يعرض 1 - 20 نتائج من 96 نتيجة بحث عن '"Castro-Franco, Mauricio"', وقت الاستعلام: 1.00s تنقيح النتائج
  1. 1
  2. 2
    Academic Journal

    المؤلفون: Castro Franco, Mauricio

    وصف الملف: application/pdf

    Relation: Abbasi, R., Martinez, P., & Ahmad, R. The digitization of agricultural industry–a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 2022.100042.; Basso, B., & Antle, J. Digital agriculture to design sustainable agricultural systems. Nature Sustainability, 2020; 3(4), 254-256.; Klerkx, L., Jakku, E., & Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wageningen journal of life sciences, 90, 2019. 100315.; https://revistas.unillanos.edu.co/index.php/sistemasagroecologicos/article/download/985/1043; Núm. 1 , Año 2023 : Enero-Junio; 14; Revista Sistemas de Producción Agroecológicos; https://repositorio.unillanos.edu.co/handle/001/4381; https://doi.org/10.22579/22484817.985

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المؤلفون: Lapaz Olveira, Adrián M.1,2,3 (AUTHOR) adrianlapaz2010@gmail.com, Castro-Franco, Mauricio4 (AUTHOR), Saínz Rozas, Hernán R.1,3,5 (AUTHOR), Carciochi, Walter D.1,3 (AUTHOR), Balzarini, Mónica3,6 (AUTHOR), Avila, Oscar1,2 (AUTHOR), Ciampitti, Ignacio7 (AUTHOR), Reussi Calvo, Nahuel I.1,3 (AUTHOR) nahuelreussicalvo@mdp.edu.ar

    المصدر: Precision Agriculture. Dec2023, Vol. 24 Issue 6, p2592-2606. 15p.

    مصطلحات جغرافية: PAMPAS (Argentina)

    الشركة/الكيان: SENTINEL-1 (Artificial satellite)

  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    وصف الملف: application/pdf

    Relation: Acevedo L, Grupo de planeacion y manejo, S. D. G. Y. M. D. A. P. (2012). Parques nacionales naturales de colombia. Retrieved from http://mapas.parquesnacionales.gov.co/#; Axesnet S.a.S. (2012). Sistema de Informacion Ambiental de Colombia - SIAC. Retrieved from http://www.siac.gov.co/Catalogo_mapas.html; Backoulou GF, Elliott NC, Giles KL, Mirik M. Processed multispectral imagery differentiates wheat crop stress caused bygreenbug from other causes. Computers and Electronics in Agriculture. 2015;115:34-39. https://doi.org/10.1016/j.compag.2015.05.008; Bokusheva R, Kogan F, Vitkovskaya I, Conradt S, Batyrbayeva M. Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agricultural and Forest Meteorology. 2016;220:200-206. https://doi.org/10.1016/j.agrformet.2015.12.066; Cruz-Roa A, Arévalo J, Judkins A, Madabhushi A, González F. 2015. A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning. International Symposium on Medical Information Processing and Analysis, 9681, 968103. https://doi.org/10.1117/12.2208825; Cruz-Roa A, Basavanhally A, González F, Gilmore H, Feldman M, Ganesan S, Madabhushi A. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Proc. SPIE, 2014;9041(216):904103-904115. https://doi.org/10.1117/12.2043872; Eisavi V, Homayouni S, Yazdi AM, Alimohammadi A. Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Environmental Monitoring and Assessment. 2015;187(5):1-14. https://doi.org/10.1007/s10661-015-4489-3; Huang JT, Li J, Gong Y. 2015. An analysis of convolutional neural networks for speech recognition. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4989–4993). IEEE. https://doi.org/10.1109/ICASSP.2015.7178920; IDEAM, IGAC, & CORMAGDALENA. (2008). Mapa de Cobertura de la Tierra Cuenca Magdalena-Cauca: Metodología CORINE Land Cover adaptada para Colombia a escala 1:100.000. Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi y Corporación Autónoma Regional del río Grande de la Magdalena (Vol. 1).; Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet Classification with Deep Convolutional Neural Networks. Advances In Neural Information Processing Systems. 1–9. https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007; Liu Y, Zhang B, Wang LM, Wang N. A self-trained semisupervised SVM approach to the remote sensing land cover classification. Computers and Geosciences. 2013;59:98-107. https://doi.org/10.1016/j.cageo.2013.03.024; Martin M, Newman S, Aber J, Congalton R. Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment. 1998;65(3):249-254. https://doi.org/10.1016/S0034-4257(98)00035-2; Ministerio del Medio Ambiente. (2010). Leyenda nacional de coberturas de la tierra.; Perlin HA, Lopes HS. Extracting human attributes using a convolutional neural network approach. Pattern Recognition Letters. 2015;68:250-259. https://doi.org/10.1016/j.patrec.2015.07.012; Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing. 2012;(67):93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002; Rujoiu-Mare MR, Mihai B. Mapping Land Cover Using Remote Sensing Data and GIS Techniques: A Case Study of Prahova Subcarpathians. Procedia Environmental Sciences. 2016;32:244-255. https://doi.org/10.1016/j.proenv.2016.03.029; Thonfeld F, Feilhauer H, Braun M, Menz G. Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data. International Journal of Applied Earth Observation and Geoinformation. 2016;50:131-140. https://doi.org/10.1016/j.jag.2016.03.009; Wang H, Cruz-Roa A, Basavanhally A, Gilmore H, Shih N, Feldman M, Madabhushi A. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. Journal of Medical Imaging (Bellingham, Wash.). 2014;1(3):34003. https://doi.org/10.1117/1.JMI.1.3.034003; Warner TA, Foody GM, Nellis MD. 2009. The SAGE Handbook of Remote Sensing. 504. https://doi.org/10.4135/9780857021052; Zhang R, Zhu D. Study of land cover classification based on knowledge rules using high-resolution remote sensing images. Expert Systems with Applications, 2011;38(4):3647-3652. https://doi.org/10.1016/j.eswa.2010.09.019; https://orinoquia.unillanos.edu.co/index.php/orinoquia/article/download/432/1023; 75; 1 Sup; 64; 21; Orinoquia; https://repositorio.unillanos.edu.co/handle/001/3906; https://doi.org/10.22579/20112629.432

  10. 10
    Academic Journal

    المصدر: Tecnura Journal; Vol. 21 No. 53 (2017): July - September; 78-95 ; Tecnura; Vol. 21 Núm. 53 (2017): Julio - Septiembre; 78-95 ; 2248-7638 ; 0123-921X

    وصف الملف: application/pdf; text/html; application/xml

    Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11658/13021; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11658/13445; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11658/13453; Behrens, T., Zhu, A., Schmidt, K., y Scholten, T. (2010). Multi-Scale Digital Terrain Analysis and Feature Selection for Digital Soil Mapping. Geoderma, 155(3), 175-185. https://doi.org/10.1016/j.geoderma.2009.07.010; Bishop, T. y McBratney, A. (2001). A Comparison of Prediction Methods for the Creation of Field-Extent Soil Property Maps. Geoderma, 103(1–2), 149-160. https://doi.org/10.1016/S0016-7061(01)00074-X; Bray, R., y Kurtz, L. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39-46. https://doi.org/10.1097/00010694-194501000-00006; Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324; Castro, M., Costa, J., Peralta, N., y Aparicio, V. (2015). Prediction of Soil Properties at Farm Scale Using a Model-Based Soil Sampling Scheme and Random Forest. Soil science, 180, 1-12.; Giraldü, G., y Santana, E. (2014). Metodología para el pronóstico de la demanda en ambientes multiproducto y de alta variabilidad. Revista Tecnura, 18(40), 89-102. https://doi.org/10.14483/udistrital.jour.tecnura.2014.2.a07; Goovaerts, P. (1999). Geostatistics in Soil Science: State-Of-The-Art and Perspectives. Geoderma, 89(1), 1-45. https://doi.org/10.1016/S0016-7061(98)00078-0; Guyon, I., y Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 3, 1157-1182.; Hempel, J., Hammer, R., Moore, A., Bell, J., Thompson, J., y Golden, M. (2008). Challenges to Digital Soil Mapping. Digital Soil Mapping with Limited Data (pp. 81-90). USA: Springer. https://doi.org/10.1007/978-1-4020-8592-5_7; Hengl, T., y Reuter, H. (Ed.). (2008). Geomorphometry: Concepts, Software, Applications. Amsterdam: Elsevier Science.; Hutchinson, M. (1989). A New Procedure for Gridding Elevation and Stream Line Data With Automatic Removal of Spurious Pits. Journal of Hydrology, 106(3), 211-232. https://doi.org/10.1016/0022-1694(89)90073-5; Kerry, R., y Oliver, M. (2003). Variograms of Ancillary Data to Aid Sampling for Soil Surveys. Precision Agriculture, 4(3), 261-278. https://doi.org/10.1023/A:1024952406744; Lavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., Gutierrez, A., Hurtado, M., Loaiza, S., Pullido, S., Rodríguez, Orozco, D., Flores, J., y Sanabria, Y. (2015). Indicadores químicos de calidad de suelos en sistemas productivos del Piedemonte de los Llanos Orientales de Colombia. Acta Agronómica, 64(4), 302-307.; E., Sanabria, C., Velásquez, E., y Fonte, S. (2014). Soil Ecosystem Services and Land Use in The Rapidly Changing Orinoco River Basin of Colombia. Agriculture, Ecosystems and Environment, 185(0), 106-117. https://doi.org/10.1016/j.agee.2013.12.020; Li, J., y Heap, A. (2011). A Review of Comparative Studies Of Spatial Interpolation Methods in Environmental Sciences: Performance and Impact Factors. Ecological Informatics, 6(3-4), 228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003; Minasny, B., y McBratney, A. (2007). Spatial Prediction Of Soil Properties Using EBLUP With the Matérn Covariance Function. Geoderma, 140(4), 324-336. https://doi.org/10.1016/j.geoderma.2007.04.028; Olaya, V., y Conrad, O. (2009). Geomorphometry in SAGA. Developments in Soil Science, 33, 293-308. https://doi.org/10.1016/S0166-2481(08)00012-3; Oliver, M. (2010). Geostatistical Applications for Precision Agriculture. United Kingdom: Springer. https://doi.org/10.1007/978-90-481-9133-8; Pe-a, R., Rubiano, Y., Pe-a, A., y Chaves, B. (2009). Variabilidad espacial de los atributos de la capa arable de un Inceptisol del piedemonte de la cordillera oriental (Casanare, Colombia). Agronomía Colombiana, 27(1), 111-120.; R Development Core Team. (2015). R: A language and Enviroment for Stadistical Computing. Viena, Austria: R Fundation for Stadistical Computing. Recuperado de http://www.r-project.org/; Rippstein, G., Escobar, G., y Motta, F. (2001). Agroecología y biodiversidad de las sabanas en los Llanos Orientales de Colombia: CIAT.; Romero, M., Flantua, S., Tansey, K., y Berrio, J. (2012). Landscape Transformations in Savannas of Northern South America: Land Use/Cover Changes Since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766-776. https://doi.org/10.1016/j.apgeog.2011.08.010; Schmidt, K., Behrens, T., Daumann, J., Ramirez, L., Werban, U., Dietrich, P., y Scholten, T. (2014). A Comparison of Calibration Sampling Schemes at the Field Scale. Geoderma, 232, 243-256. https://doi.org/10.1016/j.geoderma.2014.05.013; Song, G., Zhang, J., y Wang, K. (2014). Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation. PLoS ONE, 9(6), e99695. https://doi.org/10.1371/journal.pone.0099695; Toro, G., y Melo, C. (2009). Aplicación de métodos de interpolación geoestadísticos para la predicción de niveles digitales de una imagen satelital con líneas perdidas y efecto sal y pimienta. Revista Tecnura, 12(24), 55-67.; Walkley, A., y Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003; Webster, R., y Oliver, M. (2007). Geostatistics for Environmental Scientists. John Wiley and Sons. https://doi.org/10.1002/9780470517277; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/11658

  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal
  14. 14
    Conference
  15. 15
    Conference
  16. 16
    Academic Journal
  17. 17
  18. 18
    Academic Journal
  19. 19
  20. 20
    Academic Journal