يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"Castañeda Ramírez, Sergio"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    Academic Journal

    المصدر: Panorama; Vol. 16 No. 31 (2022): Panorama 31 - Next issue; 126-146 ; Panorama; Vol. 16 Núm. 31 (2022): Panorama ISSN-L: 1909-7433 / E-ISSN: 2145-308X Vol 16 No 2(31) 2022; 126-146 ; Panorama; v. 16 n. 31 (2022): Panorama ISSN-L: 1909-7433 / E-ISSN: 2145-308X Vol 16 No 2(31) 2022; 126-146 ; 2145-308X ; 1909-7433 ; 10.15765/pnrm.v16i31

    جغرافية الموضوع: General

    وصف الملف: application/pdf; application/zip

  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المؤلفون: Castañeda Ramírez, Sergio

    المساهمون: Ribadeneira Paz, Rafael Esteban, Universidad Nacional de Colombia - Sede Medellín, Grupo Kimera

    وصف الملف: application/pdf

    Relation: Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy. 88 (2011) 981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030.; X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part I. Physico-chemical and electronic interactions between Pt and carbon support, and activity enhancement of Pt/C catalyst, J. Power Sources. 172 (2007) 133–144. https://doi.org/10.1016/j.jpowsour.2007.07.049.; G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Memb. Sci. 377 (2011) 1–35. https://doi.org/10.1016/j.memsci.2011.04.043.; K.N. Grew, W.K.S. Chiu, A Dusty Fluid Model for Predicting Hydroxyl Anion Conductivity in Alkaline Anion Exchange Membranes, J. Electrochem. Soc. 157 (2010) B327. https://doi.org/10.1149/1.3273200.; E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources. 195 (2010) 3431–3450. https://doi.org/10.1016/j.jpowsour.2009.11.145.; Q.H. Zeng, Q.L. Liu, I. Broadwell, A.M. Zhu, Y. Xiong, X.P. Tu, Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells, J. Memb. Sci. 349 (2010) 237–243. https://doi.org/10.1016/j.memsci.2009.11.051.; L. Sun, J. Guo, J. Zhou, Q. Xu, D. Chu, R. Chen, Novel nanostructured high-performance anion exchange ionomers for anion exchange membrane fuel cells, J. Power Sources. 202 (2012) 70–77. https://doi.org/10.1016/j.jpowsour.2011.11.023.; A.D. Mohanty, C.Y. Ryu, Y.S. Kim, C. Bae, Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers, Macromolecules. 48 (2015) 7085–7095. https://doi.org/10.1021/acs.macromol.5b01382.; P. Dai, Z.H. Mo, R.W. Xu, S. Zhang, Y.X. Wu, Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane: Synthesis, Characterization and Properties, ACS Appl. Mater. Interfaces. 8 (2016) 20329–20341. https://doi.org/10.1021/acsami.6b04590.; S. Castañeda, C.I. Sánchez, Modeling and analysis of ion transport through anion exchange membranes used in alkaline fuel cells, ECS Trans. 50 (2012) 2091–2107.; J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M. a. Hickner, P. a. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci. 7 (2014) 3135–3191. https://doi.org/10.1039/b000000x.; Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Prog. Energy Combust. Sci. 66 (2018) 141–175. https://doi.org/10.1016/j.pecs.2018.01.001.; V. Vijayakumar, S.Y. Nam, Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells, J. Ind. Eng. Chem. 70 (2019) 70–86. https://doi.org/10.1016/j.jiec.2018.10.026.; K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Alkaline direct alcohol fuel cells using an anion exchange membrane, J. Power Sources. 150 (2005) 27–31. https://doi.org/10.1016/j.jpowsour.2005.02.020.; M. Cifrain, K. Kordesch, Advances, aging mechanism and lifetime in AFCs with circulating electrolytes, J. Power Sources. 127 (2004) 234–242. https://doi.org/10.1016/j.jpowsour.2003.09.019.; B. Pivovar, 2011 Alkaline Membrane Fuel Cell Workshop Final Report, in: Alkaline Membr. Fuel Cell Work., Arlington, 2011: pp. 1–24.; J. Cheng, G. He, F. Zhang, A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies, Int. J. Hydrogen Energy. 40 (2015) 7348–7360. https://doi.org/10.1016/j.ijhydene.2015.04.040.; M.A. Hickner, A.M. Herring, E.B. Coughlin, Anion exchange membranes: Current status and moving forward, J. Polym. Sci. Part B Polym. Phys. 51 (2013) 1727–1735. https://doi.org/10.1002/polb.23395.; S. Maurya, S.-H. Shin, Y. Kim, S.-H. Moon, A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries, RSC Adv. 5 (2015) 37206–37230. https://doi.org/10.1039/C5RA04741B.; S. Gottesfeld, D.R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, Y.S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources. 375 (2018) 170–184. https://doi.org/10.1016/j.jpowsour.2017.08.010.; D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources. 375 (2018) 158–169. https://doi.org/10.1016/j.jpowsour.2017.07.117.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes I. Physical Model, J. Electrochem. Soc. 150 (2003) A1008. https://doi.org/10.1149/1.1580822.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes II. Mathematical Model, J. Electrochem. Soc. 151 (2004) A311. https://doi.org/10.1149/1.1639157.; A.Z. Weber, J. Newman, Transport in Polymer-Electrolyte Membranes III. Model Validation in a Simple Fuel-Cell Model, J. Electrochem. Soc. 151 (2004) A326. https://doi.org/10.1149/1.1639158.; S. Castañeda Ramírez, R. Ribadeneira, Hydroxide Transport in Anion-Exchange Membranes for Alkaline Fuel Cells, in: S. Karakus (Ed.), New Trends Ion Exch. Stud., First, IntechOpen, Croatia, 2018: pp. 51–69. https://doi.org/10.5772/intechopen.77148.; M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature. 417 (2002) 925–929. https://doi.org/10.1038/nature00794.1.; M.E. Tuckerman, A. Chandra, D. Marx, Structure and dynamics of OH-(aq)., Acc. Chem. Res. 39 (2006) 151–8. https://doi.org/10.1021/ar040207n.; D. Marx, A. Chandra, M.E. Tuckerman, Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton., Chem. Rev. 110 (2010) 2174–2216. https://doi.org/10.1021/cr900233f.; P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th ed., Oxford University Press, New York, 2006. https://doi.org/10.1039/c1cs15191f.; A. Botti, F. Bruni, S. Imberti, M. a Ricci, a K. Soper, Ions in water: the microscopic structure of concentrated NaOH solutions., J. Chem. Phys. 120 (2004) 10154–62. https://doi.org/10.1063/1.1705572.; S. McLain, S. Imberti, A. Soper, A. Botti, F. Bruni, M. Ricci, Structure of 2 molar NaOH in aqueous solution from neutron diffraction and empirical potential structure refinement, Phys. Rev. B. 74 (2006) 094201. https://doi.org/10.1103/PhysRevB.74.094201.; M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water, J. Chem. Phys. 103 (1995) 150–161. https://doi.org/10.1063/1.469654.; P. Choi, N.H. Jalani, R. Datta, Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity, J. Electrochem. Soc. 152 (2005) E123. https://doi.org/10.1149/1.1859814.; G.S. Hwang, M. Kaviany, J.T. Gostick, B. Kientiz, A.Z. Weber, M.H. Kim, Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network, Polymer (Guildf). 52 (2011) 2584–2593. https://doi.org/10.1016/j.polymer.2011.03.056.; M. Eikerling, A.A. Kornyshev, A.M. Kuznetsov, J. Ulstrup, S. Walbran, Mechanisms of Proton Conductance in Polymer Electrolyte Membranes, J. Phys. Chem. B. 105 (2001) 3646–3662. https://doi.org/10.1021/jp003182s.; D. Marx, Throwing Tetrahedral Dice, Science (80-. ). 303 (2004) 634–636.; Z. Ma, M.E. Tuckerman, On the connection between proton transport, structural diffusion, and reorientation of the hydrated hydroxide ion as a function of temperature, Chem. Phys. Lett. 511 (2011) 177–182. https://doi.org/10.1016/j.cplett.2011.05.066.; D. Marx, Proton transfer 200 years after von Grotthuss: insights from ab initio simulations., Chemphyschem. 7 (2006) 1848–70. https://doi.org/10.1002/cphc.200600128.; G. Yang, J. Hao, J. Cheng, N. Zhang, G. He, F. Zhang, C. Hao, Hydroxide ion transfer in anion exchange membrane: A density functional theory study, Int. J. Hydrogen Energy. 41 (2016) 6877–6884. https://doi.org/10.1016/j.ijhydene.2016.03.067.; C. Chen, Y.L.S. Tse, G.E. Lindberg, C. Knight, G.A. Voth, Hydroxide Solvation and Transport in Anion Exchange Membranes, J. Am. Chem. Soc. 138 (2016) 991–1000. https://doi.org/10.1021/jacs.5b11951.; W. Zhang, A.C.T. Van Duin, ReaxFF Reactive Molecular Dynamics Simulation of Functionalized Poly(phenylene oxide) Anion Exchange Membrane, J. Phys. Chem. C. 119 (2015) 27727–27736. https://doi.org/10.1021/acs.jpcc.5b07271.; D. Dong, W. Zhang, A.C.T. Van Duin, D. Bedrov, Grotthuss versus Vehicular Transport of Hydroxide in Anion-Exchange Membranes: Insight from Combined Reactive and Nonreactive Molecular Simulations, J. Phys. Chem. Lett. 9 (2018) 825–829. https://doi.org/10.1021/acs.jpclett.8b00004.; W. Zhang, D. Dong, D. Bedrov, A.C.T. Van Duin, Hydroxide transport and chemical degradation in anion exchange membranes: A combined reactive and non-reactive molecular simulation study, J. Mater. Chem. A. 7 (2019) 5442–5452. https://doi.org/10.1039/c8ta10651g.; D. Muñoz-Santiburcio, D. Marx, On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores, Nat. Commun. 7 (2016) 1–9. https://doi.org/10.1038/ncomms12625.; T. Zelovich, Z. Long, M. Hickner, S.J. Paddison, C. Bae, M.E. Tuckerman, Ab Initio Molecular Dynamics Study of Hydroxide Diffusion Mechanisms in Nanoconfined Structural Mimics of Anion Exchange Membranes, J. Phys. Chem. C. 123 (2019) 4638–4653. https://doi.org/10.1021/acs.jpcc.8b10298.; T. Zelovich, L. Vogt-Maranto, M.A. Hickner, S.J. Paddison, C. Bae, D.R. Dekel, M.E. Tuckerman, Hydroxide Ion Diffusion in Anion-Exchange Membranes at Low Hydration: Insights from Ab Initio Molecular Dynamics, Chem. Mater. 31 (2019) 5778–5787. https://doi.org/10.1021/acs.chemmater.9b01824.; D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, 2009. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed October 7, 2013).; K.-D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology., Chem. Rev. 104 (2004) 4637–78. http://www.ncbi.nlm.nih.gov/pubmed/15669165.; M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Second, Oxford University Press, Oxford, 2017.; F. Tassone, F. Mauri, R. Car, Acceleration schemes for ab initio molecular-dynamics simulations and electronic-structure calculations, Phys. Rev. B. 50 (1994) 10561–10573. https://doi.org/10.1103/PhysRevB.50.10561.; P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials., J. Phys. Condens. Matter. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.; F. Sepehr, H. Liu, X. Luo, C. Bae, M.E. Tuckerman, M.A. Hickner, S.J. Paddison, Mesoscale Simulations of Anion Exchange Membranes Based on Quaternary Ammonium Tethered Triblock Copolymers, Macromolecules. 50 (2017) 4397−4405. https://doi.org/10.1021/acs.macromol.7b00082.; B. Abu-Sharkh, A. Alsunaidi, Morphology and conformation analysis of self-assembled triblock copolymer melts, Macromol. Theory Simulations. 15 (2006) 507–515. https://doi.org/10.1002/mats.200600014; T.L. Chantawansri, T.W. Sirk, Y.R. Sliozberg, Entangled triblock copolymer gel: Morphological and mechanical properties, J. Chem. Phys. 138 (2013) 1–11. https://doi.org/10.1063/1.4774373.; S.S. Tallury, R.J. Spontak, M. a Pasquinelli, Dissipative particle dynamics of triblock copolymer melts: A midblock conformational study at moderate segregation., J. Chem. Phys. 141 (2014) 244911. https://doi.org/10.1063/1.4904388.; J.A. Morrone, K.E. Haslinger, M.E. Tuckerman, Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol-water solutions, J. Phys. Chem. B. 110 (2006) 3712–3720. https://doi.org/10.1021/jp0554036.; A. Chandra, M.E. Tuckerman, D. Marx, Connecting solvation shell structure to proton transport kinetics in hydrogen-bonded networks via population correlation functions, Phys. Rev. Lett. 99 (2007) 1–4. https://doi.org/10.1103/PhysRevLett.99.145901.; M.E. Tuckerman, A. Chandra, D. Marx, A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases, J. Chem. Phys. 133 (2010). https://doi.org/10.1063/1.3474625.; B. V. Merinov, W.A. Goddard, Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone hydroxide – Polymer electrolyte for application in electrochemical devices, J. Memb. Sci. 431 (2013) 79–85. https://doi.org/10.1016/j.memsci.2012.12.010.; H.N. Sarode, G.E. Lindberg, Y. Yang, L.E. Felberg, G. a. Voth, A.M. Herring, Insights into the transport of aqueous quaternary ammonium cations: A combined experimental and computational study, J. Phys. Chem. B. 118 (2014) 1363–1372. https://doi.org/10.1021/jp4085662.; S. Chempath, B.R. Einsla, L.R. Pratt, C.S. Macomber, J.M. Boncella, J.A. Rau, B.S. Pivovar, Mechanism of Tetraalkylammonium Headgroup Degradation in Alkaline Fuel Cell Membranes, J. Phys. Chem. C. 112 (2008) 3179–3182. https://doi.org/10.1021/jp7115577.; S. Chempath, J.M. Boncella, L.R. Pratt, N. Henson, B.S. Pivovar, Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides, J. Phys. Chem. C. 114 (2010) 11977–11983. https://doi.org/10.1021/jp9122198.; H. Long, K. Kim, B.S. Pivovar, Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study, J. Phys. Chem. C. 116 (2012) 9419–9426. https://doi.org/10.1021/jp3014964.; A.S. Davies, W.O. George, S.T. Howard, Ab initio and DFT computer studies of complexes of quaternary nitrogen cations: trimethylammonium, tetramethylammonium, trimethylethylammonium, choline and acetylcholine with hydroxide, fluoride and chloride anions, Phys. Chem. Chem. Phys. 5 (2003) 4533. https://doi.org/10.1039/b307534f.; F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds, J. Chem. Soc. Perkin Trans. 2. (1987) 1–19.; P. Macchi, D.M. Proserpio, A. Sironi, Experimental electron density in a transition metal dimer: Metal-metal and metal-ligand bonds, J. Am. Chem. Soc. 120 (1998) 13429–13435. https://doi.org/10.1021/ja982903m.; P. Macchi, A. Sironi, Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities, Coord. Chem. Rev. 238–239 (2003) 383–412. https://doi.org/10.1016/S0010-8545(02)00252-7.; B. Silvi, R.J. Gillespie, C. Gatti, Electron Density Analysis, Elsevier Ltd., 2013. https://doi.org/10.1016/B978-0-08-097774-4.00227-8.; S.J. Paddison, J.A. Elliott, On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes., Phys. Chem. Chem. Phys. 8 (2006) 2193–203. https://doi.org/10.1039/b602188c.; P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.Å. Näslund, T.K. Hirsch, L. Ojamäe, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The Structure of the First Coordination Shell in Liquid Water, Science (80-. ). 304 (2004) 995–999.; S. Castañeda, R. Ribadeneira, Theoretical Description of the Structural Characteristics of the Quaternized SEBS Anion-Exchange Membrane Using DFT, J. Phys. Chem. C. 119 (2015) 28235–28246. https://doi.org/10.1021/acs.jpcc.5b07166.; O. Poizat, G. Buntinx, Probing the Dynamics of Solvation and Structure of the OH- Ion in Aqueous Solution from Picosecond Transient Absorption Measurements, Molecules. 15 (2010) 3366–3377. https://doi.org/10.3390/molecules15053366.; W. Humphrey, A. Dalke, K. Schulten, VMD: Visual Molecular Dynamics, J. Mol. Graph. 14 (1996) 33–38.; B.N. Cassenti, K.N. Grew, W.K.S. Chiu, The Use of Statistical Mechanics for Hydroxyl Ion Transport in an Alkaline Anion-Exchange Membrane, ECS Trans. 33 (2010) 1875–1887.; W.Y. Hsu, T.D. Gierke, Ion transport and clustering in nafion perfluorinated membranes, J. Memb. Sci. 13 (1983) 307–326. https://doi.org/10.1016/S0376-7388(00)81563-X.; Castañeda, S. (2020). Theoretical study of the Grotthuss mechanism for hydroxide ions in a homogeneous membrane used in alkaline fuel cells. Universidad Nacional de Colombia, Medellín, Colombia; https://repositorio.unal.edu.co/handle/unal/78388

  4. 4
    Academic Journal

    Alternate Title: Evaluation of an application built using Classcraft for the learning of integration techniques. (English)
    Avaliação de um aplicativo construído usando Classcraft para o aprendizado de técnicas de integração. (Portuguese)

    المصدر: Revista Panorama; ene-jun2024, Vol. 18 Issue 34, p119-152, 34p

  5. 5
    Academic Journal

    Alternate Title: Support for quality of life in patients with osteosarcoma. Experience of the pediatric palliative care department.

    المصدر: Boletin Clinico Hospital Infantil del Estado de Sonora. 2022, Vol. 39 Issue 2, p25-31. 7p.

  6. 6
    Academic Journal

    Alternate Title: Analysis of the Impact of a Digital Ludic Application on the Motivation and Learning of Higher Education Students in Math Courses. (English)
    Análise do impacto de uma aplicação didático digital na motivação e aprendizagem de alunos do ensino superior em aula de matemática. (Portuguese)

    المصدر: Revista Panorama; jul-dic2022, Vol. 16 Issue 31, p82-101, 20p

  7. 7
  8. 8
    Periodical
  9. 9
    Periodical
  10. 10
    Periodical
  11. 11
    Periodical
  12. 12
    Dissertation/ Thesis

    المؤلفون: Pérez Grisales, María Susana

    المساهمون: Castañeda Ramírez, Sergio, Sánchez Sáenz Carlos Ignacio, Moncayo Riascos Iván Darío, Grupo de Ingenieria Electroquímica Griequi, Pérez Grisales, Susana 0000000229059968

    وصف الملف: 1 recursos en línea (163 páginas); application/pdf

    Relation: E. Rodil and J. Vera, “Individual activity coefficients of chloride ions in aqueous solu- tions of MgCl2, CaCl2 and BaCl2 at 298.2 k,” Fluid phase equilibria, vol. 187, pp. 15–27, 2001.; M. Agarwal, M. P. Alam, and C. Chakravarty, “Thermodynamic, diffusional, and struc- tural anomalies in rigid-body water models,” The Journal of Physical Chemistry B, vol. 115, no. 21, pp. 6935–6945, 2011. .; K. E. Mueller, J. T. Thomas, J. X. Johnson, J. F. DeCarolis, and D. F. Call, “Life cycle assessment of salinity gradient energy recovery using reverse electrodialysis,” Journal of Industrial Ecology, vol. 25, no. 5, pp. 1194–1206, 2021.; D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to ap- plications. Elsevier, 2023.; M. Griebel, T. Dornseifer, and T. Neunhoeffer, Numerical simulation in fluid dynamics: a practical introduction. SIAM, 1998.; G. Bahlakeh and M. Nikazar, “Molecular dynamics simulation analysis of hydration effects on microstructure and transport dynamics in sulfonated poly (2, 6-dimethyl- 1, 4-phenylene oxide) fuel cell membranes,” International journal of hydrogen energy, vol. 37, no. 17, pp. 12714–12724, 2012.; X. Yang, K. Hu, F. Zhang, H. Chen, and Y. Liu, “Molecular dynamics simulations of microstructure and transport properties of sulfonated poly-p-phenoxybenzoyl-1, 4- phenylene membrane and their comparisons to sulfonated poly (ether ether ketone) membrane,” Materials Today Communications, vol. 21, p. 100642, 2019.; P. Chen, C. Chiu, and C. Hong, “Molecular structure and transport dynamics in na- fion and sulfonated poly (ether ether ketone ketone) membranes,” Journal of Power Sources, vol. 194, no. 2, pp. 746–752, 2009.; G. Bahlakeh, M. Nikazar, and M. M. Hasani-Sadrabadi, “Understanding structure and transport characteristics in hydrated sulfonated poly (ether ether ketone)–sulfonated poly (ether sulfone) blend membranes using molecular dynamics simulations,” Journal of membrane science, vol. 429, pp. 384–395, 2013; E.-S. Jang, J. Kamcev, K. Kobayashi, N. Yan, R. Sujanani, S. J. Talley, R. B. Moore, D. R. Paul, and B. D. Freeman, “Effect of water content on sodium chloride sorption in cross-linked cation exchange membranes,” Macromolecules, vol. 52, no. 6, pp. 2569–2579, 2019.; J. Kamcev, D. R. Paul, and B. D. Freeman, “Ion activity coefficients in ion exchange polymers: applicability of Manning’s counterion condensation theory,” Macromolecules, vol. 48, no. 21, pp. 8011–8024, 2015.; A. Zoungrana and M. C¸akmakcii, “From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review,” International Journal of Energy Research, vol. 45, no. 3, pp. 3495–3522, 2021.; J. Jang, Y. Kang, J. H. Han, K. Jang, C. M. Kim, and I. S. Kim, “Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes,” Desalination, vol. 491, no. May, p. 114540, 2020.; M. Perez and R. Perez, “Update 2022 – A fundamental look at supply side energy reserves for the planet,” Solar Energy Advances, vol. 2, no. March, p. 100014, 2022.; A. T. Besha, M. T. Tsehaye, D. Aili, W. Zhang, and R. A. Tufa, “Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis,” Membranes, vol. 10, no. 1, 2020.; S. Chae, H. Kim, J. Gi Hong, J. Jang, M. Higa, M. Pishnamazi, J. Y. Choi, R. Chandula Walgama, C. Bae, I. S. Kim, and J. S. Park, “Clean power generation from salinity gradient using reverse electrodialysis technologies: Recent advances, bottlenecks, and future direction,” Chemical Engineering Journal, vol. 452, no. P4, p. 139482, 2023.; R. E. Pattle, “Production of electric power by mixing fresh and salt water in the hydroelectric pile,” 1954.; M. N. Z. Abidin, M. M. Nasef, and J. Veerman, “Towards the development of new generation of ion exchange membranes for reverse electrodialysis: A review,” Desalination, vol. 537, no. May, p. 115854, 2022.; Veerman, Joost, “Reverse electrodialysis design and optimization by modelling and experimentation,” University of Groningen, pp. 10–11, 2010.; M. Eti, N. H. Othman, E. Guler, and N. Kabay, “Ion Exchange Membranes for Reverse Electrodialysis (RED) Applications - Recent Developments,” Journal of Membrane Science and Research, vol. 7, no. 4, pp. 260–267, 2021.; A. Zoungrana and M. C¸ akmakci, “From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review,” International Journal of Energy Research, vol. 45, no. 3, pp. 3495–3522, 2021.; M. Roldan-Carvajal, S. Vallejo-Castaño, O. Álvarez-Silva, S. Bernal-García, S. Arango-Aramburo, C. I. Sánchez-Sáenz, and A. F. Osorio, “Salinity gradient power by reverse electrodialysis: A multidisciplinary assessment in the Colombian context,” Desalination, vol. 503, no. January, 2021.; A. Nazif, H. Karkhanechi, E. Saljoughi, S. M. Mousavi, and H. Matsuyama, “Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: A review,” Journal of Water Process Engineering, vol. 47, no. October 2021, p. 102706, 2022.; J. Veerman, “Concepts and Misconceptions Concerning the Influence of Divalent Ions on the Performance of Reverse Electrodialysis Using Natural Waters,” 2023.; L. Villafaña-López, D. M. Reyes-Valadez, O. A. González-Vargas, V. A. Suárez-Toriello, and J. S. Jaime-Ferrer, “Custom-made ion exchange membranes at laboratory scale for reverse electrodialysis,” Membranes, vol. 9, no. 11, pp. 1–19, 2019.; M. Sharma, P. P. Das, A. Chakraborty, and M. K. Purkait, “Clean energy from salinity gradients using pressure retarded osmosis and reverse electrodialysis: A review,” Sustainable Energy Technologies and Assessments, vol. 49, no. October 2021, p. 101687, 2022.; J. Jang, “Ion Exchange Membrane for Reverse Electrodialysis,” Academic Journal of Polymer Science, vol. 5, no. 1, 2021.; S. Pawlowski, R. M. Huertas, C. F. Galinha, J. G. Crespo, and S. Velizarov, “On operation of reverse electrodialysis (RED) and membrane capacitive deionisation (MCDI) with natural saline streams: A critical review,” Desalination, vol. 476, p. 114183, 2020.; J. Moreno, V. Díez, M. Saakes, and K. Nijmeijer, “Mitigation of the effects of multivalent ion transport in reverse electrodialysis,” Journal of Membrane Science, vol. 550, no. October 2017, pp. 155–162, 2018.; H. Fan and N. Y. Yip, “Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes,” Journal of Membrane Science, vol. 573, no. October 2018, pp. 668–681, 2019.; L. Liu and Q. Cheng, “Mass transfer characteristic research on electrodialysis for desalination and regeneration of solution: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 134, no. August, p. 110115, 2020.; T. Wei and C. Ren, Theoretical simulation approaches to polymer research. INC, 2020.; M. Fermeglia, A. Mio, S. Aulic, D. Marson, E. Laurini, and S. Pricl, “Multiscale molecular modelling for the design of nanostructured polymer systems: Industrial applications,” Molecular Systems Design and Engineering, vol. 5, no. 9, pp. 1447–1476, 2020.; J. Luque Di Salvo, G. De Luca, A. Cipollina, and G. Micale, “A full-atom multiscale modelling for sodium chloride diffusion in anion exchange membranes,” Journal of Membrane Science, vol. 637, no. May, p. 119646, 2021.; S. Y. Sun, X. Y. Nie, J. Huang, and J. G. Yu, “Molecular simulation of diffusion behavior of counterions within polyelectrolyte membranes used in electrodialysis,” Journal of Membrane Science, vol. 595, no. October 2019, p. 117528, 2020.; R. Zhang, X. Duan, M. Ding, and T. Shi, “Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies,” Journal of Physical Chemistry B, vol. 122, no. 25, pp. 6656–6665, 2018.; T. Badessa and V. Shaposhnik, “The electrodialysis of electrolyte solutions of multi-charged cations,” Journal of Membrane Science, vol. 498, pp. 86–93, 2016.; V. Soldatov, E. Kosandrovich, and T. Bezyazychnaya, “Quantum chemical evidence of a fundamental difference between hydrations and ion exchange selectivities of sodium and potassium ions on carboxylic and sulfonic acid cation exchangers,” Journal of Structural Chemistry, vol. 61, pp. 1898–1909, 2020.; W. Kujawski, A. Yaroshchuk, E. Zholkovskiy, I. Koter, and S. Koter, “Analysis of membrane transport equations for reverse electrodialysis (RED) using irreversible thermodynamics,” International Journal of Molecular Sciences, vol. 21, pp. 1–13, 2020.; R. S. Kingsbury and O. Coronell, “Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and manning’s counter-ion condensation theory,” Journal of Membrane Science, vol. 620, p. 118411, 2021.; H. Zhu, B. Yang, C. Gao, and Y. Wu, “Ion transfer modeling based on Nernst–Planck theory for saline water desalination during electrodialysis process,” Asia-Pacific Journal of Chemical Engineering, vol. 15, pp. 1–11, 2020.; H. Kim, N. Jeong, S. C. Yang, J. Choi, M. S. Lee, J. Y. Nam, E. Jwa, B. Kim, K. sang Ryu, and Y. W. Choi, “Nernst–Planck analysis of reverse-electrodialysis with the thin-composite pore-filling membranes and its upscaling potential,” Water Research, vol. 165, p. 114970, 2019.; F. Liu, X. Du, Z. Zhang, X. Ma, F. Gao, X. Hao, L. Chang, Q. Wang, M. Liu, and J. Luo, “Ions transport modelling based on Nernst-Planck theory for a novel electrochemically switched ion permselectivity system,” Chemical Engineering and Processing - Process Intensification, vol. 143, p. 107628, 2019.; M. Tedesco, H. V. Hamelers, and P. M. Biesheuvel, “Nernst-Planck transport theory for (reverse) electrodialysis: I. effect of co-ion transport through the membranes,” Journal of Membrane Science, vol. 510, pp. 370–381, 2016.; M. Tedesco, H. V. Hamelers, and P. M. Biesheuvel, “Nernst-Planck transport theory for (reverse) electrodialysis: II. effect of water transport through ion-exchange membranes,” Journal of Membrane Science, vol. 531, pp. 172–182, 2017.; F. Dong, D. Jin, S. Xu, L. Xu, X. Wu, P. Wang, Q. Leng, and R. Xi, “Numerical simulation of flow and mass transfer in profiled membrane channels for reverse electrodialysis,” Chemical Engineering Research and Design, vol. 157, pp. 77–91, 2020.; M. Rezayani, F. Sharif, R. R. Netz, and H. Makki, “Insight into the relationship between molecular morphology and water/ion diffusion in cation exchange membranes: Case of partially sulfonated polyether sulfone,” Journal of Membrane Science, vol. 654, p. 120561, 2022.; D. Bedrov, J. P. Piquemal, O. Borodin, A. D. MacKerell, B. Roux, and C. Schröder, “Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields,” Chemical Reviews, vol. 119, pp. 7940–7995, 2019.; T. E. Gartner and A. Jayaraman, “Modeling and simulations of polymers: A roadmap,” Macromolecules, vol. 52, pp. 755–786, 2019.; A. Gooneie, S. Schuschnigg, and C. Holzer, “A review of multiscale computational methods in polymeric materials,” Polymers, vol. 9, 2017.; L. Chen, Y.-L. He, and W.-Q. Tao, “The temperature effect on the diffusion processes of water and proton in the proton exchange membrane using molecular dynamics simulation,” Numerical Heat Transfer, Part A: Applications, vol. 65, no. 3, pp. 216–228, 2014.; V. Dubey, A. Maiti, and S. Daschakraborty, “Predicting the solvation structure and vehicular diffusion of hydroxide ion in an anion exchange membrane using nonreactive molecular dynamics simulation,” Chemical Physics Letters, vol. 755, p. 137802, 2020.; K. W. Han, K. H. Ko, K. Abu-Hakmeh, C. Bae, Y. J. Sohn, and S. S. Jang, “Molecular dynamics simulation study of a polysulfone-based anion exchange membrane in comparison with the proton exchange membrane,” The Journal of Physical Chemistry C, vol. 118, no. 24, pp. 12577–12587, 201; K. Zhang, W. Yu, X. Ge, L. Wu, and T. Xu, “Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones,” Journal of Membrane Science, vol. 661, p. 120922, 2022.; S. Castaneda and R. Ribadeneira, “Description of hydroxide ion structural diffusion in a quaternized SEBS anion exchange membrane using ab initio molecular dynamics,” The Journal of Physical Chemistry C, vol. 124, no. 18, pp. 9834–9851, 2020.; Z. Long and M. E. Tuckerman, “Hydroxide diffusion in functionalized cylindrical nanopores as idealized models of anion exchange membrane environments: An ab initio molecular dynamics study,” The Journal of Physical Chemistry C, vol. 127, no. 6, pp. 2792–2804, 2023.; T. Zelovich, Z. Long, M. Hickner, S. J. Paddison, C. Bae, and M. E. Tuckerman, “Ab initio molecular dynamics study of hydroxide diffusion mechanisms in nanoconfined structural mimics of anion exchange membranes,” The Journal of Physical Chemistry C, vol. 123, no. 8, pp. 4638–4653, 2019.; I. A. Stenina and A. B. Yaroslavtsev, “Ionic mobility in ion-exchange membranes,” Membranes, vol. 11, no. 3, p. 198, 2021.; V. I. Volkov, A. V. Chernyak, D. V. Golubenko, V. A. Tverskoy, G. A. Lochin, E. S. Odjigaeva, and A. B. Yaroslavtsev, “Hydration and diffusion of H+, Li+, Na+, Cs+ ions in cation-exchange membranes based on polyethylene-and sulfonated-grafted polystyrene studied by NMR technique and ionic conductivity measurements,” Membranes, vol. 10, no. 10, p. 272, 2020.; J. Wei, “Proton-conducting materials used as polymer electrolyte membranes in fuel cells,” in Polymer-based multifunctional nanocomposites and their applications, pp. 245–260, Elsevier, 2019.; C. Chen, Y.-L. S. Tse, G. E. Lindberg, C. Knight, and G. A. Voth, “Hydroxide solvation and transport in anion exchange membranes,” Journal of the American Chemical Society, vol. 138, no. 3, pp. 991–1000, 2016.; Q. Berrod, S. Hanot, A. Guillermo, S. Mossa, and S. Lyonnard, “Water sub-diffusion in membranes for fuel cells,” Scientific Reports, vol. 7, no. 1, p. 8326, 2017.; V. Dubey and S. Daschakraborty, “Translational jump-diffusion of hydroxide ion in anion exchange membrane: Deciphering the nature of vehicular diffusion,” The Journal of Physical Chemistry B, vol. 126, no. 12, pp. 2430–2440, 2022.; M. Rezayani, F. Sharif, and H. Makki, “Understanding ion diffusion in anion exchange membranes; effects of morphology and mobility of pendant cationic groups,” Journal of Materials Chemistry A, vol. 10, no. 35, pp. 18295–18307, 2022.; A. Sharifi-Viand, M. Mahjani, and M. Jafarian, “Investigation of anomalous diffusion and multifractal dimensions in polypyrrole film,” Journal of Electroanalytical Chemistry, vol. 671, pp. 51–57, 2012.; D. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, “Influence of multivalent ions on renewable energy generation in reverse electrodialysis,” Energy and Environmental Science, vol. 7, no. 4, pp. 1434–1445, 2014.; T. Rijnaarts, E. Huerta, W. van Baak, and K. Nijmeijer, “Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities,” Environmental Science & Technology, vol. 51, no. 21, pp. 13028–13035, 2017.; G. M. Geise, D. R. Paul, and B. D. Freeman, “Fundamental water and salt transport properties of polymeric materials,” Progress in Polymer Science, vol. 39, no. 1, pp. 1–42, 2014.; T. Luo, S. Abdu, and M. Wessling, “Selectivity of ion exchange membranes: A review,” Journal of Membrane Science, vol. 555, no. December 2017, pp. 429–454, 2018.; J. W. Post, H. V. Hamelers, and C. J. Buisman, “Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system,” Journal of Membrane Science, vol. 330, no. 1-2, pp. 65–72, 2009.; P. Magnico, “Ion transport dependence on the ion pairing/solvation competition in cation-exchange membranes,” Journal of Membrane Science, vol. 483, pp. 112–127, 2015.; A. Chapotot, G. Pourcelly, and C. Gavach, “Transport competition between monovalent and divalent cations through cation-exchange membranes: Exchange isotherms and kinetic concepts,” Journal of Membrane Science, vol. 96, no. 3, pp. 167–181, 1994.; G. Pourcelly, P. Sistat, A. Chapotot, C. Gavach, and V. Nikonenko, “Self diffusion and conductivity in Nafion® membranes in contact with NaCl+CaCl₂ solutions,” Journal of Membrane Science, vol. 110, no. 1, pp. 69–78, 1996.; E. Güler, W. van Baak, M. Saakes, and K. Nijmeijer, “Monovalent-ion-selective membranes for reverse electrodialysis,” Journal of Membrane Science, vol. 455, pp. 254–270, 2014.; A. A. Moya, “Uphill transport in improved reverse electrodialysis by removal of divalent cations in the dilute solution: A Nernst-Planck based study,” Journal of Membrane Science, vol. 598, no. November 2019, p. 117784, 2020.; T. Rijnaarts, N. T. Shenkute, J. A. Wood, W. M. de Vos, and K. Nijmeijer, “Divalent cation removal by Donnan dialysis for improved reverse electrodialysis,” ACS Sustainable Chemistry & Engineering, vol. 6, no. 5, pp. 7035–7041, 2018.; M. Vanoppen, G. Stoffels, C. Demuytere, W. Bleyaert, and A. R. Verliefde, “Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications,” Water Research, vol. 80, pp. 59–70, 2015.; B. Van der Bruggen, “Ion-exchange membrane systems—Electrodialysis and other electromembrane processes,” in Fundamental Modelling of Membrane Systems, pp. 251–300, Elsevier, 2018.; A. Galama, G. Daubaras, O. Burheim, H. Rijnaarts, and J. Post, “Seawater electrodialysis with preferential removal of divalent ions,” Journal of Membrane Science, vol. 452, pp. 219–228, 2014.; B. Van der Bruggen, A. Koninckx, and C. Vandecasteele, “Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration,” Water Research, vol. 38, no. 5, pp. 1347–1353, 2004.; V. Nikonenko, A. Nebavsky, S. Mareev, A. Kovalenko, M. Urtenov, and G. Pourcelly, “Modelling of ion transport in electromembrane systems: Impacts of membrane bulk and surface heterogeneity,” Applied Sciences (Switzerland), vol. 9, no. 1, 2018.; J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, “Ion exchange membranes: New developments and applications,” Journal of Membrane Science, vol. 522, pp. 267–291, 2017.; F. Helfferich, “Ion-Exchanger Membranes,” in Ion Exchange, ch. 8th, pp. 339–420, New York: McGraw-Hill, 1995.; Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications. Ibaraki: Elsevier, 2nd ed., 2015.; Y. Mei and C. Y. Tang, “Recent developments and future perspectives of reverse electrodialysis technology: A review,” Desalination, vol. 425, no. September 2017, pp. 156–174, 2018.; W. Grot, “Experimental Methods,” in Fluorinated Ionomers, ch. 9th, pp. 211–233, Elsevier Inc., 2nd ed., 2011.; P. Millet, “Hydrogen production by polymer electrolyte membrane water electrolysis,” in Compendium of Hydrogen Energy, pp. 255–286, Elsevier Ltd, 2015.; K. Scott, “Membrane Materials, Preparation and Characterisation,” in Handbook of Industrial Membranes, pp. 187–269, 1995.; H. Kim, J. Choi, N. Jeong, Y. G. Jung, H. Kim, D. Kim, and S. Yang, “Correlations between properties of pore-filling ion exchange membranes and performance of a reverse electrodialysis stack for high power density,” Membranes, vol. 11, no. 8, 2021.; H. Fan, Y. Huang, and N. Y. Yip, “Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites,” Journal of Membrane Science, vol. 610, no. March, p. 118259, 2020.; X. Sun, Y. Liu, R. Xu, and Y. Chen, “MOF-Derived Nanoporous Carbon Incorporated in the Cation Exchange Membrane for Gradient Power Generation,” Membranes, vol. 12, no. 3, p. 322, 2022.; E. Güler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, “Performance-determining membrane properties in reverse electrodialysis,” Journal of Membrane Science, vol. 446, pp. 266–276, 2013.; J. Zhao, Q. Chen, L. Ren, and J. Wang, “Fabrication of hydrophilic cation exchange membrane with improved stability for electrodialysis: An excellent anti-scaling performance,” Journal of Membrane Science, vol. 617, no. April 2020, p. 118618, 2021.; A. H. Avci, T. Rijnaarts, E. Fontananova, G. Di Profio, I. F. Vankelecom, W. M. De Vos, and E. Curcio, “Sulfonated polyethersulfone based cation exchange membranes for reverse electrodialysis under high salinity gradients,” Journal of Membrane Science, vol. 595, no. September 2019, p. 117585, 2020.; I. Merino-Garcia, F. Kotoka, C. A. Portugal, J. G. Crespo, and S. Velizarov, “Characterization of poly(Acrylic) acid-modified heterogeneous anion exchange membranes with improved monovalent permselectivity for red,” Membranes, vol. 10, no. 6, 2020.; R. Singh and D. Kim, “High-Temperature Proton Conduction in Covalent Organic Frameworks Interconnected with Nanochannels for Reverse Electrodialysis,” ACS Applied Materials and Interfaces, vol. 13, no. 28, pp. 33437–33448, 2021.; J. Dong, H. Li, X. Ren, X. Che, J. Yang, and D. Aili, “Anion exchange membranes of bis-imidazolium cation crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) with enhanced alkaline stability,” International Journal of Hydrogen Energy, vol. 44, no. 39, pp. 22137–22145, 2019.; J. Liao, H. Ruan, X. Gao, Q. Chen, and J. Shen, “Exploring the acid enrichment application of piperidinium-functionalized cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes in electrodialysis,” Journal of Membrane Science, vol. 621, no. September 2020, p. 118999, 2021.; V. Yadav, N. Niluroutu, S. D. Bhat, and V. Kulshrestha, “Insight toward the Electrochemical Properties of Sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) via Impregnating Functionalized Boron Nitride: Alternate Composite Polymer Electrolyte for Direct Methanol Fuel Cell,” ACS Applied Energy Materials, vol. 3, no. 7, pp. 7091–7102, 2020.; Y. Sun and L. Song, “Accurate determination of electrical potential on ion exchange membranes in reverse electrodialysis,” Separations, vol. 8, no. 10, p. 170, 2021.; B. A. Al-Sakaji, G. A. Husseini, and N. A. Darwish, “Impact of ionic strength and charge density on donnan potential in the NaCl-cation exchange membrane system,” Water, vol. 15, no. 21, p. 3830, 2023.; G. S. Manning, “Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties,” The Journal of Chemical Physics, vol. 51, no. 3, pp. 924–933, 1969.; Y. Sasanuma, Conformational Analysis of Polymers: Methods and Techniques for Structure-property Relationships and Molecular Design. John Wiley & Sons, 2023.; J. G. Lee, Computational Materials Science: An Introduction. CRC Press, 2016.; E. G. Lewars, Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer Dordrecht, 2011.; A. R. Leach, Molecular Modelling: Principles and Applications. Pearson Education, 2001.; M. González, “Force fields and molecular dynamics simulations,” École Thématique de la Société Française de la Neutronique, vol. 12, pp. 169–200, 2011.; J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomes de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria. New Jersey: Prentice Hall PTR, third edition, 1999.; L. Verlet, “Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Physical Review, vol. 159, no. 1, p. 98, 1967.; L. Monticelli and D. P. Tieleman, “Force fields for classical molecular dynamics,” in Biomolecular Simulations: Methods and Protocols (L. Monticelli and E. Salonen, eds.), ch. 8, pp. 197–211, Humana Press, Totowa, NJ, 1st edition, 2013.; L. Yang, C.-H. Tan, M.-J. Hsieh, J. Wang, Y. Duan, P. Cieplak, J. Caldwell, P. A. Kollman, and R. Luo, “New-generation amber united-atom force field,” The Journal of Physical Chemistry B, vol. 110, no. 26, pp. 13166–13176, 2006.; S. Patel and C. L. Brooks III, “CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations,” Journal of Computational Chemistry, vol. 25, no. 1, pp. 1–16, 2004.; W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids,” Journal of the American Chemical Society, vol. 118, no. 45, pp. 11225–11236, 1996.; H. Sun, “COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds,” The Journal of Physical Chemistry B, vol. 102, no. 38, pp. 7338–7364, 1998.; W. R. Scott, P. H. Hünenerger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. Torda, T. Huber, P. Krüger, and W. F. Van Gunsteren, “The GROMOS biomolecular simulation program package,” The Journal of Physical Chemistry A, vol. 103, no. 19, pp. 3596–3607, 1999.; P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels,” Physical Review, vol. 34, no. 1, p. 57, 1929.; H. C. Urey and C. A. Bradley Jr., “The vibrations of pentatonic tetrahedral molecules,” Physical Review, vol. 38, no. 11, p. 1969, 1931.; R. A. Buckingham, “The classical equation of state of gaseous helium, neon and argon,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 168, no. 933, pp. 264–283, 1938.; K. Tang and J. P. Toennies, “An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients,” The Journal of Chemical Physics, vol. 80, no. 8, pp. 3726–3741, 1984.; E. Darve, “The fast multipole method: numerical implementation,” Journal of Computational Physics, vol. 160, no. 1, pp. 195–240, 2000.; J. W. Eastwood, R. W. Hockney, and D. Lawrence, “P3M3DP—the three-dimensional periodic particle-particle/particle-mesh program,” Computer Physics Communications, vol. 19, no. 2, pp. 215–261, 1980.; F. Reif, Fundamentals of Statistical and Thermal Physics, 1998.; H. J. Berendsen, J. v. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684–3690, 1984.; H. C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” The Journal of Chemical Physics, vol. 72, no. 4, pp. 2384–2393, 1980.; W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review A, vol. 31, no. 3, p. 1695, 1985.; M. Parrinello and A. Rahman, “Crystal structure and pair potentials: A molecular-dynamics study,” Physical Review Letters, vol. 45, no. 14, p. 1196, 1980.; J. G. Kirkwood, “Molecular distribution in liquids,” The Journal of Chemical Physics, vol. 7, no. 10, pp. 919–925, 1939.; A. S. Kim, Fundamentals of Irreversible Thermodynamics for Coupled Transport, IntechOpen, 2019.; N. Lakshminarayanaiah, “Transport phenomena in artificial membranes,” Chemical Reviews, vol. 65, no. 5, pp. 491–565, 1965.; E. J. Maginn, R. A. Messerly, D. J. Carlson, D. R. Roe, and J. R. Elliot, “Best practices for computing transport properties 1. self-diffusivity and viscosity from equilibrium molecular dynamics [article v1. 0],” Living Journal of Computational Molecular Science, vol. 1, no. 1, pp. 6324–6324, 2019.; N. A. M. Harun, N. Shaari, and N. F. H. Nik Zaiman, “A review of alternative polymer electrolyte membrane for fuel cell application based on sulfonated poly (ether ether ketone),” International Journal of Energy Research, vol. 45, no. 14, pp. 19671–19708, 2021.; B. M. Mahimai, G. Sivasubramanian, K. Sekar, D. Kannaiyan, and P. Deivanayagam, “Sulfonated poly (ether ether ketone): efficient ion-exchange polymer electrolytes for fuel cell applications–a versatile review,” Materials Advances, vol. 3, no. 15, pp. 6085–6095, 2022.; X. Meng, Q. Peng, J. Wen, K. Song, L. Peng, T. Wu, C. Cong, H. Ye, and Q. Zhou, “Sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquid-covalent organic framework complex,” Journal of Applied Polymer Science, vol. 140, no. 18, p. e53802, 2023.; P. P. Sharma, V. Yadav, A. Rajput, H. Gupta, H. Saravaia, and V. Kulshrestha, “Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis,” Desalination, vol. 496, p. 114755, 2020.; B. G. Thiam, A. El Magri, and S. Vaudreuil, “An overview on the progress and development of modified sulfonated polyether ether ketone membranes for vanadium redox flow battery applications,” High Performance Polymers, vol. 34, no. 2, pp. 131–148, 2022.; F. Chu, X. Chu, T. Lv, Z. Chen, Y. Ren, S. Zhang, N. Yuan, B. Lin, and J. Ding, “Amphoteric membranes based on sulfonated polyether ether ketone and imidazolium-functionalized polyphenylene oxide for vanadium redox flow battery applications,” ChemElectroChem, vol. 6, no. 19, pp. 5041–5050, 2019.; J. Kim, Y. Lee, J.-D. Jeon, and S.-Y. Kwak, “Ion-exchange composite membranes pore-filled with sulfonated poly (ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries,” Journal of Power Sources, vol. 383, pp. 1–9, 2018.; A. Rajput, S. K. Raj, J. Sharma, N. H. Rathod, P. Maru, and V. Kulshrestha, “Sulfonated poly ether ether ketone (SPEEK) based composite cation exchange membranes for salt removal from brackish water,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 614, p. 126157, 2021.; G. Shukla and V. K. Shahi, “Sulfonated poly (ether ether ketone)/imidized graphene oxide composite cation exchange membrane with improved conductivity and stability for electrodialytic water desalination,” Desalination, vol. 451, pp. 200–208, 2019.; M. Tripathy, P. S. Kumar, and A. P. Deshpande, “Molecular structuring and percolation transition in hydrated sulfonated poly (ether ether ketone) membranes,” The Journal of Physical Chemistry B, vol. 121, no. 18, pp. 4873–4884, 2017.; Y. Zhao, E. Tsuchida, Y.-K. Choe, T. Ikeshoji, M. A. Barique, and A. Ohira, “Ab initio studies on the proton dissociation and infrared spectra of sulfonated poly (ether ether ketone)(SPEEK) membranes,” Physical Chemistry Chemical Physics, vol. 16, no. 3, pp. 1041–1049, 2014.; Y. Marcus, “Effect of ions on the structure of water: structure making and breaking,” Chemical Reviews, vol. 109, no. 3, pp. 1346–1370, 2009.; M. Andreev, J. J. de Pablo, A. Chremos, and J. F. Douglas, “Influence of ion solvation on the properties of electrolyte solutions,” The Journal of Physical Chemistry B, vol. 122, no. 14, pp. 4029–4034, 2018.; D. Cao, T. Jiang, and J. Wu, “A hybrid method for predicting the microstructure of polymers with complex architecture: Combination of single-chain simulation with density functional theory,” The Journal of Chemical Physics, vol. 124, no. 16, p. 164904, 2006.; C. V. Mahajan and V. Ganesan, “Atomistic simulations of structure of solvated sulfonated poly (ether ether ketone) membranes and their comparisons to Nafion: I. Nanophase segregation and hydrophilic domains,” The Journal of Physical Chemistry B, vol. 114, no. 25, pp. 8357–8366, 2010.; M. J. Parnian, S. Rowshanzamir, and F. Gashoul, “Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications,” Energy, vol. 125, pp. 614–628, 2017.; B. Hingerty, R. Ritchie, T. Ferrell, and J. Turner, “Dielectric effects in biopolymers: the theory of ionic saturation revisited,” Biopolymers: Original Research on Biomolecules, vol. 24, no. 3, pp. 427–439, 1985.; P. Macchi and A. Sironi, “Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities,” Coordination Chemistry Reviews, vol. 238, pp. 383–412, 2003.; F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, “Tables of bond lengths determined by x-ray and neutron diffraction. part 1. bond lengths in organic compounds,” Journal of the Chemical Society, Perkin Transactions 2, no. 12, pp. S1–S19, 1987.; S. Shirouzu, M. Yoshida, and N. Senda, “Conformational characteristics of polyether-ether-ketone and poly-ether-nitrile,” Japanese Journal of Applied Physics, vol. 34, no. 6R, p. 3186, 1995.; W. van Scheppingen, E. Dorrestijn, I. Arends, P. Mulder, and H.-G. Korth, “Carbon-oxygen bond strength in diphenyl ether and phenyl vinyl ether: an experimental and computational study,” The Journal of Physical Chemistry A, vol. 101, no. 30, pp. 5404–5411, 1997.; P. Wang, R. Shi, Y. Su, L. Tang, X. Huang, and J. Zhao, “Hydrated sodium ion clusters [Na+ (H2O)n (n= 1–6)]: An ab initio study on structures and non-covalent interaction,” Frontiers in Chemistry, vol. 7, p. 624, 2019.; T. MA, G. EA, and S. MHA, “Aqueous micro-hydration of Na+ (H2O) n= 1-7 clusters: DFT study,” Open Chemistry, vol. 17, no. 1, pp. 260–269, 2019.; M. Galib, M. Baer, L. Skinner, C. Mundy, T. Huthwelker, G. Schenter, C. Benmore, N. Govind, and J. L. Fulton, “Revisiting the hydration structure of aqueous Na+,” The Journal of Chemical Physics, vol. 146, no. 8, 2017.; C. Liu, F. Min, L. Liu, and J. Chen, “Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study,” Chemical Physics Letters, vol. 727, pp. 31–37, 2019.; F. Cipcigan, V. Sokhan, G. Martyna, and J. Crain, “Structure and hydrogen bonding at the limits of liquid water stability,” Scientific Reports, vol. 8, no. 1, p. 1718, 2018.; V. Shaposhnik and E. Butyrskaya, “Computer simulation of cation-exchange membrane structure: An elementary act of hydrated ion transport,” Russian Journal of Electrochemistry, vol. 40, no. 7, pp. 767–770, 2004.; M. L. Barabash, W. A. Gibby, C. Guardiani, D. G. Luchinsky, B. Luan, A. Smolyanitsky, and P. V. McClintock, “Field-dependent dehydration and optimal ionic escape paths for C2N membranes,” The Journal of Physical Chemistry B, vol. 125, no. 25, pp. 7044–7059, 2021.; H. Luo, K. Chang, K. Bahati, and G. M. Geise, “Functional group configuration influences salt transport in desalination membrane materials,” Journal of Membrane Science, vol. 590, p. 117295, 2019.; R. Diamond and D. Whitney, “Ion exchange,” A Series of Advances, vol. 1, p. 277, 1966.; E. Tomasino, B. Mukherjee, V. D. Neelalochana, P. Scardi, and N. Ataollahi, “Computational modeling of hydrated polyamine-based anion exchange membranes via molecular dynamics simulation,” The Journal of Physical Chemistry C, vol. 128, no. 1, pp. 623–634, 2023.; A. Karimi, M. S. Kalfati, and S. Rowshanzamir, “Investigation, modeling, and optimization of parameters affecting sulfonated polyether ether ketone membrane-electrode assembly,” International Journal of Hydrogen Energy, vol. 44, no. 2, pp. 1096–1109, 2019.; L. Li, J. Zhang, and Y. Wang, “Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell,” Journal of Membrane Science, vol. 226, no. 1-2, pp. 159–167, 2003.; J. Xi, Z. Li, L. Yu, B. Yin, L. Wang, L. Liu, X. Qiu, and L. Chen, “Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery,” Journal of Power Sources, vol. 285, pp. 195–204, 2015.; B. W. Ninham, P. N. Bolotskova, S. V. Gudkov, E. N. Baranova, V. A. Kozlov, A. V. Shkirin, M. T. Vu, and N. F. Bunkin, “Nafion swelling in salt solutions in a finite sized cell: Curious phenomena dependent on sample preparation protocol,” Polymers, vol. 14, no. 8, p. 1511, 2022.; Y. Wang, G. He, Z. Li, J. Hua, M. Wu, J. Gong, J. Zhang, L.-t. Ban, and L. Huang, “Novel biological hydrogel: swelling behaviors study in salt solutions with different ionic valence number,” Polymers, vol. 10, no. 2, p. 112, 2018.; D. Laage and G. Stirnemann, “Effect of ions on water dynamics in dilute and concentrated aqueous salt solutions,” The Journal of Physical Chemistry B, vol. 123, no. 15, pp. 3312–3324, 2019.; E. Manaure, C. Olivera-Fuentes, G. Wilczek-Vera, and J. Vera, “Pitzer equations and a model-free version of the ion interaction approach for the activity of individual ions,” Chemical Engineering Science, vol. 241, p. 116619, 2021.; E. Kepten, A. Weron, G. Sikora, K. Burnecki, and Y. Garini, “Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments,” PLoS One, vol. 10, no. 2, p. e0117722, 2015.; I. M. Model, “Transport in polymer-electrolyte membranes,” Journal of The Electrochemical Society, vol. 151, no. 2, pp. A311–A325, 2004.; H. Azher, C. Scholes, S. Kanehashi, G. Stevens, and S. Kentish, “The effect of temperature on the permeation properties of sulphonated poly (ether ether) ketone in wet flue gas streams,” Journal of Membrane Science, vol. 519, pp. 55–63, 2016.; G. Brunello, S. G. Lee, S. S. Jang, and Y. Qi, “A molecular dynamics simulation study of hydrated sulfonated poly (ether ether ketone) for application to polymer electrolyte membrane fuel cells: Effect of water content,” Journal of Renewable and Sustainable Energy, vol. 1, no. 3, 2009.; K. Kreuer, M. Ise, A. Fuchs, and J. Maier, “Proton and water transport in nano-separated polymer membranes,” Le Journal de Physique IV, vol. 10, no. PR7, pp. Pr7–279, 2000.; K. D. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” Journal of Membrane Science, vol. 185, no. 1, pp. 29–39, 2001.; G. Bahlakeh, M. Nikazar, M.-J. Hafezi, E. Dashtimoghadam, and M. M. Hasani-Sadrabadi, “Molecular dynamics simulation study of proton diffusion in polymer electrolyte membranes based on sulfonated poly (ether ether ketone),” International Journal of Hydrogen Energy, vol. 37, no. 13, pp. 10256–10264, 2012.; G. F. Brunello, W. R. Mateker, S. G. Lee, J. I. Choi, and S. S. Jang, “Effect of temperature on structure and water transport of hydrated sulfonated poly (ether ether ketone): A molecular dynamics simulation approach,” Journal of Renewable and Sustainable Energy, vol. 3, no. 4, 2011.; G. Bahlakeh, M. M. Hasani-Sadrabadi, and K. I. Jacob, “Exploring the hydrated microstructure and molecular mobility in blend polyelectrolyte membranes by quantum mechanics and molecular dynamics simulations,” RSC Advances, vol. 6, no. 42, pp. 35517–35526, 2016.; Ö. Tekinalp, P. Zimmermann, S. Holdcroft, O. S. Burheim, and L. Deng, “Cation exchange membranes and process optimizations in electrodialysis for selective metal separation: a review,” Membranes, vol. 13, no. 6, p. 566, 2023.; S. Subramonian and D. Clifford, “Monovalent/divalent selectivity and the charge separation concept,” Reactive Polymers, Ion Exchangers, Sorbents, vol. 9, no. 2, pp. 195–209, 1988.; R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, “Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking,” Physical Chemistry Chemical Physics, vol. 16, no. 44, pp. 24128–24164, 2014.; T. R. Farhat and J. B. Schlenoff, “Doping-controlled ion diffusion in polyelectrolyte multilayers: mass transport in reluctant exchangers,” Journal of the American Chemical Society, vol. 125, no. 15, pp. 4627–4636, 2003.; J. Mackie and P. Meares, “The diffusion of electrolytes in a cation-exchange resin membrane i. theoretical,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 232, no. 1191, pp. 498–509, 1955.; L. M. Thieu, L. Zhu, A. G. Korovich, M. A. Hickner, and L. A. Madsen, “Multiscale tortuous diffusion in anion and cation exchange membranes,” Macromolecules, vol. 52, no. 1, pp. 24–35, 2018.; J. M. Woudstra and K. J. Ooms, “Investigating the water in hydrated SPEEK membranes using multiple quantum filtered 2H NMR spectroscopy,” The Journal of Physical Chemistry B, vol. 116, no. 50, pp. 14724–14730, 2012.; P. Kubisiak and A. Eilmes, “Estimates of electrical conductivity from molecular dynamics simulations: how to invest the computational effort,” The Journal of Physical Chemistry B, vol. 124, no. 43, pp. 9680–9689, 2020.; N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, and Y. Volfkovich, “Porous structure of ion exchange membranes investigated by various techniques,” Advances in Colloid and Interface Science, vol. 246, pp. 196–216, 2017.; P. Knauth, L. Pasquini, B. Maranesi, K. Pelzer, R. Polini, and M. Di Vona, “Proton mobility in sulfonated polyetheretherketone (SPEEK): Influence of thermal crosslinking and annealing,” Fuel Cells, vol. 13, no. 1, pp. 79–85, 2013.; R. Wang, S. Liu, L. Wang, M. Li, and C. Gao, “Understanding of nanophase separation and hydrophilic morphology in Nafion and SPEEK membranes: A combined experimental and theoretical studies,” Nanomaterials, vol. 9, no. 6, p. 869, 2019.; L. Sarkisov, R. Bueno-Perez, M. Sutharson, and D. Fairen-Jimenez, “Materials informatics with Poreblazer v4.0 and the CSD MOF database,” Chemistry of Materials, vol. 32, no. 23, pp. 9849–9867, 2020.; T. Luo, Y. Zhong, D. Xu, X. Wang, and M. Wessling, “Combining Manning’s theory and the ionic conductivity experimental approach to characterize selectivity of cation exchange membranes,” Journal of Membrane Science, vol. 629, p. 119263, 2021.; G. Lanaro and G. Patey, “Molecular dynamics simulation of NaCl dissolution,” The Journal of Physical Chemistry B, vol. 119, no. 11, pp. 4275–4283, 2015.; S. Mamatkulov, M. Fyta, and R. R. Netz, “Force fields for divalent cations based on single-ion and ion-pair properties,” The Journal of Chemical Physics, vol. 138, no. 2, 2013.; R. Fuentes-Azcatl and M. C. Barbosa, “Sodium chloride, NaCl: New force field,” The Journal of Physical Chemistry B, vol. 120, no. 9, pp. 2460–2470, 2016.; G. Balasubramanian, S. Murad, R. Kappiyoor, and I. K. Puri, “Structure of aqueous MgSO₄ solution: dilute to concentrated,” Chemical Physics Letters, vol. 508, no. 1-3, pp. 38–42, 2011.; E. Berne and M. Weill, “A remeasurement of the self-diffusion coefficients of iodide ion in aqueous sodium iodide solutions,” The Journal of Physical Chemistry, vol. 64, no. 2, pp. 272–273, 1960.; K. Tanaka, “Measurements of self-diffusion coefficients of water in pure water and in aqueous electrolyte solutions,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 71, pp. 1127–1131, 1975.; https://repositorio.unal.edu.co/handle/unal/86927; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/