يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"Carbonatos ciclicos"', وقت الاستعلام: 0.58s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Villar Yanez, Alba

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Física i Inorgànica

    Thesis Advisors: Kleij, Arjan Willem, Bo Jané, Carles

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Zanda, Nicola

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica

    Thesis Advisors: nicola.zanda@outlook.es, Pericàs Brondo, Miquel Àngel, Kleij, Arjan Willem

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis

    المؤلفون: Maquilón Albaladejo, Cristina

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica

    Thesis Advisors: Kleij, Arjan Willem

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  4. 4
    Dissertation/ Thesis

    المؤلفون: Cristòfol Martínez, Àlex

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica

    Thesis Advisors: Kleij, Arjan Willem

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  5. 5
    Dissertation/ Thesis

    المؤلفون: Yeamin, Md Bin

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Física i Inorgànica

    Thesis Advisors: Masdeu Bultó, Anna Maria, Reguero de la Poza, Maria del Mar

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  6. 6
    Dissertation/ Thesis

    المؤلفون: Sopeña de Frutos, Sergio

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica

    Thesis Advisors: Kleij, Arjan W.

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  7. 7
    Dissertation/ Thesis

    المؤلفون: Rintjema Tanger, Jeroen

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament de Química Analítica i Química Orgànica

    Thesis Advisors: Kleij, Arjan W.

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis
  10. 10
    Academic Journal
  11. 11
    Dissertation/ Thesis

    المساهمون: Hurtado Belalcazar, John Jady, Baquero, Edwin, Macías López, Mario Alberto, Grupo de investigación en química inorgánica, catálisis y bio-inorgánica (GUIQUICB)

    وصف الملف: 102 páginas; application/pdf

    Relation: Sen, R.; Goeppert, A.; Surya Prakash, G. K. Homogeneous Hydrogenation of CO2 and CO to Methanol: The Renaissance of Low-Temperature Catalysis in the Context of the Methanol Economy. Angewandte Chemie International Edition 2022, 61 (42), e202207278. https://doi.org/10.1002/anie.202207278.; Guo, L.; J. Lamb, K.; North, M. Recent Developments in Organocatalysed Transformations of Epoxides and Carbon Dioxide into Cyclic Carbonates. Green Chemistry 2021, 23 (1), 77-118. https://doi.org/10.1039/D0GC03465G.; Alhafez, A.; Aytar, E.; Kilic, A. Enhancing Catalytic Strategy for Cyclic Carbonates Synthesized from CO2 and Epoxides by Using Cobaloxime-Based Double Complex Salts as Catalysts. Journal of CO2 Utilization 2022, 63, 102129. https://doi.org/10.1016/j.jcou.2022.102129. (4) Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022, 12 (4), 403. https://doi.org/10.3390/catal12040403.; Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022, 12 (4), 403. https://doi.org/10.3390/catal12040403.; Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angewandte Chemie International Edition 2011, 50 (37), 8510-8537. https://doi.org/10.1002/anie.201102010; Prasad, D.; Patil, K. N.; Chaudhari, N. K.; Kim, H.; Nagaraja, B. M.; Jadhav, A. H. Paving Way for Sustainable Earth-Abundant Metal Based Catalysts for Chemical Fixation of CO2 into Epoxides for Cyclic Carbonate Formation. Catalysis Reviews 2022, 64 (2), 356-443. https://doi.org/10.1080/01614940.2020.1812212; Weidlich, T.; Kamenická, B. Utilization of CO2-Available Organocatalysts for Reactions with Industrially Important Epoxides. Catalysts 2022, 12 (3), 298. https://doi.org/10.3390/catal12030298; Gorbunov, D. N.; Nenasheva, M. V.; Terenina, M. V.; Kardasheva, Yu. S.; Kardashev, S. V.; Naranov, E. R.; Bugaev, A. L.; Soldatov, A. V.; Maximov, A. L.; Karakhanov, E. A. Transformations of Carbon Dioxide under Homogeneous Catalysis Conditions (A Review). Pet. Chem. 2022, 62 (1), 1-39. https://doi.org/10.1134/S0965544122010054; Aresta, M.; Dibenedetto, A.; Angelini, A. From CO2 to Chemicals, Materials, and Fuels: The Role of Catalysis. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd, 2014; pp 1-18. https://doi.org/10.1002/9781119951438.eibc2257; A. Bhat, G.; J. Darensbourg, D. Progress in the Catalytic Reactions of CO 2 and Epoxides to Selectively Provide Cyclic or Polymeric Carbonates. Green Chemistry 2022, 24 (13), 5007-5034. https://doi.org/10.1039/D2GC01422J; Kumar, A.; Daw, P.; Milstein, D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem. Rev. 2022, 122 (1), 385-441. https://doi.org/10.1021/acs.chemrev.1c00412; Behr, A.; Nowakowski, K. Chapter Seven - Catalytic Hydrogenation of Carbon Dioxide to Formic Acid. In Advances in Inorganic Chemistry; Aresta, M., van Eldik, R., Eds.; CO Chemistry; Academic Press, 2014; Vol. 66, pp 223-258. https://doi.org/10.1016/B978-0-12-420221-4.00007-X; Alberico, E.; Nielsen, M. Towards a Methanol Economy Based on Homogeneous Catalysis: Methanol to H 2 and CO 2 to Methanol. Chemical Communications 2015, 51 (31), 6714-6725. https://doi.org/10.1039/C4CC09471A; Pandey, P.; Dutta, I.; Bera, J. K. Acceptorless Alcohol Dehydrogenation: A Mechanistic Perspective. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 2016, 86 (4), 561-579. https://doi.org/10.1007/s40010-016-0296-7; van der Vlugt, J. I.; Reek, J. N. H. Neutral Tridentate PNP Ligands and Their Hybrid Analogues: Versatile Non-Innocent Scaffolds for Homogeneous Catalysis. Angewandte Chemie International Edition 2009, 48 (47), 8832-8846. https://doi.org/10.1002/anie.200903193; Gunanathan, C.; Milstein, D. Bond Activation and Catalysis by Ruthenium Pincer Complexes. Chem. Rev. 2014, 114 (24), 12024-12087. https://doi.org/10.1021/cr5002782; Peris, E.; Crabtree, R. H. Recent Homogeneous Catalytic Applications of Chelate and Pincer N-Heterocyclic Carbenes. Coordination Chemistry Reviews 2004, 248 (21), 2239-2246. https://doi.org/10.1016/j.ccr.2004.04.014; Shimbayashi, T.; Fujita, K. Recent Advances in Homogeneous Catalysis via Metal-Ligand Cooperation Involving Aromatization and Dearomatization. Catalysts 2020, 10 (6), 635. https://doi.org/10.3390/catal10060635; Khusnutdinova, J. R.; Milstein, D. Metal-Ligand Cooperation. Angewandte Chemie International Edition 2015, 54 (42), 12236-12273. https://doi.org/10.1002/anie.201503873; P. Gonçalves, T.; Dutta, I.; Huang, K.-W. Aromaticity in Catalysis: Metal Ligand Cooperation via Ligand Dearomatization and Rearomatization. Chemical Communications 2021, 57 (25), 3070-3082. https://doi.org/10.1039/D1CC00528F; Atkins, P.; Overton, T. Shriver and Atkins' Inorganic Chemistry; OUP Oxford, 2010; Chang, W.; Gong, X.; Wang, S.; Xiao, L.-P.; Song, G. Acceptorless Dehydrogenation and Dehydrogenative Coupling of Alcohols Catalysed by Protic NHC Ruthenium Complexes. Org. Biomol. Chem. 2017, 15 (16), 3466-3471. https://doi.org/10.1039/C7OB00542C; Hanasaka, F.; Fujita, K.; Yamaguchi, R. Synthesis of New Cationic Cp*Ir N-Heterocyclic Carbene Complexes and Their High Catalytic Activities in the Oppenauer-Type Oxidation of Primary and Secondary Alcohols. Organometallics 2005, 24 (14), 3422-3433. https://doi.org/10.1021/om0503545; Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An Overview of N-Heterocyclic Carbenes. Nature 2014, 510 (7506), 485-496. https://doi.org/10.1038/nature13384; Herrmann, W. A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. Angewandte Chemie International Edition 2002, 41 (8), 1290-1309. https://doi.org/10.1002/1521-3773(20020415)41:83.0.CO;2-Y; Corberán, R.; Peris, E. An Unusual Example of Base-Free Catalyzed Reduction of C=O and C=NR Bonds by Transfer Hydrogenation and Some Useful Implications. Organometallics 2008, 27 (8), 1954-1958. https://doi.org/10.1021/om800095t; Castro-Osma, J. A.; Lamb, K. J.; North, M. Cr(Salophen) Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temperature And Pressure. ACS Catal. 2016, 6 (8), 5012-5025. https://doi.org/10.1021/acscatal.6b01386; J. Kamphuis, A.; Picchioni, F.; P. Pescarmona, P. CO 2 -Fixation into Cyclic and Polymeric Carbonates: Principles and Applications. Green Chemistry 2019, 21 (3), 406-448. https://doi.org/10.1039/C8GC03086C; North, M.; Pasquale, R.; Young, C. Synthesis of Cyclic Carbonates from Epoxides and CO 2. Green Chemistry 2010, 12 (9), 1514-1539. https://doi.org/10.1039/C0GC00065E; Song, W.-Y.; Liu, Q.; Bu, Q.; Wei, D.; Dai, B.; Liu, N. Rational Design of Cobalt Complexes Based on the Trans Effect of Hybrid Ligands and Evaluation of Their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics 2020, 39 (19), 3546-3561. https://doi.org/10.1021/acs.organomet.0c00525; Ulusoy, M.; Çetinkaya, E.; Çetinkaya, B. Conversion of Carbon Dioxide to Cyclic Carbonates Using Diimine Ru(II) Complexes as Catalysts. Applied Organometallic Chemistry 2009, 23 (2), 68-74. https://doi.org/10.1002/aoc.1473; Bu, Z.; Wang, Z.; Yang, L.; Cao, S. Synthesis of Propylene Carbonate from Carbon Dioxide Using Trans-Dichlorotetrapyridineru- Thenium(II) as Catalyst. Applied Organometallic Chemistry 2010, 24 (11), 813-816. https://doi.org/10.1002/aoc.1708; Wu, X.; Chen, C.; Guo, Z.; North, M.; Whitwood, A. C. Metal- and Halide-Free Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ACS Catal. 2019, 9 (3), 1895-1906. https://doi.org/10.1021/acscatal.8b04387; Chen, J.; Gao, H.; Ding, T.; Ji, L.; Zhang, J. Z. H.; Gao, G.; Xia, F. Mechanistic Studies of CO2 Cycloaddition Reaction Catalyzed by Amine-Functionalized Ionic Liquids. Frontiers in Chemistry 2019, 7; Wang, X.; Wang, L.; Zhao, Y.; Kodama, K.; Hirose, T. Efficient and Practical Organocatalytic System for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides: 3-Hydroxypyridine/Tetra-n-Butylammonium Iodide. Tetrahedron 2017, 73 (8), 1190-1195. https://doi.org/10.1016/j.tet.2017.01.018; Azzouz, R.; Moreno, V. C.; Herasme-Grullon, C.; Levacher, V.; Estel, L.; Ledoux, A.; Derrouiche, S.; Marsais, F.; Bischoff, L. Efficient Conversion of Epoxides into Carbonates with CO2 and a Single Organocatalyst: Laboratory and Kilogram-Scale Experiments. Synlett 2020, 31 (2), 183-188. https://doi.org/10.1055/s-0039-1691405; Wu, S.; Zhang, Y.; Wang, B.; Elageed, E. H. M.; Ji, L.; Wu, H.; Gao, G. Synthesis of Functionalized Cyclic Carbonates by One-Pot Reactions of Carbon Dioxide, Epibromohydrin, and Phenols, Thiophenols, or Carboxylic Acids Catalyzed by Ionic Liquids. European Journal of Organic Chemistry 2017, 2017 (3), 753-759. https://doi.org/10.1002/ejoc.201601315; Bridge-Functionalized Bisimidazolium Bromides as Catalysts for the Conversion of Epoxides to Cyclic Carbonates with CO2. Catalysis Communications 2019, 124, 118-122. https://doi.org/10.1016/j.catcom.2019.03.012; Siek, S.; Burks, D. B.; Gerlach, D. L.; Liang, G.; Tesh, J. M.; Thompson, C. R.; Qu, F.; Shankwitz, J. E.; Vasquez, R. M.; Chambers, N.; Szulczewski, G. J.; Grotjahn, D. B.; Webster, C. E.; Papish, E. T. Iridium and Ruthenium Complexes of N-Heterocyclic Carbene- and Pyridinol-Derived Chelates as Catalysts for Aqueous Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation: The Role of the Alkali Metal. Organometallics 2017, 36 (6), 1091-1106. https://doi.org/10.1021/acs.organomet.6b00806; Wagner, T.; Pöthig, A.; Augenstein, H. M. S.; Schmidt, T. D.; Kaposi, M.; Herdtweck, E.; Brütting, W.; Herrmann, W. A.; Kühn, F. E. From Simple Ligands to Complex Structures: Structural Diversity of Silver(I) Complexes Bearing Tetradentate (Alkylenebimpy) NHC Ligands. Organometallics 2015, 34 (8), 1522-1529. https://doi.org/10.1021/om5013067; Moore, C. M.; Szymczak, N. K. 6,6'-Dihydroxy Terpyridine: A Proton-Responsive Bifunctional Ligand and Its Application in Catalytic Transfer Hydrogenation of Ketones. Chem. Commun. 2012, 49 (4), 400-402. https://doi.org/10.1039/C2CC36927C; Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, 2004; Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier, 2017; Nirmala, M.; Saranya, G.; Viswanathamurthi, P.; Bertani, R.; Sgarbossa, P.; Malecki, J. G. Organonickel Complexes Encumbering Bis-Imidazolylidene Carbene Ligands: Synthesis, X-Ray Structure and Catalytic Insights on Buchwald-Hartwig Amination Reactions. Journal of Organometallic Chemistry 2017, 831, 1-10. https://doi.org/10.1016/j.jorganchem.2016.12.029; Zhong, W.; Fei, Z.; Scopelliti, R.; Dyson, P. J. Alcohol-Induced C=N Bond Cleavage of Cyclometalated N-Heterocyclic Carbene Ligands with a Methylene-Linked Pendant Imidazolium Ring. Chemistry - A European Journal 2016, 22 (34), 12138-12144. https://doi.org/10.1002/chem.201602267; Huynh, H. V. The Organometallic Chemistry of N-Heterocyclic Carbenes; John Wiley & Sons, 2017; Meijboom, R.; Bowen, R. J.; Berners-Price, S. J. Coordination Complexes of Silver(I) with Tertiary Phosphine and Related Ligands. Coordination Chemistry Reviews 2009, 253 (3), 325-342. https://doi.org/10.1016/j.ccr.2008.03.001; Nirmala, M.; Prakash, G.; Viswanathamurthi, P.; Malecki, J. G. An Attractive Route to Transamidation Catalysis: Facile Synthesis of New o-Aryloxide-N-Heterocyclic Carbene Ruthenium(II) Complexes Containing Trans Triphenylphosphine Donors. Journal of Molecular Catalysis A: Chemical 2015, 403, 15-26. https://doi.org/10.1016/j.molcata.2015.03.015; Ali, I.; Wani, W. A.; Saleem, K. Empirical Formulae to Molecular Structures of Metal Complexes by Molar Conductance. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2013, 43 (9), 1162-1170. https://doi.org/10.1080/15533174.2012.756898; Henderson, W.; McIndoe, J. S. Mass Spectrometry of Inorganic and Organometallic Compounds: Tools - Techniques - Tips; John Wiley & Sons, 2005; Nirmala, M.; Prakash, G.; Ramachandran, R.; Viswanathamurthi, P.; Malecki, J. G.; Linert, W. Nickel(II) Complex Incorporating Methylene Bridged Tetradentate Dicarbene Ligand as an Efficient Catalyst toward CC and CN Bond Formation Reactions. Journal of Molecular Catalysis A: Chemical 2015, 397, 56-67. https://doi.org/10.1016/j.molcata.2014.10.031; Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons, 2009; Ferraro, J. R. Low-Frequency Vibrations of Inorganic and Coordination Compounds; Springer Science & Business Media, 2012; Maity, L.; Das Adhikary, S.; Mondal, A.; Kisan, H. K.; Isab, A. A.; Goswami, S.; Dinda, J. Synthesis, Structure, Theoretical Studies and Electrochemistry of Ru(II)N Heterocyclic Carbenes. Inorganica Chimica Acta 2018, 479, 141-147. https://doi.org/10.1016/j.ica.2018.04.029; Babu, C. N.; Suresh, P.; Srinivas, K.; Sathyanarayana, A.; Sampath, N.; Prabusankar, G. Catalytically Active Lead( Ii )-Imidazolium Coordination Assemblies with Diversified Lead( Ii ) Coordination Geometries. Dalton Transactions 2016, 45 (19), 8164-8173. https://doi.org/10.1039/C5DT04409J; Dominique, F. J.-B. dit; Gornitzka, H.; Sournia-Saquet, A.; Hemmert, C. Dinuclear Gold(i) and Gold(Iii) Complexes of Bridging Functionalized Bis(N-Heterocyclic Carbene) Ligands: Synthesis, Structural, Spectroscopic and Electrochemical Characterizations. Dalton Transactions 2009, 0 (2), 340-352. https://doi.org/10.1039/B809943J; Pescarmona, P. P.; Taherimehr, M. Challenges in the Catalytic Synthesis of Cyclic and Polymeric Carbonates from Epoxides and CO2. Catal. Sci. Technol. 2012, 2 (11), 2169-2187. https://doi.org/10.1039/C2CY20365K; http://hdl.handle.net/1992/64347; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  12. 12
    Dissertation/ Thesis
  13. 13
    Dissertation/ Thesis
  14. 14
    Dissertation/ Thesis
  15. 15
    Dissertation/ Thesis

    المساهمون: Iborra Clar, María Isabel, Iborra Clar, Alicia, Viciano Miralles, Mónica, Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials

  16. 16
    Electronic Resource