يعرض 1 - 20 نتائج من 684 نتيجة بحث عن '"Canopy reflectance"', وقت الاستعلام: 0.84s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المؤلفون: Karakoç, Ahmet, Karabulut, Murat

    المصدر: Mediterranean Botany; Vol. 45 No. 2 (2024); e85161 ; Mediterranean Botany; Vol. 45 Núm. 2 (2024); e85161 ; 2603-9109

    وصف الملف: application/pdf

    Relation: https://revistas.ucm.es/index.php/MBOT/article/view/81561/4564456566947; Andrade, B.O., Koch, C., Boldrini, I.I., Vélez-Martin, E., Hasenack, H., Hermann, J.M., Kollmann, J., Pillar, V.D. & Overbeck, G.E. 2015. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Natureza & Conservação 13(2): 95–104. doi:10.1016/j.ncon.2015.08.002; Apostolova, I., Dengler, J., Di Pietro, R., Gavilán, R.G. & Tsiripidis, I. 2014. Dry grasslands of Southern Europe: syntaxonomy, management and conservation. Hacquetia 13(1): 1–14. doi:10.2478/hacq-2014-0015; Atalay, I., Efe, R. & Öztürk, M. 2014. Effects of topography and climate on the ecology of Taurus mountains in the Mediterranean region of Turkey. Procedia Soc. Behav. Sci. 120: 142–156. doi:10.1016/j.sbspro.2014.02.091; Bangira, T., Mutanga, O., Sibanda, M., Dube, T & Mabhaudhi, T. 2023. Remote Sensing Grassland Productivity Attributes: A Systematic Review Remote Sens. 15(8): 2043. doi:10.3390/rs15082043; Bellini, E., Moriondo, M., Dibari, C., Leolini, L., Staglianò, N., Stendardi, L., Filippa, G., Galvagno, M. & Argenti, G. 2023. Impacts of Climate Change on European Grassland Phenology: A 20-Year Analysis of MODIS Satellite Data. Remote Sens. 15(1): 218. doi:10.3390/rs15010218; Blair, J., Nippert, J. & Briggs, J. 2014. Grassland Ecology. In: Monson, R.K. (Ed.). Ecology and the Environment; The Plant Sciences 8, Chapter 14. Pp. 389–423. Springer, New York.; Bora, Z., Xu, X., Angassa, A., Wang, Y. & Zhao, Y. 2020. Do herbaceous species functional groups have a uniform pattern along an elevation gradient? The case of a semi-arid savanna grasslands in Southern Ethiopia. International Int. J. Environ. Res. Public Health 17(8): 2817. doi:10.3390/ijerph17082817; Buschman, C. & Nagel, E. 1993. In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation. Int. J. Remote Sens. 14: 711–722. doi:10.1080/01431169308904370; Chai, T. & Draxler, R.R. 2014. Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3): 1247–1250. doi:10.5194/gmd-7-1247-2014; Chang-Hua, J.U., Tian, Y., Yao, X., Cao, W., Zhu, Y. & Hannaway, D. 2010. Estimating Leaf Chlorophyll Content Using Red Edge Parameters. Pedosphere 20–25.doi: 1016/S10020160(10)60053-7; Cho, M.A., Skidmore, A.K., Corsi, F., van Wieren, S.E. & Sobhan, I. 2007. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. 9(4): 414–424. doi:10.1016/j.jag.2007.02.001; Colombo, R., Meroni, M., Marchesi, A., Busetto, L., Rossini, M., Giardino, C. & Panigada, C. 2008. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens. Environ. 112(4): 1820–1834. doi:10.1016/J.RSE.2007.09.005; Danson, F.M. & Bowyer, P. 2004. Estimating live fuel moisture content from remotely sensed reflectance. Remote Sens. Environ. 92(3): 309–321. doi:10.3390/rs11131575; Darvishzadeh, R. 2008. Hyperspectral remote sensing of vegetation parameters using statistical and physical models. PhD Thesis. International Institute for Geo-information Science and Earth Observation (ITC), Enschede.; Dechimo Jr, A.A. & Buot Jr, I.E. 2023. Biophysical assessment of the plant biodiversity of Northern Negros Natural Park, Negros Island, Philippines. Biodiversitas 24(1). doi:10.13057/biodiv/d240167; Dong, S., Shang, Z., Gao, J. & Boone, R.B. 2020. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agr. Ecosyst. Environ. 287: 106684. doi:10.1016/j.agee.2019.106684; Doygun, H., Zülkadiroğlu, D. & Ekşi, I. 2021. Başkonuş Mesire Yeri’nden (Kahramanmaraş) Sağlanan Ekosistem Hizmetlerine Yönelik Algının İncelenmesi. Çukurova Tarım ve Gıda Bilimleri Dergisi 36(2): 219–230. doi:10.36846/CJAFS.2021.50; Fan, L., Wigneron, J.P., Xiao, Q., Al-Yaari, A., Wen, J., Martin-StPaul, N., Dupuy, J.L, Pimont, F., Al Bitar, A., Fernandez-Moran, R. & Kerr, Y.H. 2018. Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sens. Environ. 205: 210–223. doi:10.1016/j.rse.2017.11.020; Feng, S., Qiu, J., Crow, W.T., Mo, X., Liu, S., Wang, S., Gao, L., Wang, X. & Chen, S. 2023. Improved estimation of vegetation water content and its impact on L-band soil moisture retrieval over cropland. J. Hydrol. 617: 129015. doi:10.1016/j.jhydrol.2022.129015; Frank, T., Smith, A., Houston, B., Yang, X. & Guo, X. 2022. Estimating Biophysical Parameters of Native Grasslands Using Spectral Data Derived from Close Range Hyperspectral and Satellite Data. Can. J. Remote Sens. 48(5): 633–648. doi:10.1080/07038992.2022.2088486; Gao, Z., Wang, Q., Cao, X. & Gao, W. 2014. The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing. Gisci. Remote Sens. 51(1): 1–16. doi:10.1080/15481603.2014.882564; García-Haro, F.J., Campos-Taberner, M., Moreno, Á., Tagesson, H.T., Camacho, F., Martínez, B., Sánchez, S., Piles, M., Camps-Valls, G., Yebra, M. & Gilabert, M.A. 2020. A global canopy water content product from AVHRR/Metop. ISPRS. J. Photogramm. 162: 77–93. doi:10.1016/j.isprsjprs.2020.02.007; Gavilán, R.G., Díez-Monsalve, E., Izquierdo, J.L., Gutiérrez-Girón, A., Fernández-González, F. & Sánchez-Mata, D. 2012. An approach towards the knowledge of Iberian high-mountain calcareous grasslands. Lazaroa 33: 43–50. doi:10.5209/rev_LAZA.2012.v33.40285; Genceli, M. 2007. Kolmogorov-Smirnov, Lilliefors and Shapiro-Wilk tests for normality. Sigma Journal of Engineering and Natural Sciences 25(4): 306–328.; Grašič, M., Šabić, A. & Lukač, B. 2023. A review of methodology for grassland restoration and management with practical examples. Acta Biologica Slovenica 66(1): 52–77. doi:10.14720/abs.66.1.13230; Guo, X., Price, K.P. & Stiles, J.M. 2000. Modeling biophysical factors for grasslands in eastern Kansas using Landsat TM data. Transactions of the Kansas Academy of Science 103(3–4): 122–138. doi:10.2307/3628261; Guo, X., Zhang, C., Wilmshurst, J.F. & Sissons, R. 2005. Monitoring grassland health with remote sensing approaches. In: Noble, B.F., Martz, D.J.F. & Aitken, A.E. (Eds.). Prairie Perspectives: Geographical Essays, vol. 8. Pp. 11–22. Department of Geography, University of Saskatchewan, Saskatoon.; Gutiérrez-Girón, A. & Gavilán, R.G. 2013. Plant functional strategies and environmental constraints in Mediterranean high mountain grasslands in central Spain. Plant Ecol. Divers. 6(3–4): 435–446. doi:10.1080/17550874.2013.783641; Habel, J.C., Dengler, J., Janišová, M., Török, P., Wellstein, C. & Wiezik, M. 2013. European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22: 2131–2138. doi:10.1007/s10531-013-0537-x; He, Y. & Mui, A. 2010. Scaling up semi-arid grassland biochemical content from the leaf to the canopy level: challenges and opportunities. Sensors-Basel. 10: 11072–11087. doi:10.3390/ s101211072; He, Y. 2008. Modeling grassland productivity through remote sensing products. PhD Thesis. University of Saskatchewan, Saskatoon.; He, Y., Guo, X. & Wilmshurst, J.F. 2006. Studying mixed grassland ecosystems I: suitable hyperspectral vegetation indices. Can. J. Remote Sens. 32(2): 98–107. doi:10.5589/m06-009; He, Y., Guo, X. & Wilmshurst, J.F. 2009. Reflectance measures of grassland biophysical structure. Int. J. Remote Sens. 30(10): 2509–2521. doi:10.1080/01431160802552751; He, Y., Yang, J. & Guo, X. 2020. Green vegetation cover dynamics in a heterogeneous grassland: spectral unmixing of Landsat time series from 1999 to 2014. Remote Sens. 12: 3826. doi:10.3390/rs12223826; Iqbal, N., Mumtaz, R., Shafi, U. & Zaidi, S.M.H. 2021. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms. PeerJ 7: e536. doi:10.7717/peerj-cs.536; Jackson, T.J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P. & Hunt, E.R. 2004. Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybean. Remote Sens. Environ. 92(4): 475–482. doi:10.1016/j.rse.2003.10.021; Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C. & Ustin, S.L. 2009. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 113: 56–66. doi:10.1016/j.rse.2008.01.026; Jiang, H., Yao, M., Guo, J., Zhang, Z., Wu, W. & Mao, Z. 2022. Vegetation monitoring of protected areas in rugged mountains using an improved Shadow-Eliminated Vegetation Index (SEVI). Remote Sens. 14(4): 882. doi:10.3390/rs14040882; Jiang, Z., Huete, A.R., Li, J. & Chen, Y. 2006. An analysis of angle-based with ratio-based vegetation indices. IEEE T. Geosci. Remote 44(9): 2506–2513. doi:10.1109/TGRS.2006.873205; Jin, Y., Yang, X., Qiu, J., Li, J., Gao, T., Wu, Q., Zhao, F., Ma, H., Yu, H. & Xu, B. 2014. Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, northern China. Remote Sens. 6: 1496–1513. doi:10.3390/rs6021496; Karabörk, M. 2019. Başkonuş Dağının koruma kriterlerine göre değerlendirilmesi ve biyosfer rezervi açısından araştırılması. MA Thesis. Kahramanmaraş Sütçü İmam Universty, Institute of Social Sciences. Kahramanmaraş, Turkey.; Karabulut, M. 2018. An examination of spectral reflectance properties of some wetland plants in Göksu Delta, Turkey. J. Int. Environ. Appl. Sci. 13(4): 194–203.; Karakoç, A. & Karabulut, M. 2017. Otlaklarda kanopi nem içeriği tahmininde uygun vejetasyon indekslerinin belirlenmesi. Proceedings of the 3rd International Symposium on Social Science. Pp. 237–237. Kahramanmaraş.; Karakoç, A. & Karabulut, M. 2019. Ratio-based vegetation indices for biomass estimation depending on grassland characteristics. Turk. J. Bot. 43: 619–633. doi:10.3906/bot-1902-50; Karakoç, A. & Karabulut, M. 2021. Estimating grassland chlorophyll content at canopy scales using hyperspectral vegetation indices. J Geog. 43: 77–91. doi:10.26650/JGEOG2021-865289; Karakoç, A. 2019. Otlaklardaki Biyofiziksel Ve Biyokimyasal Özelliklerin Hiperspektral Uzaktan Algilama Verileri İle İncelenmesi. PhD Thesis. Kahramanmaraş Sütçü İmam Universty, Institute of Social Sciences, Kahramanmaraş.; Kim, H.Y. 2013. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry and Endodontics 38(1): 52–54. doi:10.5395/rde.2013.38.1.52; Kowalski, K., Okujeni, A. & Hostert, P. 2023. A generalized framework for drought monitoring across Central European grassland gradients with Sentinel-2 time series. Remote Sens. Environ. 286: 113449. doi:10.1016/j.rse.2022.113449; Kycko, M., Zagajewski, B., Lavender, S. & Dabija, A. 2019. In situ hyperspectral remote sensing for monitoring of alpine trampled and recultivated species. Remote Sens. 11(11), 1296. doi:10.3390/rs11111296; Le Vine, D.M. & Karam, M.A. 1996. Dependence of attenuation in a vegetation canopy on frequency and plant water content. IEEE T. Geosci. Remote 34(5): 1090–1096. doi:10.1109/36.536525; Lei, J., Yang, W. & Yang, X. 2023. Estimation and Mapping of Aboveground Vegetation Water Storage in Jiuzhaigou Nature Reserve Using Sentinel Imagery. Pol. J. Environ. Stud. 32(1): 599–608. doi:10.15244/pjoes/155052; Liang, S. 2004. Quantitative Remote Sensing of Land Surfaces, vol. 30. John Wiley & Sons, Hoboken.; Lillesand, T.M. & Kiefer, R.W. 1994. Remote Sensing and Image Interpretation John Wiley & Sons, Toronto.; Liu, L., Zhang, S. & Zhang, B. 2016. Evaluation of hyperspectral indices for retrieval of canopy equivalent water thickness and gravimetric water content. Int. J. Remote Sens. 37(14): 3384–3399. doi:10.1080/01431161.2016.1199083; Lu, B., He, Y. & Liu, H.H. 2018. Mapping vegetation biophysical and biochemical properties using unmanned aerial vehicles-acquired imagery. Int. J. Remote Sens. 39(15–16): 5265–5287. doi:10.1080/01431161.2017.1363441; Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H. & Rao, Y.S. 2020. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 247: 111954. doi:10.1016/j.rse.2020.111954; Meiyan, S., Qizhou, D., ShuaiPeng, F., Xiaohong, Y., Jinyu, Z., Lei, M., Baoguo, L. & Yuntao, M. 2022. Improved estimation of canopy water status in maize using UAV-based digital and hyperspectral images. Comput. Electron. Agr. 197: 106982. doi:10.1016/j.compag.2022.106982; Mendiguren, G., Pilar Martín, M., Nieto, H., Pacheco-Labrador, J. & Jurdao, S. 2015. Seasonal variation in grass water content estimated from proximal sensing and MODIS time series in a Mediterranean fluxnet site. Biogeosciences 12(18): 5523–5535. doi:10.5194/bg-12-5523-2015; Mistele, B. & Schmidhalter, U. 2010. Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total nitrogen in winter wheat. Agron. J. 102(2): 499–506. doi:10.2134/agronj2009.0282; Montalvo, J., Casado, M.A., Levassor, C. & Pineda, F.D. 1993. Species diversity patterns in Mediterranean grasslands. J. Veg. Sci. 4(2): 213–222. doi:10.2307/3236107; Monteiro, L., Machado, N., Martins, E., Pougy, N., Verdi, M., Martinelli, G. & Loyola, R. 2018. Conservation priorities for the threatened flora of mountaintop grasslands in Brazil. Flora 238: 234–243. doi:10.1016/j.flora.2017.03.007; Mutanga, O., Masenyama, A. & Sibanda, M. 2023. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens. 198: 297–309. doi:10.1016/j.isprsjprs.2023.03.010; Olmeda, C., Šefferová, V., Underwood, E., Millan, L., Gil, T. & Naumann, S. (compilers). 2019. EU Action plan to maintain and restore to favourable conservation status the habitat type 6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (*important orchid sites). European Commission Technical Report, Brussels.; Peddle, D.R., White, H.P., Soffer, R.J., Miller, J.R. & Ledrew, E.F. 2001. Reflectance processing of remote sensing spectroradiometer data. Comput. Geosci. 27: 203–213. doi:10.1016/S0098-3004(00)00096-0; Peng, Y., Chen, H.Y. & Yang, Y. 2020. Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Funct. Ecol. 34(9): 1979–1990. doi:10.1111/1365-2435.13622; Pescador, D.S., de Bello, F., Valladares, F. & Escudero, A. 2015. Plant trait variation along an altitudinal gradient in Mediterranean high mountain grasslands: controlling the species turnover effect. PLoS One 10(3): e0118876. doi:10.1371/journal.pone.0118876; Prasad, B., Carver, B.F., Stone, M.L., Babar, M.A., Raun, W.R. & Klatt, A.R. 2007. Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under Great Plains conditions. Crop Sci. 47(4): 1426–1440. doi:10.2135/cropsci2006.07.0492; Tong, X., Duan, L., Liu, T., Yang, Z., Wang, Y. & Singh, V.P. 2023. Estimation of grassland aboveground biomass combining optimal derivative and raw reflectance vegetation indices at peak productive growth stage. Geocarto Int. 38(1): 2186497. doi:10.1080/10106049.2023.2186497; Quan, X., He, B., Li, X. & Tang, Z. 2015. Estimation of grassland live fuel moisture content from ratio of canopy water content and foliage dry biomass. IEEE Geosci. Remote. Sens. Lett. 12(9): 1903–1907. doi:10.1109/LGRS.2015.2437391; Ravi, J., Nigam, R., Bhattacharya, B.K., Desai, D. & Patel, P. 2022. Retrieval of crop biophysical-biochemical variables from airborne AVIRIS-NG data using hybrid inversion of PROSAIL-D. Adv. Space Res. doi:10.1016/j.asr.2022.11.047; Ren, H. & Zhou, G. 2019. Estimating green biomass ratio with remote sensing in arid grasslands. Ecol. Indic. 98: 568–574. doi:10.1016/j.ecolind.2018.11.043; Sibanda, M., Mutanga, O., Dube, T., Mothapo, M.C. & Mafongoya, P.L. 2019. Remote sensing equivalent water thickness of grass treated with different fertiliser regimes using resample HyspIRI and EnMAP data. Phys. Chem. Earth. Pt. A/B/C 112: 246–254. doi:10.1016/j.pce.2018.12.003; Solgi, S., Ahmadi, S.H. & Seidel, S.J. 2023. Remote sensing of canopy water status of the irrigated winter wheat fields and the paired anomaly analyses on the spectral vegetation indices and grain yields. Agr. Water Manage. 280: 108226. doi:10.1016/j.agwat.2023.108226; Varela, E. & Robles-Cruz, A.B. 2016. Ecosystem services and socio-economic benefits of Mediterranean grasslands. In: Kyriazopoulos, A.P. López-Francos, A., Porqueddu, C. & Sklavou P. (Eds.). Options Mediterranéennes: Serie A. Mediterranean Seminars 114: 13–27.; Varol, Ö. 2003. Flora of Başkonuş Mountain (Kahramanmaraş). Turk. J. Bot. 27(2): 117–139.; Vescovo, L., Wohlfahrt, G., Balzarolo, M., Pilloni, S., Sottocornola, M., Rodeghiero, M. & Gianelle, D. 2012. New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass. Int. J. Remote Sens. 33(7): 2178–2195. doi:10.1080/01431161.2011.607195; Vié, J.C., Hilton-Taylor, C. & Stuart, S.N. (Eds.). 2009. Wildlife in a changing world: an analysis of the 2008 IUCN Red List of threatened species. IUCN.; Wang, J., Xu, R. & Yang, S. 2009. Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions. Environ. Monit. Assess. 157: 459–469. doi:10.1007/s10661-008-0548-3; Wu, C. Y., Niu, Z., Tang, Q. & Huang, W. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agr. Forest Meteorol. 148(8–9): 1230–1241. doi:10.1016/j.agrformet.2008.03.005; Xie, Y., Sha, Z., Yu, M., Bai, Y. & Zhang, L. 2009. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 220(15): 1810–1818. doi:10.1016/j.ecolmodel.2009.04.025; Xu, D., An, D. & Guo, X. 2020. The impact of non-photosynthetic vegetation on LAI estimation by NDVI in mixed grassland. Remote Sens. 12(12): 1979. doi:10.3390/rs12121979; Xu, C., Qu, J.J., Hao, X., Cosh, M.H., Zhu, Z. & Gutenberg, L. 2020. Monitoring crop water content for corn and soybean fields through data fusion of MODIS and Landsat measurements in Iowa. Agr. Water Manage. 227: 105844. doi:10.1016/j.agwat.2019.105844; Xu, S., Rowntree, J., Borrelli, P., Hodbod, J. & Raven, M.R. 2019. Ecological health index: A short term monitoring method for land managers to assess grazing lands ecological health. Environments 6(6): 67. doi:10.3390/environments6060067; Yang, X. & Guo, X. 2014. Quantifying responses of spectral vegetation indices to dead materials in mixed grasslands. Remote Sens-Basel 6(5): 4289–4304. doi:10.3390/rs6054289; Yebra, M., Dennison, P.E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt Jr, E.R., Danson, M.F., Qi, Y. & Jurdao, S. 2013. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 136: 455–468. doi:10.1016/j.rse.2013.05.029; Yebra, M., Quan, X., Riaño, D., Larraondo, P.R., van Dijk, A.I. & Cary, G. J. 2018. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 212: 260–272. doi:10.1016/j.rse.2018.04.053; Yuan, Z., Tong, S., Bao, G., Chen, J., Yin, S., Li, F., Chula, S. & Bao, Y. 2023. Spatiotemporal variation of autumn phenology responses to preseason drought and temperature in alpine and temperate grasslands in China. Sci. Total Environ. 859: 160373. doi:10.1016/j.scitotenv.2022.160373; Zahid, A., Abbas, H.T., Ren, A., Zoha, A., Heidari, H., Shah, S.A., Imran, M.A., Alomainy, A. & Abbasi, Q.H. 2019. Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves. Plant Methods 15(1): 1–13. doi:10.1186/s13007-019 0522-9; Zhang, F. & Zhou, G. 2019. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 19: 1–12. doi:10.1186/s12898-019-0233-0; Zhao, F., Xu, B., Yang, X., Jin, Y., Li, J., Xia, L., Shi, C. & Ma, H. 2014. Remote sensing estimates of grassland aboveground biomass based on Modis net primary productivity (NPP): a case study in the Xilingol grassland of Northern China. Remote Sens-Basel 6(6): 5368–5386. doi:10.3390/rs6065368; Zhao, G. 2023. Trends in grassland science: Based on the shift analysis of research themes since the early 1900s. Fundamental Research 3(2): 201–208. doi:10.1016/j.fmre.2022.05.008; Zou, L., Tian, F., Liang, T., Eklundh, L., Tong, X., Tagesson, T., Dou, Y., He, T., Liang, S. & Fensholt, R. (2023). Assessing the upper elevational limits of vegetation growth in global high mountains. Remote Sens. Environ. 286: 113423. doi:10.1016/j.rse.2022.113423; https://revistas.ucm.es/index.php/MBOT/article/view/81561

  7. 7
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    المساهمون: Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), The Key Laboratory for Silviculture and Conservation of Ministry of Education, Nanjing Agricultural University (NAU), Fundamental Research Funds for the Central Universities2021ZY13National Natural Science Foundation of China (NSFC)42101329Open Fund of State Key Laboratory of Remote Sensing ScienceOFSLRSS202115

    المصدر: ISSN: 0378-4290 ; Field Crops Research ; https://hal.inrae.fr/hal-03634995 ; Field Crops Research, 2022, 283, pp.108538. ⟨10.1016/j.fcr.2022.108538⟩.

  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المصدر: Sustainability; Volume 14; Issue 15; Pages: 9039

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Environmental Sustainability and Applications; https://dx.doi.org/10.3390/su14159039

  19. 19
    Academic Journal
  20. 20
    Academic Journal

    المؤلفون: Guyue Hu, Ainong Li

    المصدر: Remote Sensing; Volume 14; Issue 8; Pages: 1821

    جغرافية الموضوع: agris

    وصف الملف: application/pdf

    Relation: Remote Sensing in Geology, Geomorphology and Hydrology; https://dx.doi.org/10.3390/rs14081821