يعرض 1 - 20 نتائج من 672 نتيجة بحث عن '"Capacitores"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المصدر: Ingeniería; Vol. 29 No. 1 (2024): January-April; e21340 ; Ingeniería; Vol. 29 Núm. 1 (2024): Enero-Abril; e21340 ; 2344-8393 ; 0121-750X

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.udistrital.edu.co/index.php/reving/article/view/21340/19811; https://revistas.udistrital.edu.co/index.php/reving/article/view/21340/20101; M. I. M. Ridzuan, N. F. M. Fauzi, N. N. R. Roslan, and N. M. Saad, “Urban and rural medium voltage networks reliability assessment,” SN Appl. Sci., vol. 2, no. 2, Jan. 2020. https://doi.org/10.1007/s42452-019-1612-z; L. C. Kien, T. T. Nguyen, T. D. Pham, and T. T. Nguyen, “Cost reduction for energy loss and capacitor investment in radial distribution networks applying novel algorithms,” Neural Comput. Appl., vol. 33, no. 22, pp. 15 495–15 522, Jun. 2021. SpringerScienceandBusinessMedia{LLC}; A. Paz-Rodriguez, J. F. Castro-Ordonez, O. D. Montoya, and D. A. Giral-Ramirez, “Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm,” Appl. Sci., vol. 11, no. 10, p. 4418, May 2021. https://doi.org/10.3390/app11104418; A. Aguila, L. Ortiz, R. Orizondo, and G. Lopez, “Optimal location and dimensioning of capacitors in microgrids using a multicriteria decision algorithm,” Heliyon, vol. 7, no. 9, p. e08061, Sep 2021. https://doi.org/10.1016/j.heliyon.2021.e08061; E. P. Madruga and L. N. Canha, “Allocation and integrated configuration of capacitor banks and voltage regulators considering multi-objective variables in smart grid distribution system,” in 2010 9th IEEE/IAS International Conference on Industry Applications - INDUSCON 2010, 2010, pp. 1–6. https://doi.org/10.1109/INDUSCON.2010.5740055; L. A. G. Pareja, J. M. L. Lezama, and O. G. Carmona, “Optimal placement of capacitors, voltage regulators, and distributed generators in electric power distribution systems,” Ingenieria, vol. 25, no. 3, pp. 334–354, Oct 2020. https://doi.org/10.14483/23448393.16925; S. Mishra, D. Das, and S. Paul, “A comprehensive review on power distribution network reconfiguration,” Energy Syst., vol. 8, no. 2, pp. 227–284, Mar 2016. https://doi.org/10.1007/s12667-016-0195-7; S. Dhivya and R. Arul, “Demand side management studies on distributed energy resources: A survey,” TESEA Trans., vol. 2, no. 1, pp. 17–31, Jul 2021. https://doi.org/10.32397/tesea.vol2.n1.2; R. Sirjani and A. R. Jordehi, “Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review,” Renew. Sust. Energ. Rev., vol. 77, pp. 688–694, Sep 2017. https://doi.org/10.1016/j.rser.2017.04.035; V. Tamilselvan, T. Jayabarathi, T. Raghunathan, and X.-S. Yang, “Optimal capacitor placement in radial distribution systems using flower pollination algorithm,” Alex. Eng. J., vol. 57, no. 4, pp. 2775–2786, Dec 2018. https://doi.org/10.1016/j.aej.2018.01.004; A. Valencia, R. A. Hincapie, and R. A. Gallego, “Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium-low voltage distribution networks,” J. Energy Storage, vol. 34, p. 102158, Feb 2021. https://doi.org/10.1016/j.est.2020.102158; S. Griot and A. Moreau, “Vacuum circuit breaker’s electrical life for shunt capacitor switching,” in 24th ISDEIV 2010, 2010, pp. 194–197. https://doi.org/10.1109/DEIV.2010.5625750; R. M. A. Velasquez and J. V. M. Lara, “Reliability, availability and maintainability study for failure analysis in series capacitor bank,” Eng. Fail. Anal., vol. 86, pp. 158–167, Apr 2018. https://doi.org/10.1016/j.engfailanal.2018.01.008; O. D. Montoya, W. Gil-Gonzalez, and A. Garces, “On the conic convex approximation to locate and size fixed-step capacitor banks in distribution networks,” Computation, vol. 10, no. 2, p. 32, 2022. https://doi.org/10.3390/computation10020032; W. Gil-Gonzalez, O. D. Montoya, A. Rajagopalan, L. F. Grisales-Norena, and J. C. Hernandez, “Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm,” Energies, vol. 13, no. 18, p. 4914, Sep 2020. https://doi.org/10.3390/en13184914; F. E. Riano, J. F. Cruz, O. D. Montoya, H. R. Chamorro, and L. Alvarado-Barrios, “Reduction of losses and operating costs in distribution networks using a genetic algorithm and mathematical optimization,” Electronics, vol. 10, no. 4, p. 419, Feb 2021. https://doi.org/10.3390/electronics10040419; I. P. Abril, “Capacitors placement in distribution systems with nonlinear load by using the variables’ inclusion and interchange algorithm,” DYNA, vol. 88, no. 217, pp. 13–22, May 2021. https://doi.org/10.15446/dyna.v88n217.91145; O. D. Montoya, W. Gil-Gonzalez, and J. C. Hernandez, “Efficient integration of fixed-step capacitor banks and D-STATCOMs in radial and meshed distribution networks considering daily operation curves,” Energies, vol. 16, no. 8, p. 3532, 2023. https://doi.org/10.3390/en16083532; Y. Ogita and H. Mori, “Parallel dual tabu search for capacitor placement in smart grids,” Procedia Comput. Sci., vol. 12, pp. 307–313, 2012. https://doi.org/10.1016/j.procs.2012.09.076; A. A. El-Fergany and A. Y. Abdelaziz, “Capacitor placement for net saving maximization and system stability enhancement in distribution networks using artificial bee colony-based approach,” Int. J. Electr. Power Energy Syst., vol. 54, pp. 235–243, 2014. https://doi.org/10.1016/j.ijepes.2013.07.015; K. Prakash and M. Sydulu, “Particle swarm optimization based capacitor placement on radial distribution systems,” in 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1–5. https://doi.org/10.1109/PES.2007.386149; A. Augugliaro, L. Dusonchet, S. Favuzza, M. G. Ippolito, S. Mangione, and E. R. Sanseverino, “A modified genetic algorithm for optimal allocation of capacitor banks in MV distribution networks,” Intell. Ind. Syst., vol. 1, no. 3, pp. 201–212, Sep 2015. https://doi.org/10.1007/s40903-015-0019-4; K. Devabalaji, T. Yuvaraj, and K. Ravi, “An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm,” Ain Shams Eng. J., vol. 9, no. 4, pp. 589–597, Dec 2018. https://doi.org/10.1016/j.asej.2016.04.005; R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscipl. Optim., vol. 41, pp. 853–862, 2010. https://doi.org/10.1007/s00158-009-0460-7; D. Jones, M. Tamiz et al., Practical goal programming. Springer, 2010, vol. 141. https://doi.org/10.1007/978-1-4419-5771-9; S. Dutta and K. N. Das, “A survey on pareto-based eas to solve multi-objective optimization problems,” in Soft Computing for Problem Solving. Springer Singapore, 2019, pp. 807–820. https://doi.org/10.1007/978-981-13-1595-4_64; M. T. Emmerich and A. H. Deutz, “A tutorial on multiobjective optimization: fundamentals and evolutionary methods,” Nat. Comput., vol. 17, pp. 585–609, 2018. https://doi.org/10.1007/s11047-018-9685-y; L. Zhihuan, L. Yinhong, and D. Xianzhong, “Non-dominated sorting genetic algorithm-ii for robust multi-objective optimal reactive power dispatch,” IET Gener. Transm. Distrib., vol. 4, no. 9, pp. 1000–1008, 2010. https://doi.org/10.1049/iet-gtd.2010.0105; S. Özdemir, B. A. Attea, and Ö. A. Khalil, “Multi-objective evolutionary algorithm based on decomposition for energy efficient coverage in wireless sensor networks,” Wirel. Pers. Commun., vol. 71, pp. 195–215, 2013. https://doi.org/10.1007/s11277-012-0811-3; J. B. Chagas and M. Wagner, “A weighted-sum method for solving the bi-objective traveling thief problem,” Comput Oper Res, vol. 138, p. 105560, 2022. https://doi.org/10.1016/j.cor.2021.105560; P. Yu, C. Wan, M. Sun, Y. Zhou, and Y. Song, “Distributed voltage control of active distribution networks with global sensitivity,” IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4214–4228, 2022. https://doi.org/10.1109/TPWRS.2022.3153954; M. Farivar and S. H. Low, “Branch flow model: relaxations and convexification—part i,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2554–2564, Aug 2013. https://doi.org/10.1109/tpwrs.2013.2255317; B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro, “The sample average approximation method applied to stochastic routing problems: a computational study,” Comput Optim Appl, vol. 24, pp. 289–333, 2003. https://doi.org/10.1023/A:1021814225969 [34] W. Gil-González, A. Garces, O. D. Montoya, and J. C. Hernández, “A mixed-integer convex model for the optimal placement and sizing of distributed generators in power distribution networks,” Appl. Sci., vol. 11, no. 2, p. 627, 2021. https://doi.org/10.3390/app11020627; O. D. Montoya, W. Gil-González, and L. Grisales-Noreña, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Eng. J., vol. 11, no. 2, pp. 409–418, 2020. https://doi.org/10.1016/j.asej.2019.08.011; O. D. Montoya, L. F. Grisales-Noreña, L. Alvarado-Barrios, A. Arias-Londoño, and C. Álvarez-Arroyo, “Efficient reduction in the annual investment costs in AC distribution networks via optimal integration of solar PV sources using the newton metaheuristic algorithm,” Appl. Sci., vol. 11, no. 23, p. 11525, 2021. https://doi.org/10.3390/app112311525; W. Gil-González, “Optimal placement and sizing of d-statcoms in electrical distribution networks using a stochastic mixed-integer convex model,” Electronics, vol. 12, no. 7, p. 1565, 2023. https://doi.org/10.3390/electronics12071565; M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” Mar 2014. http://cvxr.com/; H. A. Taha, M. H. Alham, and H. K. M. Youssef, “Multi-objective optimization for optimal allocation and coordination of wind and solar dgs, besss and capacitors in presence of demand response,” IEEE Access, vol. 10, pp. 16 225–16 241, 2022. https://doi.org/10.1109/ACCESS.2022.3149135; L. H. Macedo, G. Muñoz-Delgado, J. Contreras, and R. Romero, “Optimal service restoration in active distribution networks considering microgrid formation and voltage control devices,” IEEE Trans. Ind. Appl., vol. 57, no. 6, pp. 5758–5771, 2021. https://doi.org/10.1109/TIA.2021.3116559; https://revistas.udistrital.edu.co/index.php/reving/article/view/21340

  3. 3
    Academic Journal

    المصدر: Sínteses: Revista Eletrônica do SimTec; n. 8.Eixo 1 (2022): Temática: SimTec 25 anos: Histórias, Conquistas e Desafios Profissionais; e02200774 ; Sínteses: Revista Eletrônica do SimTec; No. 8.Eixo 1 (2022): Temática: SimTec 25 anos: Histórias, Conquistas e Desafios Profissionais; e02200774 ; 2525-5398

    جغرافية الموضوع: Brasil, Contemporâneo, Brazil, Contemporary

    وصف الملف: application/pdf

  4. 4
    Academic Journal
  5. 5
    Book

    المؤلفون: Melo, Mateus Ferreira

    المساهمون: Rocha, Ednardo Pereira da, Moura, Adriano Aron Freitas de, Holanda, Samanta Mesquita de

    وصف الملف: application/pdf

    Relation: MELO, Mateus Ferreira. Estudo sobre as distorções causadas por manobras em bancos de capacitores nos sistemas elétricos de potência. 2021. 32 f. Dissertação (Mestrado em Engenharia Elétrica), Universidade Federal Rural do Semi-Árido, Mossoró, 2022.; https://repositorio.ufersa.edu.br/handle/prefix/7167

  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Report
  11. 11
    Video Recording

    المساهمون: Schneider, Mario Cherem, Seminário de Iniciação Científica e Tecnológica da UFSC, Adornes, Cristina Missel, Universidade Federal de Santa Catarina

    وصف الملف: Vídeo; video/mp4

  12. 12
    Academic Journal

    المصدر: Revista Vínculos; Vol. 16 No. 2 (2019); 232-241 ; Revista Vínculos; Vol. 16 Núm. 2 (2019); 232-241 ; Revista Vínculos; v. 16 n. 2 (2019); 232-241 ; 2322-939X ; 1794-211X

    وصف الملف: application/pdf

    Relation: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/15752/15388; M. L. Baughman and S. N. Siddiqi, “Real-time pricing of reactive power: theory and case study results,” IEEE Trans. Power Syst., vol. 6, no. 1, pp. 23–29, Feb. 1991. https://doi.org/10.1109/59.131043; D. Andrews, M. T. Bishop, and J. F. Witte, “Harmonic measurements, analysis, and power factor correction in a modern steel manufacturing facility,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 617–624, May 1996. https://doi.org/10.1109/28.502174; S. V. Berg, J. Adams, and B. Niekum, “Power factors and the efficient pricing and production of reactive power,” Energy J., vol. 4, pp. 93–102, 1983.; H. Moreno, S. Plumel, and P. Bastard, “Assessing the value of reactive power service using OPF of reactive power,” in 2005 IEEE Russia Power Tech, 2005, pp. 1–6. https://doi.org/10.1109/ptc.2005.4524430; Y. Varetsky and Z. Hanzelka, “Capacitor bank impact on harmonic filters operation in power supply system,” in 2009 10th International Conference on Electrical Power Quality and Utilisation, 2009, pp. 1–4. https://doi.org/10.1109/epqu.2009.5318826; J. H. Han, M. Y. Jang, G. B. Lee, B. S. Jang, and Y. A. Kwon, “Improved Performance of Sensorless Induction Motor Using Reactive Power,” in SICE Annual Conference 2007, 2007, pp. 637–642. https://doi.org/10.1109/sice.2007.4421060; J. Benitez, “Application of capacitors for power factor correction of industrial electrical distribution systems,” in [1992] Record of Conference Papers Industry Applications Society 39th Annual Petroleum and Chemical Industry Conference, 1992, pp. 77–86. https://doi.org/10.1109/pcicon.1992.229323; T. E. Grebe, “Application of distribution system capacitor banks and their impact on power quality,” in 1995 Rural Electric Power Conference, 1995, p. C3/1-C3/6. https://doi.org/10.1109/repcon.1995.470933; Z. Jianguo, S. Qiuye, Z. Huaguang, and Z. Yan, “Load balancing and reactive power compensation based on capacitor banks shunt compensation in low voltage distribution networks,” in Proceedings of the 31st Chinese Control Conference, 2012, pp. 6681–6686.; M. A. S. Masoum, M. Ladjevardi, A. Jafarian, and E. F. Fuchs, “Optimal placement, replacement and sizing of capacitor Banks in distorted distribution networks by genetic algorithms,” IEEE Trans. Power Deliv., vol. 19, no. 4, pp. 1794–1801, Oct. 2004. https://doi.org/10.1109/tpwrd.2004.835438; E. F. Fuchs and M. A. S. Masoum, Eds., “Chapter 10 - Optimal Placement and Sizing of Shunt Capacitor Banks in the Presence of Harmonics,” in Power Quality in Power Systems and Electrical Machines, Burlington: Academic Press, 2008, pp. 397–441. https://doi.org/10.1016/b978-012369536-9.50011-5; J. Dixon, L. Moran, J. Rodriguez, and R. Domke, “Reactive Power Compensation Technologies: State-of-the-Art Review,” Proc. IEEE, vol. 93, no. 12, pp. 2144–2164, Dec. 2005. https://doi.org/10.1109/jproc.2005.859937; R. Redl and L. Balogh, “RMS, DC, peak, and harmonic currents in high-frequency power-factor correctors with capacitive energy storage,” in [Proceedings] APEC ’92 Seventh Annual Applied Power Electronics Conference and Exposition, 1992, pp. 533–540. https://doi.org/10.1109/apec.1992.228364; W. Xu, X. Liu, and Y. Liu, “Assessment of harmonic resonance potential for shunt capacitor applications,” Electr. Power Syst. Res., vol. 57, no. 2, pp. 97–104, 2001. https://doi.org/10.1016/s0378-7796(01)00092-x; J. Wang et al., “An Improved Hybrid Modulation Method for the Single-Phase H6 Inverter With Reactive Power Compensation,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7674–7683, Sep. 2018. https://doi.org/10.1109/tpel.2017.2768572; P. E. Melin et al., “Study of Reactive Power Compensation Capabilities and LC Filter Design for a Three-Phase Current-Source STATCOM,” in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), 2018, pp. 1–5. https://doi.org/10.1109/ica-acca.2018.8609717; W. Rohouma, R. S. Balog, A. A. Peerzada, and M. M. Begovic, “Reactive Power Compensation of Time-Varying Load Using Capacitor-less D-STATCOM,” in 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), 2019, pp. 2296–2301.; O. K. Shinde and V. R. S. V. B. Pulavarthi, “STATCOM converters and control: A review,” in 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), 2017, pp. 145–151. https://doi.org/10.1109/icdmai.2017.8073500; A. K. Koshti and M. N. Rao, “A brief review on multilevel inverter topologies,” in 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), 2017, pp. 187–193. https://doi.org/10.1109/icdmai.2017.8073508; P. Chaudhari et al., “Design and implementation of STATCOM for reactive power compensation and voltage fluctuation mitigation in microgrid,” in 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015, pp. 1–5. https://doi.org/10.1109/spices.2015.7091541; M. T. L. Gayatri, Alivelu. M. Parimi, and A. V. Pavan Kumar, “A review of reactive power compensation techniques in microgrids,” Renew. Sustain. Energy Rev., vol. 81, pp. 1030–1036, Jan. 2018. https://doi.org/10.1016/j.rser.2017.08.006; E. T. McAdams, A. Lackermeier, J. A. McLaughlin, D. Macken, and J. Jossinet, “The linear and non-linear electrical properties of the electrode-electrolyte interface,” Biosens. Bioelectron., vol. 10, no. 1, pp. 67–74, 1995. https://doi.org/10.1016/0956-5663(95)96795-z; C. S. Lim, K. H. Teoh, C.-W. Liew, and S. Ramesh, “Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)–lithium perchlorate based polymer electrolyte incorporated with TiO2,” Mater. Chem. Phys., vol. 143, no. 2, pp. 661–667, 2014. https://doi.org/10.1016/j.matchemphys.2013.09.051; L. A. Geddes, “Historical evolution of circuit models for the electrode-electrolyte interface,” Ann. Biomed. Eng., vol. 25, no. 1, p. 1, Jan. 1997.; C. C. Dubilier, "Aluminum Electrolytic Capacitor Application Guide". https://www.cde.com/resources/catalogs/AEappGUIDE.pdf; S. Lin et al., “Robust Optimal Allocation of Decentralized Reactive Power Compensation in Three-Phase Four-Wire Low-Voltage Distribution Networks Considering the Uncertainty of Photovoltaic Generation,” Energies, vol. 12, no. 13, p. 2479, Jan. 2019.; A. Angulo, F. Martínez, y G. López, “Almacenamiento de energía usando ultracondensadores en sistemas fotovoltaicos autónomos”, Visión electrónica, vol. 11, no. 1, pp. 30-39, jun. 2017. https://doi.org/10.14483/22484728.12875; https://revistas.udistrital.edu.co/index.php/vinculos/article/view/15752

  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Dissertation/ Thesis

    المؤلفون: Perez Atehortua, David Steven

    المساهمون: Ramos López, Gustavo, De Oliveira De Jesus, Paulo Manuel, Celeita Rodríguez, David Felipe, Facultad de Ingeniería

    مصطلحات موضوعية: Gestion de activos, Capacitores, Ingeniería

    وصف الملف: 20 páginas; application/pdf

    Relation: T. Joseph, C. E. Ugalde-Loo, J. Liang y P. F. Coventry, “Asset Management Strategies for Power Electronic Converters in Transmission Networks: Application to HVDC and FACTS Devices,” IEEE Access, vol. 6, p´ags. 20036-20048, abr. de 2018. doi:10.1109/ACCESS.2018.2826360.; S. Peyghami y F. Blaabjerg, “Power Routing: Active Asset Management in Power Electronics Systems,” IEEE Transactions on Industry Applications, vol. 58, n.o 5, p´ags. 5026-5036, sep. de 2022. doi:10.1109/TIA.2022.3189329.; Cired, Incorporating Asset Management Into Power System Operations, [http://cired.net/publications/cired2017/pdfs/CIRED2017_0649_final.pdf].; “Asset Management- an Anatomy,” Institute of Asset Management, vol. 3, dic. de 2015, Version 3.; H. Soliman, H. Wang y F. Blaabjerg, “A Review of the Condition Monitoring of Capacitors in Power Electronic Converters,” IEEE Transactions on Industry Applications, vol. 52, p´ags. 1-1, nov. de 2016. doi:10.1109/TIA.2016.2591906.; A.P. Purnomoadi, “Asset Health Index and Risk Assessment Models for High Voltage Gas-Insulated Switchgear Operating in Tropical Environment,” Tesis doct., TU Delft Repositories, ene. de 2020. dirección: https://repository.tudelft.nl/islandora/object/uuid:bf8410bb-4d4f-4c6f91a2-394d3760f1a7.; Power supply failure survey part II, Online, Accessed: 2024-06-23. dirección: http://www.rsonline.com/designspark/electronics/knowledge-item/power-supply-failure-surveypart-ii.; H. Wang y F. Blaabjerg, “Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview,” IEEE Transactions on Industry Applications, vol. 50, p´ags. 479-490, 2014. doi:10.1109/TIA.2014.2308357. direcci´on: https://typeset.io/papers/reliabilityof-capacitors-for-dc-link-applications-in-power-2b0em1025t.; J.-H. Kim, K.-R. Kim, C.-Y. Oh, J.-P. Lee y T.-J. Kim, “Review of Failure Mechanism of Film capacitors for DC-Link Applications in Power Electronic Converters,” KIEE International Transactions on Electrical Machinery and Energy Conversion Systems, vol. 19, pags. 12-22, 2019. dirección: https://typeset.io/papers/review-of-failure-mechanism-of-film-capacitors-for-dclink-8649r8h70h.; D. Zhou, H. Wang, F. Blaabjerg, S. K. Kaer y D. Blom-Hansen, “Degradation effect on reliability evaluation of aluminum electrolytic capacitor in backup power converter,” en IEEE International Future Energy Electronics Conference and ECCE Asia, 2017, págs. 1343-1348. doi:10.1109/IFEEC. 2017.7992443. dirección: https://typeset.io/papers/degradation-effect-on-reliabilityevaluation-of-aluminum-53utyifhau?t.; H. Shen, F. Blaabjerg y H. Wang, “Failure Modes and Mechanisms of Metallized Polypropylene Film Capacitors in Power Electronics Applications,” Microelectronics Reliability, vol. 52, n.o 7, p´ags. 1253-1258, 2012, Discusses failure modes of MPPF capacitors in power electronics.; S. Ma, H. Wang, J. Tang, G. Zhu y H. Wang, “Lifetime estimation of DC-link capacitors in a single phase converter with an integrated active power decoupling module,” p´ags. 6824-6829, oct. de 2016. doi:10.1109/IECON.2016.7793498.; D. Ronanki y S. S. Williamson, “Health Monitoring Scheme for Submodule Capacitors in Modular Multilevel Converter Utilizing Capacitor Voltage Fluctuations,” en IECON 2018- 44th Annual Conference of the IEEE Industrial Electronics Society, 2018, págs. 2068-2073. doi:10.1109/IECON. 2018.8591310.; A. Ghamdi, J. Muthusamy, R. Bachega y R. Marshall, “Thyristor Quardri Valve Fire Incident: A Case Study at GCCIA Al Fadhili HVDC Station,” en GCC CIGRE 2021 E-Conference & Exhibition, Grid of the Future Symposium, 2018, GCCIA, Saudi Arabia y DNV, the Netherlands, 2021. dirección: http://www.cigre.org.; CIGRE Working Group, “Fire Aspects of HVDC Thyristor Valves and Valve Halls,” CIGRE, inf. t´ ec., 1999. direcci´on: https://cigreindia.org/CIGRE%20Lib/Tech.%20Brochure/136%20% 20Fire%20aspects%20of%20HVDC%20thyristor%20valves%20and%20valve%20halls.pdf.; L. Utilities, “Substation Maintenance Procedure- #SMP 400.06.2,” Liberty Utilities, inf. t´ec., 2018, Version 1.1. [17] R. F. Rondon Ivan Calanche Victor, “Metodolog´ ıa para estimar la vida ´ util del autotransformador at-4, 700 mva de la subestación guayana debido a sobrecargas,” p´ags. 57-67, 2013.; M. El-Husseini, P. Venet, G. Rojat y M. Fathallah, “Effect of the geometry on the aging of metalized polypropylene film capacitors,” en 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), vol. 4, 2001, 2061-2066 vol. 4. doi:10.1109/PESC.2001.954424.; H. Zhou, S. Zhang, J. Peng et al., “Informer: Beyond Efficient Transformer for Long Sequence Time Series Forecasting,” en The Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, vol. 35, AAAI Press, 2021, págs. 11106-11115.; T. Hastie, R. Tibshirani y J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Series in Statistics), 2.a ed. Springer New York, NY, 2009, isbn: 978-0-387-84857-0. doi:10.1007/978-0-387-84858-7. dirección: https://link.springer.com/ book/10.1007/978-0-387-84858-7; https://hdl.handle.net/1992/74529; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  16. 16
    Dissertation/ Thesis
  17. 17
    Conference
  18. 18
    Academic Journal

    المصدر: Ingeniería; Vol. 25 No. 3 (2020): September - December; 334-354 ; Ingeniería; Vol. 25 Núm. 3 (2020): Septiembre - Diciembre; 334-354 ; 2344-8393 ; 0121-750X

    وصف الملف: text/xml; application/pdf

    Relation: https://revistas.udistrital.edu.co/index.php/reving/article/view/16925/17274; https://revistas.udistrital.edu.co/index.php/reving/article/view/16925/16084; J. F. Franco, M. J. Rider, M. Lavorato, and R. Romero, “A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems”, Int. J. Elec. Pow. E. Sys., vol. 48, no. 1, pp. 123-130, 2013, https://doi.org/10.1016/j.ijepes.2012.11.027 [2] R. A. Gallego, A. J. Monticelli, and R. Romero, “Optimal capacitor placement in radial distribution networks”, IEEE Transac. Pow. Sys., vol. 16, no. 4, pp. 630-637, 2001, https://doi.org/10.1109/59.962407 [3] W. H. Kersting, Distribution System Modelling and Analysis, Boca Raton, FL, USA: CRC press, 2001. [4] M. J. Rider, A. V. Garcia, and R. Romero. Transmission system expansion planning by a branch-and-bound algorithm, IET Gen. Trans. Dist., vol, 2, no. 1, pp. 90-99, 2008, https://doi.org/10.1049/iet-gtd:20070090 [5] S. Binato, M. V. F. Pereira, and S. Granville, “A New Benders Decomposition Approach to Solve Power Transmission Network Design Problems”, IEEE Transac. Pow. Sys., vol. 16, no. 2, pp. 235-240, 2001, https://doi.org/10.1109/59.918292 [6] G. Levitin, A. Kalyuzhny, A. Shenkman, and M. Chertkov, “Optimal capacitor allocation in distribution systems using a genetic algorithm and a fast energy loss computation technique”, IEEE Transac. Pow. Del., vol. 15, no. 2, pp. 623-628, 2000, https://doi.org/10.1109/61.852995 [7] M. Ayoubi, R. A. Hooshmand, and M. Torabian Esfahani, “Optimal capacitor placement in distorted distribution systems considering resonance constraint using multi-swarm particle swarm optimisation algorithm”, IET Gen. Trans. Dist., vol. 11, no. 13, 3210-3221, 2017, https://doi.org/10.1049/iet-gtd.2016.0989 [8] H. S. Ramadan, A. F. Bendary, and S. Nagy, “Particle swarm optimization algorithm for capacitor allocation problem in distribution systems with wind turbine generators”, Int. J. Elec. Pow. E. Sys., vol. 84, supplement C, pp. 143-152, 2017, https://doi.org/10.1016/j.ijepes.2016.04.041 [9] R. Sirjani, A. Mohamed, and H. Shareef, “Optimal capacitor placement in a radial distribution system using Harmony Search algorithm”, J. App. Sc., vol. 10, no. 23, pp. 2998-3006, 2010, https://doi.org/10.3923/jas.2010.2998.3006 [10] C.-F. Chang, “Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm” IEEE Transac. Pow. Sys., vol. 23, no. 4, pp. 1747-1755, 2008, https://doi.org/10.1109/TPWRS.2008.2002169 [11] R. Annaluru, S. Das, and A. Pahwa, “Multi-level ant colony algorithm for optimal placement of capacitors in distribution systems”, Pro. 2004 Con. Evol. Comp. (IEEE Cat. No.04TH8753), vol. 2, pp. 1932-1937, 2004, https://doi.org/10.1109/CEC.2004.1331132 [12] Y.-T. Hsiao, Ch.-H. Chen, and Ch.-Ch. Chien, “Optimal capacitor placement in distribution systems using a combination fuzzy-GA method”, Int. J. Elec. Pow. E. Sys., vol. 26, pp. 501-508, 2004, https://doi.org/10.1016/j.ijepes.2004.01.002 [13] A. A. El-Fergany and A. Y. Abdelaziz, “Capacitor allocations in radial distribution networks using cuckoo search algorithm”, IET Gen. Trans. Dist., vol. 8, no. 2, pp. 223-232, 2014, https://doi.org/10.1049/iet-gtd.2013.0290 [14] Sh. J. Huang, “An immune-based optimization method to capacitor placement in a radial distribution system”, IEEE Transac. Pow. Del., vol. 15, no. 2, pp.744-749, 2000, https://doi.org/10.1109/61.853014 [15] S. Sultana and P. K. Roy, “Optimal capacitor placement in radial distribution systems using teaching learning based optimization”, Int. J. Elec. Pow. E. Sys., vol. 54, pp. 387-398, 2014, https://doi.org/10.1016/j.ijepes.2013.07.011. [16] S. Civanlar and J. J. Grainger, “Volt/Var Control on Distribution Systems with Lateral Branches Using Shunt Capacitors and Voltage Regulators Part I: The Overall Problem”, IEEE Transac. Pow. App. and Sys., vol. PAS-104, no. 11, pp. 3278-3283, 1985, https://doi.org/10.1109/TPAS.1985.318842. [17] S. Civanlar and J. J. Grainger, “Volt/var control on distribution systems with lateral branches using shunt capacitors and voltage regulators part II: The solution method”, IEEE Transac. Pow. App. and Sys., vol. PAS-104, no. 11 3284-3290, 1985, https://doi.org/10.1109/TPAS.1985.318843. [18] S. Civanlar and J. J. Grainger, “Volt/Var Control on Distribution Systems with Lateral Branches Using Shunt Capacitors and Voltage Regulators Part III: The Numerical Results”, IEEE Transac. Pow. App. and Sys., vol. PAS-104, no. 11, pp. 3291-3297, 1985, https://doi.org/10.1109/TPAS.1985.318844. [19] J. Sugimoto, R. Yokoyama, Y. Fukuyama, V. V. R. Silva, and H. Sasaki, “Coordinated allocation and control of voltage regulators based on reactive tabu search”, in 2005 IEEE Russia Pow. Tech., pp. 1-6, 2005, https://doi.org/10.1109/PTC.2005.4524739. [20] G. Carpinelli, C. Noce, D. Proto, and P. Varilone, “Voltage regulators and capacitor placement in three-phase distribution systems with non-linear and unbalanced loads”, Int. J. of Emer. Elec. Pow. Sys., vol. 7, no. 4, 2006, https://doi.org/10.2202/1553-779X.1353. [21] E. Pereira Madruga and L. Neves Canha, “Allocation and integrated configuration of capacitor banks and voltage regulators considering multi-objective variables in smart grid distribution system”, in 2010 9th IEEE/IAS Int. Con. Ind. App., INDUSCON 2010, pp. 1-6, 2010, https://doi.org/10.1109/INDUSCON.2010.5740055. [22] B. A. de Souza and A. M. F. de Almeida, “Multiobjective optimization and fuzzy logic applied to planning of the volt/var problem in distributions systems”, IEEE Transac. Pow. Sys., vol. 25, no. 3, pp. 1274-1281, 2010, https://doi.org/10.1109/TPWRS.2010.2042734. [23] I. Szuvovivski, T. S. P. Fernandes, and A. R. Aoki, “Simultaneous allocation of capacitors and voltage regulators at distribution networks using Genetic Algorithms and Optimal Power Flow”, Int. J. Elec. Pow. E. Sys., vol. 40, no. 1, pp. 62-69, 2012, https://doi.org/10.1016/j.ijepes.2012.02.006. [24] N. Khalesi, N. Rezaei, and M.-R. Haghifam, “DG allocation with application of dynamic programming for los reduction and reliability improvement”, Int. J. Elec. Pow. E. Sys., vol. 33, no. 2, pp. 288- 295, 2011, https://doi.org/10.1016/j.ijepes.2010.08.024. [25] L. F. Ochoa and G. P. Harrison, “Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed generation”, IEEE Transac. Pow. Sys., vol. 26, no. 1, pp. 198-205, 2011, https://doi.org/10.1109/TPWRS.2010.2049036. [26] M. J. Rider, J. M. Lopez-Lezama, J. Contreras, and A. Padilha-Feltrin, “Bilevel approach for optimal location and contract pricing of distributed generation in radial distribution systems using mixed-integer linear programming”, IET Gen. Trans. Dist., vol. 7, no. 7, pp. 724-734, 2013, https://doi.org/10.1049/iet-gtd.2012.0369. [27] Q. Kang, T. Lan, Y. Yan, L. Wang, and Q. Wu, “Group search optimizer based optimal location and capacity of distributed generations”, Neurocomputing, vol. 78, no. 1, pp. 55-63, 2012, https://doi.org/10.1016/j.neucom.2011.05.030. [28] N.-C. Yang and T.-H. Chen, “Evaluation of maximum allowable capacity of distributed generations connected to a distribution grid by dual genetic algorithm”, En. Build., vol. 43, no. 11, pp. 3044-3052, 2011, https://doi.org/10.1016/j.enbuild.2011.07.025. [29] F. S. Abu-Mouti and M. E. El-Hawary, “Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm”, IEEE Transac. Pow. Del., vol. 26, no. 4, pp. 2090-2101, 2011, https://doi.org/10.1109/TPWRD.2011.2158246. [30] M. Junjie, W. Yulong, and L. Yang, “Size and location of distributed generation in distribution system based on immune algorithm”, Sys. Eng. Proc., vol. 4, pp. 124-132, 2012, https://doi.org/10.1016/j.sepro.2011.11.057. [31] S. Saha and V. Mukherjee, “Optimal placement and sizing of dgs in rds using chaos embedded sos algorithm”, IET Gen. Trans. Dist., vol. 10, no. 14, pp. 3671-3680, 2016, https://doi.org/10.1049/iet-gtd.2016.0151. [32] A. F. Pérez Posada, J. G. Villegas, and J. M. López-Lezama, “A Scatter Search Heuristic for the Optimal Location, Sizing and Contract Pricing of Distributed Generation in Electric Distribution Systems”, Energies, vol. 10, no. 10, pp. 1449, 2017, https://doi.org/10.3390/en10101449. [33] B. R. Pereira, G. R. M. da Costa, J. Contreras, and J. R. S. Mantovani, “Optimal distributed generation and reactive power allocation in electrical distribution systems”, IEEE Transac. Sust. En., vol. 7, no. 3, pp. 975-984, 2016, https://doi.org/10.1109/TSTE.2015.2512819. [34] M. Pesaran H. A., P. Dang Huy, and V. K. Ramachandaramurthy, “A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms”, Renew. Sust. En. Rev., vol. 75, supplement C, pp. 293-312, 2017, https://doi.org/10.1016/j.rser.2016.10.071. [35] K. Suvarchala, T. Yuvaraj, and P. Balamurugan, “A brief review on optimal allocation of distributed generation in distribution network”, in 2018 4th Int. Con. on Elec. En. Sys. (ICEES), pp. 391-396, 2018, https://doi.org/10.1109/ICEES.2018.8443294. [36] S. P. Singh and A. R. Rao “Optimal allocation of capacitors in distribution systems using particle swarm optimization”, Int. J. Elec. Pow. E. Sys., vol. 43, no. 1, pp. 1267-1275, 2012, https://doi.org/10.1016/j.ijepes.2012.06.059. [37] D. Quoc Hung, N. Mithulananthan, and R. C. Bansal, “Analytical expressions for DG allocation in primary distribution networks”, IEEE Transac. En. Conv., vol. 25, no. 3, pp. 814-820, 2010, https://doi.org/10.1109/TEC.2010.2044414. [38] N. Acharya, P. Mahat, and N. Mithulananthan, “An analytical approach for dg allocation in primary distribution network”, Int. J. Elec. Pow. E. Sys., vol. 28, no. 10, pp. 669-678, 2006, https://doi.org/10.1016/j.ijepes.2006.02.013. [39] F. Rotaru, G. Chicco, G. Grigoras, and G. Cartina, “Two-stage distributed generation optimal sizing with clustering-based node selection”, Int. J. Elec. Pow. E. Sys., vol. 40, no. 1, pp. 120-129, 2012, https://doi.org/10.1016/j.ijepes.2012.02.012. [40] J. Tu, Y. Xu, and Z. Yin, “Data-Driven Kernel Extreme Learning Machine Method for the Location and Capacity Planning of Distributed Generation”, Energies, vol. 12, no. 1, pp. 109, 2019, https://doi.org/10.3390/en12010109. [41] C. S. Cheng and D. Shirmohammadi, “A three-phase power flow method for real-time distribution system analysis”, IEEE Transac. Pow. Sys., vol. 10, no. 2, pp. 671-679, 1995, https://doi.org/10.1109/59.387902. [42] M. E. Baran and F. F. Wu, “Optimal sizing of capacitors placed on a radial distribution system”, IEEE Transac. Pow. Del., vol. 4, no. 1, pp. 735-743, 1989, https://doi.org/10.1109/61.19266. [43] Y.-C. Huang, H.-T. Yang, and C.-L. Huang, “Solving the capacitor placement problem in a radial distribution system using Tabu Search approach”, IEEE Transac. Pow. Sys., vol. 11, no. 4, pp. 1868-1873, 1996, https://doi.org/10.1109/59.544656.; https://revistas.udistrital.edu.co/index.php/reving/article/view/16925

  19. 19
  20. 20
    Academic Journal