يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"Cangussu, Alex Sander R."', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Revista de Ciencias Agrícolas; Vol 38 No 2 (2021): Revista de Ciencias Agrícolas - Second semester, July - December 2021; 157-174 ; Revista de Ciencias Agrícolas; Vol. 38 Núm. 2 (2021): Revista de Ciencias Agrícolas - Second semester, July - December 2021; 157-174 ; 2256-2273 ; 0120-0135

    وصف الملف: application/pdf; application/xml; image/jpeg

    Relation: https://revistas.udenar.edu.co/index.php/rfacia/article/view/6581/7828; https://revistas.udenar.edu.co/index.php/rfacia/article/view/6581/7858; https://revistas.udenar.edu.co/index.php/rfacia/article/view/6581/7859; https://revistas.udenar.edu.co/index.php/rfacia/article/view/6581/7860; Alves, G. G.; R. A. M. de Ávila; Chávez-Olórtegui, C. D.; Lobato, F. C. F. (2014). Clostridium perfringens epsilon toxin: The third most potent bacterial toxin known. Anaerobe. 30: 102-107. doi:10.1016/j.anaerobe.2014.08.016 Assis-Rodrigues, M.; Rodrigues-Sartori, S.; Santos-Totaro, P.; Pinto da Matta, S. (2019). Hystometric evaluation of nickel chronic exposure effects on large instestine of adult Wistar male rats. Revista de Ciencias Agrícolas. 36 (E): 21-30. doi:10.22267/rcia.1936E.103 Awad, M. M.; Bryant, A. E.; Stevens, D. L.; Rood, J. I. (1995). Virulence studies on chromosomal α‐toxin and Θ‐toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α‐toxin in Clostridium perfringens‐mediated gas gangrene. Molecular Microbiology. 15: 191-202. doi:10.1111/j.1365-2958.1995.tb02234.x Batah, J.; Kobeissy, H.; Pham, P. T. B.; Denève-Larrazet, C.; Kuehne, S.; Collignon, A.; Janoir-Jouveshomme, C.; Marvaud, J. C.; Kansau, I. (2017). Clostridium difficile flagella induce a pro-inflammatory response in intestinal epithelium of mice in cooperation with toxins. Scientific Reports. 7: 1-10. doi:10.1038/s41598-017-03621-z Borriello, S. P.; Carman, R. J. (1983). Association of iota-like toxin and Clostridium spiroforme with both spontaneous and antibiotic-associated diarrhea and colitis in rabbits. Journal of Clinical Microbiology. 17 (3): 414-418. doi: 0095-1137/83/030414-05$02.00/0 Brandi, I. V.; Mozzer, O. D.; Vander Jorge, E.; Passos, F. J. V.; Passos, F. M. L.; Cangussu, A. S. R.; Sobrinho, E. M. (2014). Growth conditions of clostridium perfringens type B for production of toxins used to obtain veterinary vaccines. Bioprocess and biosystems engineering. 37 (9): 1737-1742. doi:10.1007/s00449-014-1146-0 Brandi, I. V.; Santos, E. M. S.; de Carvalho, B. M. A.; Durães, C. A. F.; Farias, P. K. S.; Sari, R. S.; Junior, A. P. (2016). Total combining power: Technique for the evaluation of the quality control process of clostridiosis vaccines. Journal of microbiological methods. 130: 164-168. doi:10.1016/j.mimet.2016.08.023 Carman, R. J.; Borriello, S. P. (1984). Infectious nature of Clostridium spiroforme-mediated rabbit enterotoxaemia. Veterinary microbiology. 9 (5): 497-502. doi:10.1016/0378-1135(84)90070-1 Chakravorty, A.; Awad, M. M.; Hiscox, T. J.; Cheung, J. K.; Choo, J. M.; Lyras, D.; Rood, J. I. (2014). Opioid analgesics stop the development of clostridial gas gangrene. Journal of Infectious Diseases. 210: 483-492. doi:10.1093/infdis/jiu101 Diab, S. S.; Kinde, H.; Moore, J.; Shahriar, M. F.; Odani, J.; Anthenill, L.; Uzal, F. A. (2012). Pathology of Clostridium perfringens type C enterotoxemia in horses. Veterinary Pathology. 49 (2): 255-263. doi:10.1177/0300985811404710 Domenighini, M.; Rappuoli, R. (1996). Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Molecular Microbiology. 21: 667–674 doi:10.1046/j.1365-2958.1996.321396.x Felix, M. K. C.; Deusdará, T. T.; Santos, L. S. S.; Aguiar, R. W. S.; Corrêa, R. F. T.; Brandi, I. V.; Cangussu, A. S. R. (2019). Inactivated alpha toxin from Clostridium novyi type B in nano-emulsion protect partially protects Swiss mice from lethal alpha toxin challenge. Scientific reports. 9 (1): 1-9. doi:10.1038/s41598-019-50683-2 Ferrarezi, M. C.; Cardoso, T. C.; Dutra, I. S. (2008). Genotyping of Clostridium perfringens isolated from calves with neonatal diarrhea. Anaerobe. 14: 328-331. doi:10.1016/j.anaerobe.2008.12.001 Filho, E. J. F.; Carvalho, A. U.; Assis, R. A.; Lobato, F. F.; Rachid, M. A.; Carvalho, A. A.; Ferreira, P. M.; Nascimento, R. A.; Fernandes, A. A.; Vidal, J. E.; Uzal, F. A. (2009). Clinicopathologic features of experimental Clostridium perfringens type D enterotoxemia in cattle. Veterinary Pathology. 46: 1213-1220. doi:10.1354/vp.08-VP-0304-U-FL Fleming, S. (1985). Enterotoxemia in neonatal calves. Veterinary Clinics of North America: Food Animal Practice. 1 (3): 509-514. doi:10.1016/S0749-0720(15)31299-8 Freedman, J. C.; Theoret, J. R.; Wisniewski, J. A.; Uzal, F. A.; Rood, J. I.; McClane, B.A. (2015). Clostridium perfringens type A–E toxin plasmids. Research in Microbiology. 166: 264-279. doi:10.1016/j.resmic.2014.09.004 Fuentes, L.; Lebenkoff, S.; White, K.; Gerdts, C.; Hopkins, K.; Potter, J. E.; Grossman, D.; Project, P. E.; Sciences, R. (2016). Animal models to study the pathogenesis of human Clostridium perfringens infections. Veterinary Microbiology. 93: 292-297. doi:10.1016/j.vetmic.2015.02.013.Animal Gibert, M.; Marvaud, J. C.; Pereira, Y.; Hale, M. L.; Stiles, B. G.; Boquet, P.; Lamaze, C.; Popoff, M. R. (2007). Differential requirement for the translocation of clostridial binary toxins: Iota toxin requires a membrane potential gradient. FEBS Letters. 581: 1287-1296. doi:10.1016/j.febslet.2007.02.041 Gibert, M.; Monier, M. N.; Ruez, R.; Hale, M. L.; Stiles, B. G.; Benmerah, A.; Johannes, L.; Lamaze, C.; Popoff, M. R. (2011). Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cellular Microbiology. 13: 154-170. doi:10.1111/j.1462-5822.2010.01527.x Gibert, M.; Petit, L.; Raffestin, S.; Okabe, A.; Popoff, M. R. (2000). Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infection and Immunity. 68: 3848–3853. doi:10.1128/IAI.68.7.3848-3853.2000 Ghoneim, N. H.; Hamza, D. A. (2017). Epidemiological studies on Clostridium perfringens food poisoning in retail foods. Rev. Sci. Tech. 36 (3): 1025-1032. doi:10.20506/rst.36.3.2734 Harada, M.; Kondoh, M.; Ebihara, C.; Takahashi, A.; Komiya, E.; Fujii, M.; Mizuguchi, H.; Tsunoda, S. I.; Horiguchi, Y.; Yagi, K.; Watanabe, Y. (2007). Role of tyrosine residues in modulation of claudin-4 by the C-terminal fragment of Clostridium perfringens enterotoxin. Biochemical Pharmacology. 73: 206-214. doi:10.1016/j.bcp.2006.10.002 Harkness, J. M.; Li, J.; McClane, B. A. (2012). Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe. 18: 546-552. doi:10.1016/j.anaerobe.2012.09.001 Ismail, Z. B; Omoush, F. (2019). Abomasal displacement in neonatal dairy calves: Review of recent literature with special emphasis on abomasal torsion. Veterinary World. 12: 1121-1125. doi:10.14202/vetworld.2019.1121-1125 Jewell, S. A.; Titball, R. W.; Huyet, J.; Naylor, C. E.; Basak, A. K.; Gologan, P.; Winlove, C. P.; Petrov, P. G. (2015). Clostridium perfringens α-toxin interaction with red cells and model membranes. Soft Matter. 11: 7748-7761. doi:10.1039/c5sm00876j Keyburn, A. L.; Yan, X. X.; Bannam, T. L.; Van Immerseel, F.; Rood, J. I.; Moore, R. J. (2010). Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Veterinary Research. 41. doi:10.1051/vetres/2009069 Kim, H.; Byun, J.; Roh, I.; Bae, Y.; Lee, M.; Kim, B.; Songer, J. G.; Jung, B. Y. (2013). First isolation of Clostridium perfringens type E from a goat with diarrhea. Anaerobe. 22: 141-143. doi:10.1016/j.anaerobe.2013.06.009 Knapp, O.; Benz, M.; Popoff, R. (2016). Pore-forming activity of clostridial binary toxins. Biochimica et Biophysica Acta - Biomembranes. 1858: 512-525. doi:10.1016/j.bbamem.2015.08.006 Knapp, O.; Maier, E.; Benz, R.; Geny, B.; Popoff, M. R. (2009). Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX). Biochimica et Biophysica Acta - Biomembranes. 1788: 2584-2593. doi:10.1016/j.bbamem.2009.09.020 Li, J.; Adams, V.; Bannam, T. L.; Miyamoto, K.; Garcia, J. P.; Uzal, F. A.; Rood, J. I.; McClane, B. A. (2013). Toxin Plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews. 77: 208-233. doi:10.1128/mmbr.00062-12 Lobato, F. C. F.; Moro, E.; Umehara, O.; Assis, R. A.; Martins, N. E.; Gonçalves, L. C. B. (2000). Avaliação da resposta de antitoxinas beta e épsilon de Clostridium perfringens induzidas em bovinos e coelhos por seis vacinas comerciais no Brasil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 52 (4): 313-318. doi:10.1590/S0102-09352000000400004 Lobato, F. C. F.; Salvarani, F. M.; Gonçalves, L. A.; Pires, P. S.; Silva, R. O. S.; Alves, G. G.; Pereira, P. L. L. (2013). Clostridioses dos animais de produção. Veterinaria e zootecnia. 20: 29-48. Manteca, C.; Daube, G.; Jauniaux, T.; Linden, A.; Pirson, V.; Detilleux, J.; Ginter, A.; Coppe, P.; Kaeckenbeeck, A.; Mainil, J. G. (2002). A role for the Clostridium perfringens beta2 toxin in bovine enterotoxaemia? Veterinary microbiology. 86: 191-202. doi:10.1016/s0378-1135(02)00008-1 Mehdizadeh-Gohari, I.; Navarro, M. A.; Li, J.; Shrestha, A.; Uzal, F.; McClane, B. A. (2021). Pathogenicity and virulence of Clostridium perfringens. Virulence. 12: 723-753. doi:10.1080/21505594.2021.1886777 Miclard, J.; Jäggi, M.; Sutter, E.; Wyder, M.; Grabscheid, B.; Posthaus, H. (2009a). Clostridium perfringens beta-toxin targets endothelial cells in necrotizing enteritis in piglets. Veterinary Microbiology. 137: 320-325. doi:10.1016/j.vetmic.2009.01.025 Miclard, J.; Van-Baarlen, J.; Wyder, M.; Grabscheid, B.; Posthaus, H. (2009b). Clostridium perfringens β-toxin binding to vascular endothelial cells in a human case of enteritis necroticans. Journal of Medical Microbiology. 58: 826-828. doi:10.1099/jmm.0.008060-0 Minami, J.; Katayama, S.; Matsushita, O.; Matsushita, C.; Okabe, A. (1997). Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiology and Immunology. 41: 527-535. doi:10.1111/j.1348-0421.1997.tb01888.x Miyashiro, S.; Baldassi, L.; Nassar, A. (2009). Genotyping of Clostridium perfringens associated with sudden death in cattle. Journal of Venomous Animals and Toxins including Tropical Diseases. 15: 12-14. doi:10.1590/S1678-91992009000300010 Moreira, G. M. S. G.; Salvarani, F. M.; Da-Cunha, C. E. P.; Mendonça, M.; Moreira, Â. N.; Gonçalves, L. A.; Conceição, F. R. (2016). Immunogenicity of a trivalent recombinant vaccine against Clostridium perfringens alpha, beta, and epsilon toxins in farm ruminants. Scientific reports. 6 (1): 1-9. doi:10.1038/srep22816 Nagahama, M.; Nagayasu, K.; Kobayashi, K.; Sakurai, J. (2002). Binding component of Clostridium perfringens iota-toxin induces endocytosis in vero cells. Infection and Immunity. 70: 1909-1914. doi:10.1128/IAI.70.4.1909-1914.2002 Nagahama, M.; Sakaguchi, Y.; Kobayashi, K.; Ochi, S.; Sakurai, J. (2000). Characterization of the enzymatic component of Clostridium perfringens iota-toxin. Journal of Bacteriology. 182: 2096-2103. doi:10.1128/JB.182.8.2096-2103.2000 Nagahama, M.; Umezaki, M.; Tashiro, R.; Oda, M.; Kobayashi, K.; Shibutani, M.; Takagishi, T.; Ishidoh, K.; Fukuda, M.; Sakurai, J. (2012). Intracellular trafficking of Clostridium perfringens iota-toxin b. Infection and Immunity. 80: 3410-3416. doi:10.1128/IAI.00483-12 Navarro, M. A.; McClane, B. A.; Uzal, F. A. (2018). Mechanisms of action and cell death associated with Clostridium perfringens toxins. Toxins. 10: 1-21. doi:10.3390/toxins10050212 Navarro, M. A.; Shrestha, A.; Freedman, J. C.; Beingesser, J.; McClane, B. A.; Uzal, F. A. (2019). Potential therapeutic effects of mepacrine against clostridium perfringens enterotoxin in a mouse model of enterotoxemia. Infection and Immunity. 87: 1-10. doi:10.1128/IAI.00670-18 Park, M.; Deck, J.; Foley, S. L.; Nayak, R.; Songer, J. G.; Seibel, J. R.; Rafii, F. (2016). Diversity of Clostridium perfringens isolates from various sources and prevalence of conjugative plasmids. Anaerobe. 38: 25-35. doi:10.1016/j.anaerobe.2015.11.003 Perelle, S.; Domenighini, M.; Popoff, M. R. (1996). Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin. FEBS Letters. 395: 191-194. doi:10.1016/0014-5793(96)01035-6 Prescott, J. F.; Parreira, V. R.; Mehdizadeh-Gohari, I.; Lepp, D.; Gong, J. (2016). The pathogenesis of necrotic enteritis in chickens: what we know and what we need to know: a review. Avian Pathology. 45: 288-294. doi:10.1080/03079457.2016.1139688 Redondo, L. M.; Carrasco, J. M. D.; Redondo, E. A.; Delgado, F.; Fernández-Miyakawa, M. E. (2015). Clostridium perfringens type E virulence traits involved in gut colonization. PLoS ONE. 10: 1-18. doi:10.1371/journal.pone.0121305 Redondo, L. M.; Farber, M.; Venzano, A.; Jost, B. H.; Parma, Y. R.; Fernandez-Miyakawa, M. E. (2013). Sudden death syndrome in adult cows associated with Clostridium perfringens type E. Anaerobe. 20: 1-4. doi:10.1016/j.anaerobe.2013.01.001 Redondo, L. M.; Redondo, E. A.; Dailoff, G. C.; Leiva, C. L.; Diaz-Carrasco, J. M.; Bruzzone, O. A.; Cangelosi, A.; Geoghegan, P.; Fernandez-Miyakawa, M. E. (2017). Effects of Clostridium perfringens iota toxin in the small intestine of mice. Anaerobe. 48: 83-88. doi:10.1016/j.anaerobe.2017.07.007 Richard, J. F.; Mainguy, G.; Gibert, M.; Marvaud, J. C.; Stiles, B. G.; Popoff, M. R. (2002). Transcytosis of iota-toxin across polarized CaCo-2 cells. Molecular Microbiology. 43: 907-917. doi:10.1046/j.1365-2958.2002.02806.x Rood, J. I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B. A.; Melville, S. B.; Moore, R. J.; Popoff, M. R.; Sarker, M. R.; Songer, J. G.; Uzal, F. A.; Van-Immerseel, F. (2018). Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. 53: 5-10. doi:10.1016/j.anaerobe.2018.04.011 Rood, J. I.; Keyburn, A. L.; Moore, R. J. (2016). NetB and necrotic enteritis: the hole movable story. Avian Pathology. 45: 295-301. doi:10.1080/03079457.2016.1158781 Sakurai, J.; Nagahama, M.; Oda, M.; Tsuge, H.; Kobayashi, K. (2009). Clostridium perfringens iota-toxin: structure and function. Toxins. 1: 208-228. doi:10.3390/toxins1020208 Santana, J. A.; Ferreira, A. C. D. A.; Souza, M. D. C. C. D.; Moreira, M. A. S.; Lima, M. C.; Cruz, D. S. G.; Lobato, F. C. F.; Silva, R. O. S. (2018). Isolation and genotyping of clostridium perfringens from goats in Minas Gerais, Brazil. Ciencia Rural. 48: 5-8. doi:10.1590/0103-8478cr20180101 Sari, R. S.; Almeida, A. C.; Cangussu, A. S. R.; Jorge, E. V.; Mozzer, D. O.; Santos, H. O.; Quintilio, W.; Brandi, I. V.; Andrade, V. A.; Miguel, A. S. M.; Santos, E. M. S. (2016). Anti-botulism single-shot vaccine using chitosan for protein encapsulation by simple coacervation. Anaerobe. 42: 182-187. Sayeed, S.; Uzal, F. A.; Fisher, D. J.; Saputo, J.; Vidal, J. E.; Chen, Y., Gupta, P.; Rood, J. I.; McClane, B. A. (2008). Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Molecular Microbiology. 67: 15-30. doi:10.1111/j.1365-2958.2007.06007.x Schmidt, G.; Papatheodorou, P.; Aktories, K. (2015). Novel receptors for bacterial protein toxins. Current Opinion in Microbiology. 23: 55-61. doi:10.1016/j.mib.2014.11.003 Schumacher, V. L.; Martel, A.; Pasmans, F.; van-Immerseel, F.; Posthaus, H. (2013). Endothelial binding of beta toxin to small intestinal mucosal endothelial cells in early stages of experimentally induced Clostridium perfringens type C enteritis in pigs. Veterinary Pathology. 50: 626-629. doi:10.1177/0300985812461362 Shrestha, A.; Uzal, F. A.; McClane, B. A. (2019). Enterotoxic Clostridia: Clostridium perfringens Enteric Diseases. Gram-Positive Pathogens. 6: 977-990. doi:10.1128/9781683670131.ch60 Silva, R. O. S.; Lobato, F. C. F. (2015). Clostridium perfringens: A review of enteric diseases in dogs, cats and wild animals. Anaerobe. 33: 14-17. doi:10.1016/j.anaerobe.2015.01.006 Silva, R. O. S.; Oliveira-Junior, C. A.; Guedes, R. M. C.; Lobato, F. C. F. (2015). Clostridium perfringens: a review of the disease in pigs, horses and broiler chickens. Ciência Rural. 45: 1027-1034. doi:10.1590/0103-8478cr20140927 Simpson, K. M.; Callan, R. J.; Van-Metre, D. C. (2018). Clostridial Abomasitis and Enteritis in Ruminants. Veterinary Clinics of North America: Food Animal Practice. 34: 155-184. doi:10.1016/j.cvfa.2017.10.010 Smedley, J. G.; McClane, B. A. (2004). Fine mapping of the N-terminal cytotoxicity region of Clostridium perfringens enterotoxin by site-directed mutagenesis. Infection and Immunity. 72: 6914-6923. doi:10.1128/IAI.72.12.6914-6923.2004 Sobrinho, E. M.; Almeida, A. C.; Brandi, I. V.; Colen, F.; Lobato, F. C. F.; Cangussu, A. S. R.; Quintilio, W.; Santos, H. O.; Sari, R. S. (2014). ELISA and modified toxin-binding inhibition test for quality control of the clostridial vaccine processes. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 66: 713-720. doi:10.1590/1678-41625407 Sobrinho, E. M.; Cangussu, A. S. R.; Brandi, I. V.; Sari, R. S.; Almeida, A. C.; Colen,F.; Quintilio, W.; Santos, H. O. (2010). Modified toxin-binding inhibition (ToBI) test for epsilon antitoxin determination in serum of immunized rabbits. Veterinary Immunology and Immunopathology. 138: 129-133. doi:10.1016/j.vetimm.2010.07.007 Songer, J. G. (1996). Clostridial enteric diseases of domestic animals. Clinical Microbiology Reviews. 9: 216-234. doi:10.1128/cmr.9.2.216 Songer, J. G.; Miskimmins, D. W. (2004). Clostridium perfringens type E enteritis in calves: Two cases and a brief review of the literature. Anaerobe. 10: 239-242. doi:10.1016/j.anaerobe.2004.05.001 Stiles, B. G.; Wilkins, T. D. (1986). Purification and characterization of Clostridium perfringens iota toxin: Dependence on two nonlinked proteins for biological activity. Infection and Immunity. 54: 683-688. doi:10.1128/iai.54.3.683-688.1986 Szklarczyk D, Gable A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-12 Takahashi, A.; Komiya, E.; Kakutani, H.; Yoshida, T.; Fujii, M.; Horiguchi, Y.; Mizuguchi, H.; Tsutsumi, Y.; ichi-Tsunoda, S.; Koizumi, N.; Isoda, K.; Yagi, K.; Watanabe, Y.; Kondoh, M. (2008). Domain mapping of a claudin-4 modulator, the C-terminal region of C-terminal fragment of Clostridium perfringens enterotoxin, by site-directed mutagenesis. Biochemical Pharmacology. 75: 1639-1648. doi:10.1016/j.bcp.2007.12.016 Takehara, M.; Takagishi, T.; Seike, S.; Oda, M.; Sakaguchi, Y.; Hisatsune, J.; Ochi, S.; Kobayashi, K.; Nagahama, M. (2017). Cellular entry of Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin. Toxins. 9: 8-11. doi:10.3390/toxins9080247 Tsuge, H.; Nagahama, M.; Nishimura, H.; Hisatsune, J.; Sakaguchi, Y.; Itogawa, Y.; Katunuma, N.; Sakurai, J. (2003). Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens Iota-toxin. Journal of Molecular Biology. 325: 471-483. doi:10.1016/S0022-2836(02)01247-0 Tsuge, H.; Nagahama, M.; Oda, M.; Iwamoto, S.; Utsunomiya, H.; Marquez, V. E.; Katunuma, N.; Nishizawa, M.; Sakurai, J. (2008). Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens ι-toxin. Proceedings of the National Academy of Sciences of the United States of America. 105: 7399-7404. doi:10.1073/pnas.0801215105 Uzal, F. A. (2004). Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. Anaerobe. 10: 135-143. doi:10.1016/j.anaerobe.2003.08.005 Uzal, F. A.; Kelly, W. R. (1997). Effects of the intravenous administration of Clostridium perfringens type D epsilon toxin on young goats and lambs. Journal of Comparative Pathology. 116: 63-71. doi:10.1016/S0021-9975(97)80044-8 Uzal, F. A.; Navarro, M. A.; Li, J.; Freedman, J. C.; Shrestha, A.; McClane, B. A. (2018). Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe. 53: 11-20. doi:10.1016/j.anaerobe.2018.06.002 Uzal, F. A.; Sentíes-Cué, C. G.; Rimoldi, G.; Shivaprasad, H. L. (2016). Non- Clostridium perfringens infectious agents producing necrotic enteritis-like lesions in poultry. Avian Pathology. 45: 326-333. doi:10.1080/03079457.2016.1159282 Uzal, F. A.; Vidal, J. E.; McClane, B. A.; Gurjar, A. A. (2010). Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases. The open toxinology journal. 2: 24-42. doi:10.2174/1875414701003010024 Van Itallie, C. M.; Betts, L.; Smedley, J. G.; McClane, B. A.; Anderson, J. M. (2008). Structure of the Claudin-binding domain of Clostridium perfringens enterotoxin. Journal of Biological Chemistry. 283: 268-274. doi:10.1074/jbc.M708066200 Vidal, J. E.; Ohtani, K.; Shimizu, T.; McClane, B. A. (2009). Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cellular Microbiology. 11: 1306-1328. doi:10.1111/j.1462-5822.2009.01332.x Waters, M.; Raju, D.; Garmory, H. S.; Popoff, M. R.; Sarker, M. R. (2005). Regulated expression of the beta2-toxin gene (cpb2) in Clostridium perfringens type A isolates from horses with gastrointestinal diseases. Journal of Clinical Microbiology. 43: 4002-4009. doi:10.1128/JCM.43.8.4002-4009.2005 Wigelsworth, D. J.; Ruthel, G.; Schnell, L.; Herrlich, P.; Blonder, J.; Veenstra, T. D.; Carman, R. J.; Wilkins, T. D.; Van-Nhieu, G. T.; Pauillac, S.; Gibert, M.; Sauvonnet, N.; Stiles, B. G.; Popoff, M. R.; Barth, H. (2012). CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins. PLoS ONE. 7: e51356. doi:10.1371/journal.pone.0051356 Yamada, T.; Yoshida, T.; Kawamoto, A.; Mitsuoka, K.; Iwasaki, K.; Tsuge, H. (2020). Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex. Nature Structural & Molecular Biology. 27: 288-296. doi:10.1038/s41594-020-0388-6; https://revistas.udenar.edu.co/index.php/rfacia/article/view/6581

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal
  10. 10