitoh S, Shimamoto K and Kobori M .2015. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients 7(4): 2345–2358. doi:10.3390/nu7042345; Nicolle C, Carnat A, Fraisse D, Lamaison JL, Rock E, Michel H, Amouroux P and Remesy C. 2004. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). Journal Science Food Agriculture 84(15): 2061 – 2069. doi:10.1002/jsfa.1916; Ntsoane LLM, Soundy P, Jifon J and Dharini S. 2016. Variety-specific responses of lettuce grown under the different coloured shade nets on phytochemical quality after postharvest storage. The Journal Horticultural Science and Biotechnology 91(5): 520-528. doi:10.1080/14620; Ordidge M, García-Macías P, Battey NH, Gordon MH, Hadley P, John P, Lovegrove JA, Vysini E and Wagstaffe A. 2010. Phenolic contents of lettuce, strawberry, raspberry, and blueberry crops cultivated under plastic films varying in ultraviolet transparency. Food Chemistry 119(3): 1224–1227. doi:10.1016/j.foodchem.2009.08.039; Ozgen S and Sekerci S, 2011. Effect of leaf position on the distribution of phytochemicals and antioxidant capacity among green and red lettuce cultivars. Spanish Journal of Agricultural Research 9(3): 801-809. doi:10.5424/sjar/20110903-472-10; Paixão N, Perestrelo R, Marques JC and Câmara JS. 2007. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chemistry 105(1): 204–214. doi:10.1016/j.foodchem.2007.04.017; Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M and Brighenti F. 2003. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of Nutrition 133(9):2812-2819. doi:10.1093/jn/133.9.2812; Shi X, Yu F, Jiang C, Wang H and Yukui R. 2015. Comparison of nutrient components of Chinese lettuce (Lactuca sativa L.) and American lettuce. Emirates Journal of Food and Agriculture 27(10): 790-792. doi:10.9755/ejfa.2015-08-603; Singleton VL and Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.; Sivakumar D, Jifon J and Soundy P. 2017. Spectral quality of photo-selective shade nettings improves antioxidants and overall quality in selected fresh produce after postharvest storage. Food Reviews International 34(3): 290-307. doi:10.1080/87559129.2017.1298124; Sofo A, Lundegårdh B, Mårtensson A, Manfrac M, Pepe G, Sommella E, De Nisco M, Tenore GC, Campiglia P and Scopa A. 2016. Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and mineral composition of lettuce. Scientia Horticulturae 204: 106–115. doi:10.1016/j.scienta.2016.04.003; Souza PF, Borghezan M, Zappelini J, Carvalho LR, Ree J, Barcelos-Oliveira JL and Pescador R. 2019. Physiological differences of ‘Crocantela’ lettuce cultivated in conventional and hydroponic systems. Horticultura Brasileira 37(1): 101-105. doi:10.1590/S0102-053620190116; Steiner AA. 1984. The Universal Nutrient Solution. In: Sixth International Congress on Soilless Culture. Wageningen. pp. 633-650.; Tiveron AP, Melo PS, Bergamaschi KB, Vieira TMFS, Regitano-d’Arce MAB and Alencar SM. 2012. Antioxidant activity of Brazilian vegetables and its relation with phenolic composition. International Journal of Molecular Sciences 13(7): 8943–8957. doi:10.3390/ijms13078943; Trejo-Téllez LI and Gómez-Merino FC. 2012. Nutrient Solutions for Hydroponic Systems. pp. 1-22. In: Asao T (ed.). Hydroponics - A Standard Methodology for Plant Biological Researches. InTech. 244 p.; USDA-United States Department of Agriculture. 2016. Vegetables and Pulses Year Data. In: Economic research service, https://www.ers.usda.gov/data-products/vegetables-and-pulses-data/ accessed: April 2016.; Vargas-Arcila M, Cartagena-Valenzuela JR, Franco G, Correa-Londoño GA, Quintero-Vásquez LM and Gaviria-Montoya CA. 2017. Changes in the physico-chemical properties of four lettuce (Lactuca sativa L.) varieties during storage. Ciencia y Tecnología Agropecuaria 18(2): 257-273. doi:10.21930/rcta.vol18_num2_art:632; Zambrano-Moreno EL, Chávez-Jáuregui RN, Plaza ML and Wessel-Beaver L. 2015. Phenolic content and antioxidant capacity in organically and conventionally grown eggplant (Solanum melongena) fruits following thermal processing. Food Science and Technology (Campinas) 35(3): 414-420. doi:10.1590/1678-457X.6656; Zhou YH, Zhang YY, Zhao X, Yu HJ, Shi K and Yu JQ. 2009. Impact of light variation on development of photoprotection, antioxidants, and nutritional value in Lactuca sativa L. Journal of Agriculture and Food Chemistry 57(12): 5494-5500. doi:10.1021/jf8040325; https://revistas.unal.edu.co/index.php/refame/article/view/77279
-
7Periodical
المؤلفون: Duran-Rivera, Byron, Rojas-Rodas, Felipe, Silva López, Wilber, Gómez-Suárez, Crhistian, Castro Restrepo, Dagoberto
المصدر: Mycobiology; May 2024, Vol. 52 Issue: 3 p145-159, 15p
-
8Book
المؤلفون: Castro-Restrepo, Dagoberto, Díaz-García, Jesús Jaiber, Serna-Betancur, Raquel, Martínez-Tobón, María Denis, Urrea, Paola Andrea, Muñoz-Durango, Katalina, Osorio-Durango, Edison Javier
المساهمون: Castro-Restrepo, Dagoberto
مصطلحات موضوعية: Producción, Cultivo, Aromáticas, Plagas, Production, Cultivate, Aromatic, Pests, Cultivos de regadío, Plagas del campo, Energía-Producción
جغرافية الموضوع: Sudamérica, Colombia, Antioquia, Rionegro
وصف الملف: application/pdf
Relation: https://doi.org/10.47286/9789588385747; https://repositorio.uco.edu.co/handle20.500.13064/278
-
9Book
المؤلفون: Martin-Fiorino, Víctor R., Velasquez, Alcides A., Roldán-Alzate, Alejandro, Baldiris, Silvia, Fabregat, Ramon, Treviranus, Jutta, De Lera, Eva, Xibillé-M., Jaime, Zuluaga-G., Robin, Vélez-A., Lina, Giraldo-R., Diana, Castro-Restrepo., Dagoberto, Zuleta-S., Guillermo, Pérez-Valencia., Daniel, Gañán-R., Piedad, Zuleta-S., Guillermo L., Campillo-V., Beatriz E, Álvarez-Fonseca, Fredy Yoverty, Gil-Valencia, Wilmar Evelio, Ramirez-Salazar, Eyised Andrea, Cuevas-Silva, Juan María, Vallejo-Cardona, Jesús David, Narváez-Villa, Frey Augusto, Correa-G., Sandra M, Ríos-Osorio, Elkin Alonso, Suarez-M., David, Bonilla-O, Luis E., Otálora-L., Jorge E, Florez-Marquez, Dorismilda
مصطلحات موضوعية: Humanismo, Nanotecnología, Economía, Comunicación familiar, Humanism, Nanotechnology, Economy, Family communication, Educación humanística, Medios de comunicación social
جغرافية الموضوع: Sudamérica, Colombia, Antioquia, Rionegro
وصف الملف: application/pdf
Relation: https://doi.org/10.47286/9789588385983; https://repositorio.uco.edu.co/handle20.500.13064/281
-
10Academic Journal
المصدر: Revista Facultad Nacional de Agronomía Medellín; Vol. 68 No. 1 (2015); 7451-7458 ; Revista Facultad Nacional de Agronomía Medellín; v. 68 n. 1 (2015); 7451-7458 ; Revista Facultad Nacional de Agronomía Medellín; Vol. 68 Núm. 1 (2015); 7451-7458 ; 2248-7026 ; 0304-2847
مصطلحات موضوعية: Glomus aggregatum, phosphate, plant nutrition, soil restoration, fosfato, nutrición de plantas, recuperación de suelos
وصف الملف: application/pdf; text/html
Relation: https://revistas.unal.edu.co/index.php/refame/article/view/47831/49349; https://revistas.unal.edu.co/index.php/refame/article/view/47831/60315; Allen, M. 1996. The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycological Research 100(7): 769-782.; Alzate, F., A. Idarraga, O. Diaz, and W. Rodríguez. 2012. Flora de los bosques montanos de Medellín. Universidad de Antioquia - Alcaldía de Medellín, Medellín. 552 p.; Aziz, T. and M. Habte. 1987. Determining vesicular-arbuscular micorrizal effectiveness by monitoring P status of leaf disk. Canadian Journal Microbiology 33: 1097-1101.; Barea, J.M., R. Azcón and C. Azcón. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leewenhoek 81(1-4): 343-351.; Diez, M.C. 2011. Conceptos importantes para la fertilización de plántulas de especies forestales. pp. 29-34. En: Diez, M.C., F.H. Moreno y Y. Sepúlveda (eds.). Fertilización de especies forestales de bosques andinos. Universidad Nacional de Colombia, Medellín. 75 p.; Diez, M.C., N.W. Osorio, and F.H. Moreno. 2008. Evaluation of mycorrhizal dependency of romeron pine (Nageia rospigliosii Pilger) under contrasting light conditions. Revista Facultad Nacional Agronomía Medellín 61(2): 4554-4563; Elsen, A., H. Baimey, R. Swennen and D. de Waele. 2003. Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant and Soil 256:303-313.; Fox, R. and E. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Science Society of America Proceedings 34: 902-907.; Genre, A. and P. Bonfante. 1998. Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytologist 140(4): 745-752.; Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500.; González, O. and N.W. Osorio. 2008. Determinación de la dependencia micorrizal del lulo. Acta Biológica Colombiana 13(2): 163-174.; Habte, M. and A. Manjunath. 1991. Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1:3-12.; Habte, M. and N.W. Osorio. 2001. Arbuscular Mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. University of Hawaii, Honolulu. 47 p.; Habte, M. 2006. The roles of arbuscular mycorrihizas in plant and soil health. pp. 129-147. In: N. Uphoff (ed.). Biological approaches to sustainable soil systems. CRC, Boca Raton, Florida. 764 p.; Haselwandter, K. and G.D. Bowen. 1996. Mycorrhizal relations in trees for agroforestry and land rehabilitation. Forest Ecology and Management 81(1-3): 1-17.; Havlin, J., J. Beaton, S.L.Tisdale and W. Nelson. 2004. Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall, Upper Saddle River, New Jersey. 478 p.; Holdridge, L.R. 1967. Life zone ecology. Tropical Science Center, San José, Costa Rica, 206 p.; Janos, D. 1980a. Mycorrhizae influence tropical succession. Biotropica 12(2): 54-64.; Janos, D. 1980b. Vesicular- arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61(1): 151-162.; Jaramillo, S.P., M. Silva and N.W. Osorio. 2004. Potencial simbiótico y efectividad de hongos micorrízico arbusculares de tres suelos sometidos a diferentes usos. Revista de la Facultad Nacional de Agronomía Medellín 57(1): 2203-2214.; Jaramillo, S.P. and N.W. Osorio. 2009. Mycorrhizal dependency of coffee seedling at different levels of soil solution phosphorus. Revista Suelos Ecuatoriales 39(1): 100-106.; Johansson, J.F., L.R. Paul and R.D. Finlay. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48(1): 1-13.; Kormanik, P.P., W.C. Bryan and R.C. Schultz. 1980. Procedures and equipment for staining a large numbers of plant samples for endomycorrhizal assay. Canadian Journal Microbiology 26(4): 536-538.; Mansfeld, K., J. Larsen, and L. Bødker. 2002. Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intrarradices. FEMS Microbiology Ecology 41(2):133-140.; Montoya, B. and N.W. Osorio. 2009. Mycorrhizal dependency of avocado at different levels of soil solution phosphorus. Suelos Ecuatoriales 39(2):143-147.; Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36.; Osorio, N.W. 2012. Manejo de nutrientes en suelos del trópico. Universidad Nacional de Colombia, Medellín. 339 p.; Osorio, N.W. and M. Habte. 2001. Synergistic influence of an arbuscular micorrizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an oxisol. Arid Land Research and Management 15: 263-274.; Osorio, N.W. and M. Habte. 2013. Synergistic effect of a phosphate solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in an oxisol fertilized with rock phosphate. Botany 91(4): 274-281.; Osorio, W., M.C. Diez, J.A. Sierra, and L. Paternina. 2008. Consideraciones ecológicas sobre la asociación micorrizal en suelos de la región altoandina. pp. 181- 198. En: León, J.D. (ed.). Ecología de bosques altoandinos. Universidad Nacional de Colombia, Medellin. 260 p.; Pedroza, J.A y W.A. Tupaz. 2008. Micropropagación de Ilex kunthiana Triana and Planchon (Aquifoliaceae), una especie de gran importancia en programas de revegetalización. Revista Colombiana Biotecnológica 10(2): 78-84.; Phillips, J.M. and D.S. Hayman. 1970. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1): 158-161.; Plenchette, C., A. Fortin and V. Furlan. 1983. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant and Soil 70: 199-209.; Porter, W. 1979. The "Most Probable Number" method for ennumerating infective propagules of vesicular arbuscular micorrizal fungi in soil. Australian Journal of Soil Research 17: 515-519.; Rilling, M. 2004. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7(8):740-754.; Sierra, J.A., D. Castro y N.W. Osorio. 2009. Dependencia micorrizal de laurel (Ocotea sp.). Revista Colombia Forestal 12: 21-30.; Sierra, J.A., D. Castro and W. Osorio. 2012. Mycorrhizal dependence of barcino (Clusiaceae: Calophyllum brasiliense Cambers). Actualidades Biológicas 34(97): 199-206.; Siqueira, J.O., M.A. Carbone, N. Curi, S.C. Silva and A.C. Davide. 1998. Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management 107(1-3): 241-252 Smith, S. and D. Read. 1997. Mycorrhizal symbiosis. Academic Press, London. 330 p.; Walker, C. and J.M. Trappe. 1993. Names and epithets in the Glomales and Endogonales. Mycological Research 97(3): 339-344.; Uchida, R. and N.V. Hue. 2000. Plant nutrient management in Hawaii's soils, approaches for tropical and subtropical agriculture. pp. 101-111. In: Silva, J.A. and R. Uchida (eds.). College of Tropical Agriculture and Human Resources. University of Hawaii at Manoa. 158 p.; Vosatka, M. and J. Albrechtova. 2009. Benefits of arbuscular mycorrhizal fungi to sustainable crop production. pp. 205-225. In: Khan, M.S. (ed.). Microbial strategies for crop improvement. Springer-Verlag, Berlin. 358 p.; Westerman, R.L. 1990. Soil Testing and Plant Analysis, Soil Science Society of America, ASA, Madison, Wisconsin. 870 p.; Zangaro, W., F.R. Nishidate, F.R. Spago-Camargo, G. Gorete-Romagnoli and J. Vandressen. 2005. Relationships among arbuscular mycorrhizas, root morphology and seedling growth of tropical native woody species in southern Brazil. Journal of Tropical Ecology 21(5): 529-540.; https://revistas.unal.edu.co/index.php/refame/article/view/47831
-
11Academic Journal
مصطلحات موضوعية: 57 Ciencias de la vida, Biología / Life sciences, biology, 58 Plantas / Plants, Glomus aggregatum, phosphate, plant nutrition, soil restoration, fosfato, nutrición de plantas
وصف الملف: application/pdf
Relation: http://www.revistas.unal.edu.co/index.php/refame/article/view/47831; Universidad Nacional de Colombia Revistas electrónicas UN Revista Facultad Nacional de Agronomía Medellín; Revista Facultad Nacional de Agronomía Medellín; Sierra Escoba, Jorge Alberto and Castro Restrepo, Dagoberto and Osorio Vega, Nelson Walter (2015) Mycorrhizal Dependency of Alcaparro (Senna pistaciifolia Kunth) at Three Concentrations of Soil Solution Phosphorus. Revista Facultad Nacional de Agronomía, 68 (1). pp. 7451-7458. ISSN 2248-7026; https://repositorio.unal.edu.co/handle/unal/58609; http://bdigital.unal.edu.co/55393/
-
12Academic Journal
المصدر: Acta Agronómica, Vol 60, Iss 2 (2011)
مصطلحات موضوعية: Annona muricata, compatibilidad de injerto, guanábana, injerto, propagación de plantas, regeneración in vitro, revigorización, graft compatibility, in vitro regeneration, plant propagation, soursop, Agriculture
وصف الملف: electronic resource
-
13Academic Journal
المصدر: Acta Agronómica; Vol. 60 No. 2 (2011); 140-146 ; Acta Agronómica; Vol. 60 Núm. 2 (2011); 140-146 ; Acta Agronómica; v. 60 n. 2 (2011); 140-146 ; 2323-0118 ; 0120-2812
مصطلحات موضوعية: Annona muricata, graft, graft compatibility, in vitro regeneration, plant propagation, reinvigoration, soursop, compatibilidad de injerto, guanábana, injerto, propagación de plantas, regeneración
وصف الملف: application/msword; application/pdf; text/html
Relation: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/27836/28086; https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/27836/28087; https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/27836/28088; https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/27836
-
14Academic Journal
مصطلحات موضوعية: 6 Tecnología (ciencias aplicadas) / Technology, 63 Agricultura y tecnologías relacionadas / Agriculture, Annona muricata, graft, graft compatibility, in vitro regeneration, plant propagation, reinvigoration, soursop, compatibilidad de injerto, guanábana, injerto, propagación de plantas, regeneración
وصف الملف: application/msword; application/pdf
Relation: http://revistas.unal.edu.co/index.php/acta_agronomica/article/view/27836; Universidad Nacional de Colombia Revistas electrónicas UN Acta Agronómica; Acta Agronómica; Acosta Rangel, Aleyda Maritza and Peña Salamanca, Enrique Javier and Castro Restrepo, Dagoberto (2011) Evaluación de medios de cultivo para la producción in vitro de annona muricata mediante la técnica de microinjertación seriada. Acta Agronómica, 60 (2). pp. 140-146. ISSN 0120-2812; https://repositorio.unal.edu.co/handle/unal/39325; http://bdigital.unal.edu.co/29422/
-
15Academic Journal
المصدر: Colombia Forestal; Vol. 12 No. 1 (2009): January-December; 19-24 ; Colombia forestal; Vol. 12 Núm. 1 (2009): Enero-Diciembre; 19-24 ; 2256-201X ; 0120-0739
مصطلحات موضوعية: micorriza, fijación de fósforo, Ocotea, fijacion de fósforo, mycorrhiza, phosphorus fixation
وصف الملف: application/pdf; text/html
Relation: https://revistas.udistrital.edu.co/index.php/colfor/article/view/3031/4385; https://revistas.udistrital.edu.co/index.php/colfor/article/view/3031/4616; Allen, M. 1996. The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21th. Mycological Research 100: 769-782.; Aziz, T. & M. Habte. 1987. Determining vesicular-arbuscular micorrhizal effectiveness by monitoring P status of leaf disk. Canadian Journal Microbiology 33: 1097-1101.; Barea, J. M., R. Azcón & C. Azcón-Aguilar. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leewenhoek 81: 343-351.; Díez, M. 2006. Dependencia micorrizal de pino romeron, Retrophyllum rospigliosii (Pilg.) C. N. Page (Podocarpaceae), bajo diferentes niveles de intensidad lumínica. Informe de tesis presentado a la Universidad Nacional de Colombia, Sede Medellín, Facultad de Ciencias Agropecuarias. Medellín.; Elsen, A., H. Baimey, R. Swennen & D. De Waele. 2003. Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa sp.) differing in nematode susceptibility. Plant and Soil 256: 303-313.; Fox, R. & E. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Science Society of America Proceedings 34: 902-907.; Gerdemann, J. W. 1968. Vesicular-arbuscular mycorrhiza and plant growth. Phytopatol 6: 397-418.; Giovannetti, M. & B. Mosse. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytology 84: 489-500.; González, O. & N. W. Osorio. 2008. Determinación de la dependencia micorrizal del lulo. Acta Biológica Colombiana 13 (2): 163-174.; Habte, M., R. Fox & R. Huang. 1987. Determining vesicular-arbuscular micorrhizal effectiveness by monitoring P status of subleaflets of indicator plants. Communications in Soil Science and Plant Analysis 18: 1403-1420.; Habte, M. & A. Manjunath. 1987. Soil solution phosphorus status and mycorrhizal dependency in Leucaena leucocephala. Applied and Environmental Microbiology 53: 797-801.; Habte, M. & A. Manjunath. 1991. Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1: 3-12.; Habte, M. & N. W. Osorio. 2001. Arbuscular mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. University of Hawaii. Honolulu, Hawai. Pp. 1-47.; Haselwandter, K. & G. D. Bowen. 1996. Mycorrhizal relations in trees for agroforestry and land rehabilitation. Forest Ecology and Management 81: 1-17.; Holdridge, L. R. 1967. Life zone ecology. Tropical Science Center.; Janos, D. 1980a. Mycorrhizae influence tropical succession. Biotropica 12: 54-64.; Janos, D. 1980b. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61: 151-162.; Jaramillo, S. P., M. Silva & N. W. Osorio. 2004. Potencial simbiótico y efectividad de hongos micorrízico arbusculares de tres suelos sometidos a diferentes usos. Medellín. Revista Facultad Nacional de Agronomía 57: 2203-2214.; Johansson, J. F., L. R. Paul & R. D. Finlay. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. Fems Microbiology Ecology 48: 1-13.; Johansson, F., R. Leslie, & R. Finlay. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. Plant and Soil 0: 1-21.; Kormanik, P. P., A. C. Mcgraw & R. C. Schultz. 1980. Procedure and equipment for staining a large number of plant samples for endomycorrhizal assay. Canadian Journal of Microbiology 26: 536-538.; Manjunath, A. & M. Habte. 1990. Establishment of soil solution P levels for studies involving vesicular-arbuscular micorrizal fungi. Communications in Soil Science and Plant Analysis 21: 557-566.; Mansfeld-Giese, K., J. Karsen & L. Bødker. 2002. Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intrarradices. Fems Microbiology Ecology 41: 133-140.; Murphy, J. & J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-35.; Osorio, W., M. C. Díez, J. Sierra & L. Paternina. 2008. Consideraciones ecológicas sobre la asociación micorrizal en suelos de la region altoandina. En: J. D. León (ed.). Ecología de bosques andinos. Experiencias de investigación. La Carreta Editores. Medellín. Pp. 181-200.; Phillips, J. M. & D. S. Hayman. 1970. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158-161.; Plenchette, C., A. Fortin & V. Furlan. 1983. Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility. I. mycorrhizal dependency under field conditions. Plant and Soil 70: 191-209.; Porter, W. 1979. The "most probable number" method for enumerating infective propagules of vesicular arbuscular micorrizal fungi in soil. Australian Journal of Soil Research 17: 515-519.; Rilling, M. 2004. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7: 740-754.; Sánchez, M. 1999. Endomicorrizas en agroecosistemas colombianos. Departamento de Ciencias Básicas, Universidad Nacional de Colombia, Sede Palmira. Palmira.; Sieverding, E. 1991. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Technical cooperation, Eschbor. República Federal de Alemania.; Smith, S. & D. Read. 1997. Mycorrhizal Symbiosis. Academic Press. Londres.; Uchida, R. & N. V. Hue. 2000. Plant nutrient management in Hawaii's soils, approaches for tropical and subtropical agriculture. En: Silva, J. A. & R. Uchida (eds.). College of Tropical; https://revistas.udistrital.edu.co/index.php/colfor/article/view/3031
-
16Academic Journal
المؤلفون: Castro-Restrepo, Dagoberto, Dominguez, Maria Isabel, Gaviria-Gutiérrez, Bertha, Osorio, Edison, Sierra, Karina
المصدر: Plants (2223-7747); Jun2022, Vol. 11 Issue 11, p1474-1474, 15p
مصطلحات موضوعية: SPEARMINT, PLANT metabolites, BACILLUS subtilis, TRICHODERMA, PHYTOPATHOGENIC microorganisms, ENDOPHYTES
-
17
المؤلفون: Zapata-Vahos, Isabel Cristina, Rojas-Rodas, Felipe, David, Dorely, Gutierrez-Monsalve, Jaime A., Castro-Restrepo, Dagoberto
المصدر: Revista Facultad Nacional de Agronomía Medellín, Volume: 73, Issue: 1, Pages: 9077-9088, Published: JAN 2020
مصطلحات موضوعية: Anthocyanins, Hydroponics, Sistema aeropónico, Antocianinas, Sistema hidropónico, Antioxidantes, Aeroponics, Antioxidants
وصف الملف: text/html
-
18Academic Journal
المصدر: Colombia Forestal; Vol 12 No 1 (2009): January-December; 19-24 ; Colombia forestal; Vol. 12 Núm. 1 (2009): Enero-Diciembre; 19-24 ; 2256-201X ; 0120-0739
مصطلحات موضوعية: mycorrhiza, phosphorus fixation, Ocotea, micorriza, fijación de fósforo, fijacion de fósforo
وصف الملف: application/pdf; text/html
Relation: https://revistas.udistrital.edu.co/index.php/colfor/article/view/3031/4385; https://revistas.udistrital.edu.co/index.php/colfor/article/view/3031/4616; https://revistas.udistrital.edu.co/index.php/colfor/article/view/3031; http://hdl.handle.net/11349/17666
-
19Academic Journal
المصدر: Actualidades Biológicas; Vol. 35 No. 99 (2013); 135-144 ; Actualidades Biológicas; Vol. 35 Núm. 99 (2013); 135-144 ; Actualidades Biológicas; v. 35 n. 99 (2013); 135-144 ; 2145-7166 ; 0304-3584
مصطلحات موضوعية: acclimatization, axillary shoots, ex vitro rooting, Vaccinium, aclimatización, brotes axilares, enraizamiento ex vitro
وصف الملف: application/pdf
-
20Academic Journal
المصدر: Actualidades Biológicas; Vol. 34 No. 97 (2012); 199-206 ; Actualidades Biológicas; Vol. 34 Núm. 97 (2012); 199-206 ; Actualidades Biológicas; v. 34 n. 97 (2012); 199-206 ; 2145-7166 ; 0304-3584
مصطلحات موضوعية: mycorrhizal dependency, phosphorous, Calophyllum brasiliense, Glomus agreggatum, dependencia micorrizal, fósforo
وصف الملف: application/pdf