-
1Academic Journal
المؤلفون: German-Carcaño, Jesús Manuel, Urriolagoitia-Sosa, Guillermo, Romero-Ángeles, Beatriz, Maya-Anaya, Daniel, Sánchez-Cervantes, Arturo, Correa-Corona, Martín Iván, Urriolagoitia-Calderón, Guillermo Manuel
المصدر: Investigación y Ciencia de la Universidad Autónoma de Aguascalientes; No. 91 (2024) ; Investigación y Ciencia de la Universidad Autónoma de Aguascalientes; Núm. 91 (2024) ; 2521-9758 ; 1665-4412
مصطلحات موضوعية: ANSYS, longitud de grieta, MEF, campo de esfuerzos, bidimensional, SIF, crack length, FEM, stress fields, two-dimensional
وصف الملف: application/pdf
Relation: https://revistas.uaa.mx/index.php/investycien/article/view/4481/5140; https://revistas.uaa.mx/index.php/investycien/article/view/4481/4070; https://revistas.uaa.mx/index.php/investycien/article/view/4481
-
2Academic Journal
المؤلفون: Mariana Vergara Herrera, John Jairo Sánchez Aguilar, Óscar Ernesto Cadena Ibarra, Víctor Hugo Márquez Ramírez
المصدر: Boletín Geológico, Vol 50, Iss 2 (2023)
مصطلحات موضوعية: volcán Galeras, sismos volcanotectónicos, mecanismos focales, sistema tectónico-magmático, método de desajuste acumulado, campo de esfuerzos., Geology, QE1-996.5
وصف الملف: electronic resource
-
3Academic Journal
المؤلفون: Germán Carcaño, Jesús Manuel, Urriolagoitia Sosa, Guillermo, Romero Angeles, Beatriz, Maya Anaya, Daniel, Sánchez Cervantes, Arturo, Correa Corona, Martín Iván, Urriolagoitia Calderón, Guillermo
المصدر: Investigación y Ciencia: de la Universidad Autónoma de Aguascalientes, ISSN 1665-4412, Nº. 91, 2024
مصطلحات موضوعية: ANSYS, longitud de grieta, MEF, campo de esfuerzos, bidimensional, SIF
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9294921; (Revista) ISSN 1665-4412
-
4Academic Journal
مصطلحات موضوعية: Campo de esfuerzos, Falla, Inversión de esfuerzos, Plataforma Burgalesa, Mioceno, Stress field, Fault, Stress inversion, Miocene
Relation: http://hdl.handle.net/10272/17705
الاتاحة: http://hdl.handle.net/10272/17705
-
5Report
المؤلفون: Briñez de león, Juan Carlos
المساهمون: Restrepo Martínez, Alejandro, Branch Bedoya, John William, Universidad Nacional de Colombia - Sede Medellín, GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial
مصطلحات موضوعية: 000 - Ciencias de la computación, información y obras generales::003 - Sistemas, Digital photoelasticity, Birefringence, Color fringe patterns, Stress field, Digital image sequence processing, Pattern recognition, Computational hybrid methods, Fotoelasticidad digital, Birrefringencia, Patrones de franjas de color, Campo de esfuerzos, Procesamiento digital de secuencias de imágenes, Reconocimiento de patrones, Métodos híbridos computacionales
وصف الملف: application/pdf
Relation: Briñez-de León, J. C., Restrepo-Martínez, A., & Branch-Bedoya, J. W. (2019). Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity. Optics and Lasers in Engineering, 122, 195-208.; Toro, H. F., Briñez-de León, J. C., Martinez, A. R., & Bedoya, J. W. B. (2018). Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis. Optical Engineering, 57(9), 093105.; Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch, (2018). Computational hybrid phase shifting technique applied to digital photoelasticity, In Optik - International Journal for Light and Electron Optics, Volume 157, Pages 287-297, ISSN 0030-4026; Pérez, U., Camilo, J., Motta, G. C., Briñez-de León, J. C., & Restrepo-Martínez, A. (2017). Validación del uso de fotoelasticidad como herramienta para los cursos de Mecánica de Sólidos. Revista EIA, 14(28), 117-131; Briñez-de León, J. C.; Fandiño Toro, Hermes A; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de resolución en imágenes de fotoelasticidad: caso carga dinámica. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldas; Fandiño Toro, Hermes A; Briñez-de León, J. C.; Restrepo Martínez, Alejandro; Branch Bedoya, John W., (2017). Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja. Visión Electrónica. Vol 1. No. 1, Universidad Distrital Francisco José Caldas; Briñez-de León, J. C., Alejandro Restrepo, John W. Branch y Carlos Madrigal. Desenvolvimiento de fase RGB aplicado a secuencias de imágenes de fotoelasticidad capturadas de la tracción de películas plásticas. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali - Colombia. 16-20 de Noviembre de 2015; Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Evaluación Temporal de los Ordenes de Franjas de Color Utilizando Análisis de Saturación en Secuencias de Imágenes de Fotoelasticidad. Décimo segundo Congreso Iberoamericano de Ingeniería Mecánica (CIBIM XII- 2015), Guayaquil-Ecuador. Noviembre 10-13 de 2015; Fernando Melendez, Briñez-de León, J. C., Alejandro Restrepo, John W. Branch. Identificación de variaciones del efecto de la temperatura en la deformación de películas plásticas analizando el comportamiento temporal de la fotoelasticidad. XIV Encuentro Nacional De Óptica V Conferencia Andina y del Caribe En Óptica y sus Aplicaciones ENO - CANCOA 2015. Cali- Colombia. 16-20 de Noviembre de 2015; Briñez-de León, J. C., A. R. Martínez and J. W. B. Bedoya, "High stress concentration analysis using RGB intensity changes in dynamic photoelasticity videos," 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-7.doi:10.1109/STSIVA.2016.7743324; Briñez-de León, J. C., Alejandro Restrepo M.; John W. Branch; Time-space analysis in photoelasticity images using recurrent neural networks to detect zones with stress concentration. Proc. SPIE 9971, Applications of Digital Image Processing XXXIX, 99712P (September 28, 2016); doi:10.1117/12.2237373; Briñez-de León, J. C., Hermes Alexander Fandiño-Toro, Alejandro Restrepo-Martínez, John W. Branch. Evaluación de la pérdida de resolución en imágenes de fotoelasticidad debido al incremento de la carga. VIII Congreso Internacional de Ingeniería Mecánica y Mecatrónica y IV de Materiales, Energía y Medioambiente, Medellín, Colombia. 2017/4/26; Briñez-de León, J. C., D. A. Patiño Cortes, A. Restrepo Martínez, and J. W. Branch Bedoya, "Computational Detection of Salient Information to Identify High Stress and Ambiguity Regions in Digital Photoelasticity Images," in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper IM4E.2; Briñez-de León, J. C., Alejandro Restrepo M., John W. Branch, "Computational reduction of the image sets required in conventional phase shifting methods applied to digital photoelasticity" Proc. SPIE 10395, Optics and Photonics for Information Processing XI, 103950K (24 August 2017); doi:10.1117/12.2273431; Hermes Fandiño Toro, Briñez-de León, J. C., Alejandro Restrepo Martínez, John W. Branch Bedoya, "Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity," Proc. SPIE 10396, Applications of Digital Image Processing XL, 103962D (19 September 2017); doi:10.1117/12.2273258; Juan Camilo Urango Pérez, Guillermo Carmen Motta, Briñez-de León, J. C., Alejandro Restrepo Martinez. Validation of the photoelasticity method as a tool for the enhancement of learning and design processes in solid mechanics. Congreso Internacional de Formación y Modelación en Ciencias Básicas. Universidad de Medellín. 2017. Página 217. ISBN-ebook: 978-958-8992-46-7; Briñez-de León, J. C., H. A. Fandiño Toro, A. Restrepo M, and J. W. Branch, "Bayer and demosaicking effect for imaging the stress field in digital photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper IW2B.3.; Briñez-de León, J. C., Fandiño, H. A., Restrepo, A., & Branch, J. W. (2018, September). Computational analysis of stress map variations by industrial light sources and load additions in digital photoelasticity. In Optics and Photonics for Information Processing XII (Vol. 10751, p. 107510G). International Society for Optics and Photonics; H. F. Toro, Briñez-de León, J. C., A. Restrepo Martínez, and J. W. Branch Bedoya, "Relevance analysis for texture descriptors in studies of dynamic photoelasticity," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper JM4A.37; Briñez-de León, J. C., Martínez, A. R., & Bedoya, J. W. B. (2019, June). Fast Fourier Transform as Color Variation Descriptor for Imaging the Stress Field from Photoelasticity Videos. In Imaging Systems and Applications (pp. JW2A-46). Optical Society of America; Toro, H. F., Briñez-de León, J. C., RestrepoMartínez, A., & Branch, J. W. (2019, June). Texture analysis for evaluating the Bayer and demosaicking effects in photoelasticity images. In Computational Optical Sensing and Imaging (pp. JW2A-50). Optical Society of America; Restrepo-Martinez, A., & Briñez-de León, J. C., (2019, September). Dynamic color descriptor based Frenet-Serret to classify stress zones from pixel variations recorded in photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 111360G). International Society for Optics and Photonics; Briñez-de León, J. C., Mery, D., Restrepo, A., & Branch, J. W. (2019, September). One-dimensional local binary pattern based color descriptor to classify stress values from photoelasticity videos. In Optics and Photonics for Information Processing XIII (Vol. 11136, p. 1113607). International Society for Optics and Photonics.; H. J. Jiménez, “Comportamiento mecánico y microestructural de la aleación AlMgSi para conductores eléctricos,” Rev. UIS Ing., vol. 18, no. 2, pp. 199–211, 2019.; S. Sazesh, A. Ghassemi, R. Ebrahimi, and M. Khodaei, “Experimental and Numerical Analysis of Titanium/HA FGM for Dental Implantation,” Int. J. Adv. Des. Manuf. Technol., vol. 10, no. 1, pp. 57–74, 2017.; K. Ramesh, “Experimental Stress Analysis,” J. Appl. Mech., vol. 33, no. 1, p. 237, 2011.; M. Akay and N. Aslan, “Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis,” J. Biomed. Mater. Res., vol. 31, no. 2, pp. 167–182, 1996.; J. F. Doyle, Modern Experimental Stress Analysis: Completing the Solution of Partially Specified Problems. 2005.; K. Ramesh, T. Kasimayan, and B. Neethi Simon, “Digital photoelasticity - A comprehensive review,” J. Strain Anal. Eng. Des., vol. 46, no. 4, pp. 245–266, 2011.; J. C. Briñez, A. Restrepo, and F. López, “Métricas de similitud aplicadas para el análisis de imágenes de fotoelasticidad,” Dyna, vol. 80, no. 179, pp. 42–50, 2013.; J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets: A general deep learning framework for inverse problems,” SIAM J. Imaging Sci., vol. 11, no. 2, pp. 991–1048, 2018.; K. Jin, M. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. iIage Process., vol. 26, no. 9, pp. 4509–4522, 2017.; R. Montanini, M. Scafidi, G. Staiti, A. Marcianò, L. D’Acquisto, and G. Oteri, “Misfit evaluation of dental implant-supported metal frameworks manufactured with different techniques: Photoelastic and strain gauge measurements,” J. Eng. Med., vol. 230, no. 12, pp. 1106–1116, 2016.; C. C and E. Gabrielli, “Photoelasticity and DIC as optical techniques for monitoring masonry specimens under mechanical loads,” J. Phys. Conf. Ser., vol. 778, no. 1, pp. 1–14, 2017.; F. C. Li and A. Kishen, “Deciphering dentin tissue biomechanics using digital moiré interferometry: A narrative review,” Opt. Lasers Eng., vol. 107, no. March, pp. 273–280, 2018.; S. Yoneyama and S. Arikawa, “Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer array,” Theor. Appl. Mech. Lett., vol. 6, no. 4, pp. 162–166, 2016.; C. S. Narayanamurthy, G. Pedrini, and W. Osten, “Digital holographic photoelasticity,” Appl. Opt., vol. 56, no. 13, pp. F213–F217, 2017.; R. Subramanyam and K. Ramesh, “Photoelastic study on the effect of flow induced residual stresses on fracture parameters,” Theor. Appl. Fract. Mech., vol. 85, pp. 320–327, 2016.; T. Nikova and E. Stoykova, “Design of a photoelastic measurement of principal stresses by a phase-shifting method,” Phys. Scr., vol. T162, no. January, pp. 1–5, 2014.; S. Alsiya, C. J. Lekshmi, B. P. J. Priya, and R. C. Mehta, “Image processing algorithm for fringe analysis in photoelasticity,” Sch. J. Eng. Technol., vol. 4, no. 7, pp. 325–328, 2016.; J. A. Quiroga and J. A. Gómez-Pedrero, “Application of principal component analysis in phase-shifting photoelasticity,” Opt. Express, vol. 24, no. 6, p. 5984, 2016.; D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng., vol. 30, no. 3–4, pp. 229–249, 1998.; J. Carazo-Alvarez, S. J. Haake, and E. A. Patterson, “Completely automated photoelastic fringe analysis,” Opt. Lasers Eng., vol. 21, no. 3, pp. 133–149, 1994.; W. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik., vol. 126, no. 19, pp. 1981–1985, 2015.; M. Ramji and K. Ramesh, “Whole field evaluation of stress components in digital photoelasticity-Issues, implementation and application,” Opt. Lasers Eng., vol. 46, no. 3, pp. 257–271, 2008.; M. Ramji and K. Ramesh, “A new six-step phase shifting technique using mixed-polariscope in digital photoelasticity,” Key Eng. Mater., vol. 326–328, pp. 35–38, 2009.; A. Ajovalasit, S. Barone, and G. Petrucci, “A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity,” J. Strain Anal. Eng. Des., vol. 33, no. 3, pp. 207–216, 2002.; M. Solaguren-Beascoa Fernández, “Data Acquisition Techniques in Photoelasticity,” Exp. Tech., vol. 35, no. 6, pp. 71–79, 2011.; P. Magalhães, F. Vieira, C. Magalhães, J. Ribeiro, and I. Rios, “Numerical method to digital photoelasticity using plane polariscope,” Opt. Express, vol. 24, no. 12, p. 12617, 2016.; A. Ajovalasit, G. Petrucci, and M. Scafidi, “Measurement of edge residual stresses in glass by the phase-shifting method,” Opt. Lasers Eng., vol. 49, no. 5, pp. 652–657, 2011.; J. R. Lesniak, M. J. Zickel, C. S. Welch, and D. F. Johnson, “An innovative polariscope for photoelastic stress analysis,” Proc. Sem Spring Conf. Exp. Mech., pp. 219–224, 1997.; S. Yoneyama and K. Moriwaki, “Simultaneous observation of phase-stepped photoelastic fringes using a pixelated microretarder array,” Opt. Eng., vol. 45, no. 8, p. 083604, 2006.; E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instrum., vol. 69, no. 4, pp. 1574–1580, 1998.; S. Sircar and K. Bhattacharya, “Measurement of birefringence using polarization phase-shifting Mach–Zehnder interferometer,” Opt. Eng., vol. 54, no. 11, p. 113112, 2015.; K. Ashokan and K. Ramesh, “A novel approach for ambiguity removal in isochromatic phasemap in digital photoelasticity,” Meas. Sci. Technol., vol. 17, no. 11, pp. 2891–2896, 2006.; M. Ramji and K. Ramesh, “Adaptive quality guided phase unwrapping algorithm for whole-field digital photoelastic parameter estimation of complex models,” Strain, vol. 46, no. 2, pp. 184–194, 2010.; P. Siegmann, F. Díaz-Garrido, and E. A. Patterson, “Robust approach to regularize an isochromatic fringe map,” Appl. Opt., vol. 48, no. 22, p. E24, 2009.; P. Pinit, “Automated Detection of Singularities from Orientation Map of Isoclinics in,” 21st Conf. Mech. Eng. Netw. Thail., no. October, 2007.; K. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Opt. Eng., vol. 54, no. 8, p. 081205, 2015.; C. Buckberry and D. Towers, “New approaches to the full-field analysis of photoelastic stress patterns,” Opt. Lasers Eng., vol. 24, no. 5–6, pp. 415–428, 1996.; M.-J. Huang, “Isoclinic ambiguity unwrapping of circular ring under diametric dompression,” ICEM 14 – 14th Int. Conf. Exp. Mech., vol. 6, p. 32002, 2010.; J. Wu and M. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Opt. Eng., vol. 54, no. 8, p. 081207, 2015.; K. Ramesh and D. K. Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping,” Opt. Lasers Eng., vol. 33, no. 6, pp. 387–400, 2000.; A. D. Nurse, “Load-stepping photoelasticity: New developments using temporal phase unwrapping,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 57–70, 2002.; V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light Photoelasticity – Part I: Critical assessment of existing schemes,” Opt. Lasers Eng., vol. 92, pp. 129–140, 2017.; V. Ramakrishnan and K. Ramesh, “Scanning schemes in white light photoelasticity – Part II: Novel fringe resolution guided scanning scheme,” Opt. Lasers Eng., vol. 92, pp. 141–149, 2017.; M. P. Haripras and K. Ramesh, “Analysis of contact zones from whole field isochromatics using reflection photoelasticity,” Opt. Lasers Eng., vol. 105, no. September 2017, pp. 86–92, 2018.; K. Ramesh and A. Pandey, “An improved normalization technique for white light photoelasticity,” Opt. Lasers Eng., vol. 109, no. February, pp. 7–16, 2018.; B. N. Simon, T. Kasimayan, and K. Ramesh, “The influence of ambient illumination on colour adaptation in three fringe photoelasticity,” Opt. Lasers Eng., vol. 49, no. 2, pp. 258–264, 2011.; K. Ramesh, M. P. Hariprasad, and S. Bhuvanewari, “Digital photoelastic analysis applied to implant dentistry,” Opt. Lasers Eng., vol. 87, pp. 204–213, 2016.; A. Pandey and K. Ramesh, “Development of a new normalization technique for twelve fringe photoelasticity (TFP),” Conf. Proc. Soc. Exp. Mech. Ser., vol. 12, pp. 177–180, 2019.; J. A. Quiroga, M. Servin, and J. L. Marroquin, “Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image,” Meas. Sci. Technol., vol. 13, no. 1, pp. 132–140, 2002.; G. S. Grewal and V. N. Dubey, “Inverse problem of photoelastic fringe mapping using neural networks,” Meas. Sci. Technol., vol. 18, no. 5, pp. 1361–1366, 2007.; L. Roy and A. J. Rosakis, “An experimental study of impact-induced failure events in homogeneous layered materials using dynamic photoelasticity and high-speed photography,” Opt. Lasers Eng., vol. 40, no. 4, pp. 263–288, 2003.; W. C. Wang and Y. H. Tsai, “Digital dynamic photoelastic and numerical stress analyses of a strip,” J. Vib. Control, vol. 12, no. 8, pp. 927–938, 2006.; A. Asundi, M. R. Sajan, and L. Tong, “Dynamic photoelasticity using TDI imaging,” Opt. Lasers Eng., vol. 38, no. 1–2, pp. 3–16, 2002.; F. Huang and A. Sugimoto, Image and Video Technology – PSIVT 2013 Workshops, no. October. 2013.; L. Wang, Y. Ju, H. Xie, G. Ma, L. Mao, and K. He, “The mechanical and photoelastic properties of 3D printable stress-visualized materials,” Sci. Rep., vol. 7, no. 1, pp. 1–9, 2017.; Y. Ju, L. Wang, H. Xie, G. Ma, Z. Zheng, and L. Mao, “Visualization and Transparentization of the Structure and Stress Field of Aggregated Geomaterials Through 3D Printing and Photoelastic Techniques,” Rock Mech. Rock Eng., vol. 50, no. 6, pp. 1383–1407, 2017.; A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of RGB photoelasticity,” Opt. Lasers Eng., vol. 68, pp. 58–73, 2015.; Hung, K-M., and C-C. Ma. "Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions." Experimental mechanics 43.2 (2003): 216-224.; Voloshin, Arkady S., and C. P. Burger. "Half-fringe photoelasticity: a new approach to whole-field stress analysis." Experimental Mechanics 23.3 (1983): 304-313.; Ramesh, K., and D. Sreedhar. "Optically enhanced tiling (OET) in digital fringe pattern analysis." Strain 34.4 (1998): 127-130.; Hecker, F. W., and H. Abeln. "Digital Phase-shifting photoelasticity." Optics and the Information Age. Vol. 813. International Society for Optics and Photonics, 1987.; Asundi, Anand, Liu Tong, and Chai Gin Boay. "Dynamic phase-shifting photoelasticity." Applied Optics 40.22 (2001): 3654-3658.; Su, Xianyu, Anand Krishna Asundi, and M. R. Sajan. "Phase unwrapping in photoelasticity." International Conference on Experimental Mechanics: Advances and Applications. Vol. 2921. International Society for Optics and Photonics, 1997.; Ekman, Matthew J., and Andrew D. Nurse. "Completely automated determination of two-dimensional photoelastic parameters using load stepping." Optical Engineering 37 (1998).; Surendra, Kamadi Vara Naga, and KR Yogendra Simha. "Digital Image Analysis around isotropic points for photoelastic pattern recognition." Optical Engineering 54.8 (2015): 081209.; https://repositorio.unal.edu.co/handle/unal/78194
-
6Academic Journal
المؤلفون: Ricardo Gustavo Rodríguez-Cañizo, Luis Héctor Hernández-Gomez, Ariel Fuerte-Hernández, Emmanuel Alejandro Merchán-Cruz, Alejandro González-Rebatu, Pedro Alejandro Tamayo-Meza
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia, Iss 78, Pp 73-79 (2016)
مصطلحات موضوعية: análisis fotoelástico, campo de esfuerzos, columna lumbar, lesión de disco intervertebral, Engineering (General). Civil engineering (General), TA1-2040
وصف الملف: electronic resource
-
7Academic Journal
المؤلفون: Rodríguez-Cañizo, Ricardo Gustavo, Hernández-Gómez, Luis Héctor, Fuerte-Hernández, Ariel, Merchán-Cruz, Emmanuel Alejandro, González-Rebatu, Alejandro, Tamayo-Meza, Pedro Alejandro
المصدر: Revista Facultad de Ingeniería Universidad de Antioquia; No. 78 (2016): Revista Facultad de Ingeniería (Jan-Mar 2016); 73-79 ; Revista Facultad de Ingeniería Universidad de Antioquia; Núm. 78 (2016): Revista Facultad de Ingeniería (Ene-Mar 2016); 73-79 ; 2422-2844 ; 0120-6230
مصطلحات موضوعية: stress distribution, lumbar section, damaged intervertebral disc, photoelastic analysis, campo de esfuerzos, columna lumbar, lesión de disco intervertebral, análisis fotoelástico
وصف الملف: application/pdf
-
8Dissertation/ Thesis
المؤلفون: Gómez Alba, Sebastián Alejandro
المساهمون: Vargas Jiménez, Carlos Alberto, Gómez Alba, Sebastián 0000000206162663, Gómez Alba, Sebastián GÓMEZ ALBA, SEBASTIÁN, Gómez Alba, Sebastián 56862335600, Gómez Alba, Sebastián Sebastian Gomez Alba
مصطلحات موضوعية: 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur, Hidrocarburos, Hydrocarbons, Sismología, Seismology, Ingeniería sísmica, Earthquake engineering, Sismicidad Inducida, Inyección de agua, Tomografia, Anisotropia Sisimica, Campo de esfuerzos, Induced Seismicity, Water injection, Tomography, >Seismic Anisotropy, Stress Field
جغرافية الموضوع: Colombia
وصف الملف: vii, 160 páginas; application/pdf
Relation: Abercrombie, R.E. (1995). J. Geophys. Res. 100, 24015-24036.; Adamek, S., Frohlich, C., and Pennington, W.D. (1988). Seismicity of the Caribbean-Nazca boundary: Constraints on microplate tectonics of the Panama region. Journal of Geophysical Research 93: doi:10.1029/88JB01269. ISSN: 0148-0227.; Ake J, Mahrer K, O’Connell D, Block L. 2005. Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado. Bull. Seismol. Soc. Am. 95:664–83; Aki, K., 1965. Maximum likelihood estimate of b in the formula log N = a - b M and its confidence limits, Bull. seism. Soc. Am., 43, 237–239.; Alessandro, A., Danet, A., Grecu, B., 2012. Location performance and detection magnitude threshold of the Romanian national seismic network. Pure Appl. Geophys. 169 (2012), 2149e2164. http://dx.doi.org/10.1007/s00024-012-0475-7; Alghannam, M., Juanes, R., 2020. Understanding rate effects in injection-induced earthquakes. Nature communications 11, 1–6; Alt RC, Zoback MD. 2016. In situ stress and active faulting in Oklahoma. Bull. Seismol. Soc. Am. 107:216–28; Aspden, J.A., McCourt, W.J., 1986. Mesozoic oceanic terrane in the central Andes of Colombia. Geology 14, 415e418.; Aspectos hidrodinámicos, estructurales y estratigráficos del Campo Rubiales. Cuenca de los Llanos Orientales, Colombia. In: VI Simposio Bolivariano-Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 9, pp. 4e10; Atkinson GM, Eaton DW, Ghofrani H, Walker D, Cheadle B, et al. 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol. Res. Lett. 87:631–47; Atkinson, G.M., 2015. Ground-motion prediction equation for small-to-moderate events at short hypocentral distances, with application to induced-seismicity hazards. Bulletin of the Seismological Society of America 105, 981–992.; Atkinson, G.M., 2020. The intensity of ground motions from induced earthquakes with implications for damage potential. Bulletin of the Seismological Society of America 110, 2366–2379.; Atkinson, G.M., Eaton, D.W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R. & Liu, Y., 2016. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin, Seismol. Res. Lett., 87, 631–647.; Atkinson, G.M., Wald, D., Worden, C.B., Quitoriano, V., 2018. The intensity signature of induced seismicity. Bulletin of the Seismological Society of America 108, 1080–1086.; Baisch, S., Koch, C., Muntendam-Bos, A., 2019. Traffic light systems: To what extent can induced seismicity be controlled? Seismological Research Letters 90, 1145–1154.; Bao, X. & Eaton, D.W., 2016. Fault activation by hydraulic fracturing in western Canada, Science, 354(6318), 1046–1409; Barnhart WD, Benz HM, Hayes GP, Rubinstein JL, Bergman E. 2014. Seismological and geodetic constraints on the 2011 Mw5.3 Trinidad, Colorado earthquake and induced deformation in the Raton Basin. J. Geophys. Res. 119:7923–33; Barrera, D., Pardo, A., Vargas, C.A., Martínez, J., 2007. Petroleum geology of Colombian basins. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.; Barros, L, Cappa, F., Guglielmi, Y., Duboeuf, L. & Grasso, J.R., 2019. Energy of injection-induced seismicity predicted from in-situ experiments, Scientific Reports, 9, 10.1038/s41598-019-41306-x.; Bayer, B., Kind, R., Hoffmann, M., Yuan, X., Meier, T., 2012. Tracking unilateral earthquake rupture by P-wave polarization analysis. Geophys. J. Int. 188, 1141e1153.; Ben-Avraham, Z., Nur, A., 1987. Effects of collisions at trenches on oceanic ridges and passive margins. In: Monger, J.W.H., Francheteau, J. (Eds.), Circum-Pacific Orogenic Belts and Evolution of the Pacific Ocean Basin: American Geophysical Union, Geodynamics Series, vol. 18, pp. 9e18.; Bender, B., 1983. Maximum likelihood estimation of b values for magnitude grouped data, Bull. seism. Soc. Am., 73, 831–851.; Bernal-Olaya, R., Mann, P., & Escalona, A. (2015). Cenozoic tectonostratigraphic evolution of the Lower Magdalena Basin, Colombia: An example of an under- to overfilled forearc basin. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 345–398). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531943M1083645; Bernal-Olaya, R., Mann, P., & Vargas, C. A. (2015). Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean margin of northwestern Colombia. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 247–270). Tulsa, OK: Association of Petroleum Geologists. https://doi.org/10.1306/13531939M1083642; Bird, P & Kagan, Y, 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings, Bull. seism. Soc. Am., 94 (6), 2380–2399.; Block, L.V., Wood, C.K., Yeck, W.L. & King, V.M., 2014. The 24 January 2013 ML earthquake near Paradox, Colorado, and its relation to deep well injection, Seismol. Res. Lett., 85(3), 609–624.; Bokelmann, G., 1995. P-wave array polarization analysis and effective anisotropy of the brittle crust. Geophysical Journal International 120, 145–162.; Bommer, J.J., Crowley, H., Pinho, R., 2015. A risk-mitigation approach to the management of induced seismicity. Journal of Seismology 19, 623–646.; Bommer, J.J., Dost, B., Edwards, B., Staord, P.J., van Elk, J., Doornhof, D., Ntinalexis, M., 2016. Developing an application-specific ground-motion model for induced seismicity. Bulletin of the Seismological Society of America 106, 158–173.; Bommer, J.J., Stafford, P.J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-Marek, A., Kruiver, P., van Elk, J., Doornhof, D., Ntinalexis, M., 2017. Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen gas field, the Netherlands. Earthquake Spectra 33, 481–498.; Boroumand, N. & Eaton, D.W., 2012 Comparing energy calculation: hydraulic fracture and Microseismic monitoring, in Proceedings of the Geo-Convention: Vision, Calgary, Canada, 14–18 May 2012.; Bossu, R., et al. (1996). Bull. Seismol. Soc. Am. 86, 959-971.; Bouchon, M., 1981. A Simple Method to calculate Green's functions in Elastic Layered Media, Bull. Seismol. Soc. Am. 71, 959e971.; Bourne, S., Oates, S., Van Elk, J., 2018. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk. Geophysical Journal International 213, 1693–1700.; Bourne, S.J., Oates, S.J., 2017. Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field. Netherlands Journal of Geosciences 96, s175–s182.; Brace, W. F. y D. L. Kohlstedt (1980), Limits on lithospheric stress impossed by laboratory experiments, Journal of Geophysical Research, 85, 6248-6252.; Brantut, N., Passelègue, F. X., Deldicque, D., Rouzaud, J. N. & Schubnel, A. Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology 44, 607–610, doi:10.1130/G37932.1 (2016).; Broccardo, M., Mignan, A., Wiemer, S., Stojadinovic, B., Giardini, D., 2017. Hierarchical Bayesian modeling of fluid-induced seismicity. Geophysical Research Letters 44, 11–357.; Brooks, E.M., Stein, S., Spencer, B.D., Salditch, L., Petersen, M.D., McNamara, D.E., 2018. Assessing earthquake hazard map performance for natural and induced seismicity in the central and eastern United States. Seismological Research Letters 89, 118–126.; Brudy, M., et al. (1997). J. Geophys. Res. 102, 18453-18475.; Bürgl, H., 1961. Sedimentación cíclica en el geosinclinal Cretáceo de la Cordillera Oriental de Colombia. Servicio Geológico Nacional, p. 60. Informe No. 1347.; Burke, K., 1988. Tectonic evolution of the Caribbean. Annu. Rev. Earth Planet. Sci. 16, 201e230.; Butler, K., Schamel, S., 1988. Structure along the eastern margin of the Central cordillera, upper Magdalena Valley, Colombia. J. S. Am. Earth Sci. 1, 109e120.; Bydlon, S.A., Gupta, A., Dunham, E.M., 2017. Using simulated ground motions to constrain near source ground-motion prediction equations in areas experiencing induced seismicity. Bulletin of the Seismological Society of America 107, 2078–2093.; Bydlon, S.A., Withers, K.B., Dunham, E.M., 2019. Combining Dynamic Rupture Simulations with Ground-Motion Data to Characterize Seismic Hazard from Mw 3 to 5.8 Earthquakes in Oklahoma and Kansas. Bulletin of the Seismological Society of America 109, 652–671.; Byerlee, J. D. (1978), Friction of rocks, Pure and Applied Geophysics, 116, 615-626.; Casero, P., Salel, J.F., Rosato, A., 1997. Multidisciplinary correlative evidences for pholyphase geological evolution of the foot-hills of the Cordillera oriental. In: VI Simposio Bolivariano- Exploración Petrolera en las Cuencas Subandinas, Cartagena de Indias, vol. 1, pp. 100e118.; Cediel, F., Shaw, R.P. & Cáceres, C., 2003. Tectonic assembly of the northern Andean block, in the circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, AAPG Mem., 79, 1–34.; Cesca, S. et al., 2014. The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophys. J. Int., 182(2), 941–953.; Chan, A.W. & Zoback, M.D., 2007. The role of hydrocarbon production on land subsidence and fault reactivation in the Louisiana coastal zone, Journal of Coastal Research, 23, 771-786.; Chang, K.W., Yoon, H., Martinez, M.J., 2018. Seismicity rate surge on faults after shut-in: Poroelastic response to fluid injection. Bulletin of the Seismological Society of America 108, 1889–1904.; Chang, Ying & Warren, Linda & Prieto, German. (2017). Precise Locations for Intermediate‐Depth Earthquakes in the Cauca Cluster, Colombia. Bulletin of the Seismological Society of America. 107. 1-15. 10.1785/0120170127.; Chen, R., Xue, X., Park, J., Datta-Gupta, A., King, M.J., 2020. New insights into the mechanisms of seismicity in the Azle area, North Texas. Geophysics 85, EN1–EN15.; Chen, X. et al., 2017. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks, Sci. Rep., 7. doi:10.1038/s41598-017-04992-z.; Chiarabba, C., De Gori, P., Faccena, C., Speranza, F., Deccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochem. Geophys. Geosyst.17, 16–27. http://dx.doi.org/10.1002/2015GC006048.; Connolly JAD. 1997. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J. Geophys. Res. 102:18149–73; Cooper, M.A., Addison, F.T., Álvarez, R., Coral, M., Graham, R.H., Hayward, A.B., Howe, S., Martínez, J., Naar, J., Peñas, R., Pulham, A., Taborda, A., 1995a. Basin development and tectonic history of the Llanos basin, Eastern Cordillera and middle Magdalena Valley, Colombia. AAPG Bull. 79 (10), 1421e1443.; Cooper, M.A., Addison, F.T., Alvarez, R., Hayward, A.B., Howe, S., Pulham, A.J., Taborda, A., 1995b. Basin development and tectonic history of the Llanos basin, Colombia. In: Tankard, A.J., Suárez, R., Welsink, H.J. (Eds.), Petroleum Basins of South America: AAPG Memoir 62, pp. 659e665.; Cornet, F.H., 2016. Seismic and aseismic motions generated by fluid injections, Geomech. Ener. Environ., 5, 42–54.; Cortés, M., Angelier, J., 2005. Current state of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics403, 29–58. http://dx.doi.org/10.1016/j.tecto.2005.03.020.; Coutant, O., 1989. Numerical Study of the diffraction of elastic waves by fluid-filled cracks. J. Geophys. Res. 94, 17805e17818.; Cremen, G., Gupta, A., Baker, J., 2017. Evaluation of ground motion intensities from induced earthquakes using “Did You Feel It?” data, in: 16th World Conf. on Earthquake Engineering.; Cremen, G., Werner, M.J., Baptie, B., 2020. A new procedure for evaluating ground-motion models, with application to hydraulic-fracture-induced seismicity in the United Kingdom. Bulletin of the Seismological Society of America 110, 2380–2397.; Dasilva, A., Gómez, Y., Villa, M.A., Yoris, F., Morales, D., 2014. Oil distribution in the carbonera formation, Arenas Basales unit. A case study in the Quifa and Rubiales Fields, Eastern Llanos basin, Colombia. In: Adapted from Extended Abstract Prepared for a Poster Presentation at AAPG International Conference & Exhibition, Cartagena, Colombia, September 8-11, 2013.; Davies, R., Foulger, G., Bindley, A. & Styles, P., 2013. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons, Mar. Petrol. Geol., 45, 171–185; Davis SD, Frohlich C. 1993. Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment. Seismol. Res. Lett. 64:207–24; Davis SD, Pennington WD. 1989. Induced seismic deformation in the Cogdell oil field of west Texas. Bull. Seismol. Soc. Am. 79:1477–95; De Barros, L., Guglielmi, Y.D., Cappa, F. & Duboeuf, L., 2018. Seismicity and fault aseismic deformation caused by fluid injection in decametric in-situ experiments, Comptes Rendus Geoscience, 350 (8), 464–475.; Dempsey, D., Suckale, J., 2017. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophysical Research Letters 44, 7773–7782.; Dengo, C., and M. Covey (1993), Structure of the eastern cordillera of Colombia: Implications for trap styles and regional tectonics, AAPG Bull., 77, 1315–1315.; Dieterich, J.H., Richards-Dinger, K.B. & Kroll, K.A., 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQ Sim, Seismol. Res. Lett., 86(4), 1102–1109.; Dodge DA, Beroza GC, Ellsworth WL. 1996. Detailed observations of California foreshock sequences: implications for the earthquake initiation process. J. Geophys. Res. 101:22371–92; Dost, B., Ruigrok, E., Spetzler, J., 2017. Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Netherlands Journal of Geosciences 96, s235–s245.; Duque-Caro, H., 1991. Contributions to the geology of the Pacific and Caribbean coastal areas of northwestern Colombia and South America: Princeton University, PhD. thesis, 132 p.; Eaton, D.W. & Igonin, N., 2018. What controls the maximum magnitude of injection-induced earthquakes? Leading Edge, 37(2), 135–140.; Eberhart-Phillips, D. (1986). Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times, Bull. Seismol. Soc. Am. 76, 1025–1052.; Ellsworth, W., 2013. Injection-induced earthquakes, Science, 341, 1225942.; Ellsworth, W.L., Llenos, A.L., McGarr, A.F., Michael, A.J., Rubinstein, J.L., Mueller, C.S., Petersen, M.D., Calais, E., 2015. Increasing seismicity in the US midcontinent: Implications for earthquake hazard. The Leading Edge 34, 618–626.; Espurt, N., F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset (2008), Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling, Tectonics, 27, TC3011, doi:10.1029/2007TC002175.; Etayo-Serna, F., 1979. Zonation of the Cretaceous of Central Colombia by ammonites, vol. 2. Publicación Especial INGEOMINAS, pp. 1e186; Fabre, A., 1983. La subsidencia de la Cuenca del Cocuy (Cordillera Oriental de Colombia) durante el Cretáceo y el Terciario, Segunda parte: Esquema de Evolución Tectónica. Geol. NorAndina 8, 49e61.; Farhadi, A., Pezeshk, S., Khoshnevis, N., 2018. Assessing the Applicability of Ground-Motion Models for Induced Seismicity Application in Central and Eastern North America. Bulletin of the Seismological Society of America 108, 2265–2277.; Farris, D. W., Jaramillo, C., Bayona, G., Restrepo-moreno, S. A., Montes, C., Cardona, A., Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007–1010.; Faul, U.H., Jackson, I., 2005. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett.234 (1–2), 119–134. http://dx.doi.org/10.1016/j.epsl.2005.02.008.; Flinch, J. F. (2003). Structural evolution of the Sinu-Lower Magdalena area (northern Colombia). AAPG Memoir, 79(1), 776–796.; Folesky, J.T., 2013. Rupture Propagation Imaging at Microseismic Scale. Berlin Freie University, Berlin.; Fouch, M., Rondenay, S., 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors 158, 292–320.; Freymuller, J., Kellogg, J., Vega, V., 1993. Plate motions in the North Andean region. J. Geophys. Res. 98 (21), 21853e21863.; Frohlich C, Walter JI, Gale JF. 2015. Analysis of transportable array (USArray) data shows earthquakes are scarce near injection wells in the Williston Basin, 2008–2011. Seismol. Res. Lett. 86:492–99; Frohlich, C. & Davis, S., 1993. Teleseismic b-values: or, much ado about 1.0, J. geophys. Res., 98, 631–644.; Frohlich, C., 2012. Two-year survey comparing earthquake activity and injection-well locations in Barnett Shale, Texas, Proc. Natl Acad. Sci. USA, 109, 13934–13938; Gailler, A., P. Charvis, and E. R. Flueh (2007), Segmentation of the Nazca and South American plates along the Ecuador subduction zone from wide angle seismic profiles, Earth Planet. Sci. Lett., 260, 444–464.; Galis, M., Ampuero, J.P., Mai, P.M. & Cappa, F., 2017. Induced seismicity provides insight into why earthquake ruptures stop, Sci. Adv., 3(12); Ghofrani, H., Atkinson, G.M., Schultz, R., Assatourians, K., 2019. Short-term hindcasts of seismic hazard in the western Canada sedimentary basin caused by induced and natural earthquakes. Seismological Research Letters 90, 1420–1435.; Gobel T. 2015. A comparison of seismicity rates and fluid-injection operations in Oklahoma and California: ¨ implications for crustal stresses. Lead. Edge 34:640–48; Godano, C. & Pingue, F., 2002. Is the seismic moment-frequency relation universal? Geophys. J. Int., 142, 193–198, 10.1046/j.1365-246x.2000.00149.; Goebel THW, Hosseini SM, Cappa F, Hauksson E, Ampuero JP, et al. 2016. Wastewater disposal and earthquake swarm activity at the southern end of the Central Valley, California. Geophys. Res. Lett. 43:1092–99; Goebels, T.H.W, Weingartenb, M., Chenc, X., Haffenerc, J. & Brodskya, E.E., 2017. The 2016 Fair view Oklahoma earthquakes: Evidence for long range poroelastic stress triggering at >40 km from fluid disposal wells, Earth planet. Sci. Lett., 472, 50–61.; Goertz-Allmann, B.P., Gibbons, S.J., Oye, V., Bauer, R. & Will, R., 2017. Characterization of induced seismicity patterns derived from internal structure in event clusters, J. geophys. Res., 122, 3875–3894.; Gómez, E.T., Jordan, R.W., Allmendinger, Cardozo, N., 2005. Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of northern Andes. Geol. Soc. Am. Bull. 117, 1272e1292.; Gómez, Y., Yoris, F., Rodríguez, J., Portillo, F., Araujo, Y., Pacific Rubiales Energy, 2010.; Gómez-Alba, S., Fajardo-Zarate, C.E. & Vargas, C.A., 2015. Stress field estimation based on focal mechanisms and back projected imaging in the Eastern Llanos Basin (Colombia), J. S. Am. Earth Sci., 71, 320–332; Gono, V., Olson, J.E., Gale, J.F., et al., 2015. Understanding the correlation between induced seismicity and wastewater injection in the Fort Worth basin, in: 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.; Grasso, J.R., 1992. Mechanics of seismic instabilities induced by the recovery of hydrocarbons, Pure and Applied Geophysics, 139, 507-534.; Graterol, V. & Rey, C.A., 2009. Mediciones Aero gravimétricas y magnetométricas en los Llanos Orientales de Colombia, X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia.; Grigoli, F. et al., 2018. The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea, Science, 360(6392), 1003–1006.; Grigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020a. Earthquakes induced by wastewater injection, part I: Model development and hindcasting. Bulletin of the Seismological Society of America 110, 2466–2482.; Grigoratos, I., Rathje, E., Bazzurro, P., Savvaidis, A., 2020b. Earthquakes induced by wastewater injection, part II: Statistical evaluation of causal factors and seismicity rate forecasting. Bulletin of the Seismological Society of America 110, 2483–2497.; Gupta, A., Baker, J.W., 2017. Estimating spatially varying event rates with a change point using Bayesian statistics: Application to induced seismicity. Structural safety 65, 1–11.; Gupta, A., Baker, J.W., 2019. A framework for time-varying induced seismicity risk assessment, with application in Oklahoma. Bulletin of Earthquake Engineering 17, 4475–4493.; Gutscher, M. A., W. Spakman, H. Bijward, and E. R. Engdahl (2000), Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin, Tectonics, 19, 814–833.; Gutscher, M., J. Malavieille, S. Lallemand, and J. Collot (1999), Tectonic segmentation of the North Andean margin: Impact of the Carnegie ridge collision, Earth Planet. Sci. Lett., 168, 255–270.; Hacker BR. 1997. Diagenesis and fault valve seismicity of crustal faults. J. Geophys. Res. 102:24459–67; Hacker, B. R., Peacock, S. M., Abers, G. A. & Holloway, S. D. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. 108, B12030, doi:10.1029/2001JB001129 (2003).; Haddad, M., Eichhubl, P., et al., 2020. Poroelastic Modeling of Basement Fault Reactivation Caused by Saltwater Disposal Near Venus, Johnson County, Texas, in: 54th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.; Hammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J. Geophys. Res.105 (B5), 10,975–10,986. http://dx.doi.org/10.1029/2000JB900041.; Havskov, J., Ottemoller, L., 2000. SEISAN. The earthquake analysis software. Institute of solid Earth Physics. University of Bergen, Bergen, Norway, p. 250.; Healy, J., Rubey, W., Griggs, D. & Raleigh, C., 1968. The Denver earthquakes, Science, 161, 1301–1310.; Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Muller B. 2010. Global crustal stress pattern based ¨ on the World Stress Map database release 2008. Tectonophysics 482:3–15; Heidbach, O., M. Rajabi, X. Cui, K. Fuchs, B. Müller, J. Reinecker, K. Reiter, M. Tingay, F. Wenzel, F. Xie, M. O. Ziegler, M.-L. Zoback, and M. D. Zoback. 2018, The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744,484-498. http://doi.org/10.1016/j.tecto.2018.07.007; Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B., 2009. The World Stress Map Based on the Database Release 2008, Equatorial Scale 1:46,000,000, Commission for the Geological Map of the World, Paris. http://dx.doi.org/10.1594/GFZ.WSM.Map2009.; Hennings, P.H., Lund Snee, J.E., Osmond, J.L., DeShon, H.R., Dommisse, R., Horne, E., Lemons, C., Zoback, M.D., 2019. Injection-induced seismicity and fault-slip potential in the Fort Worth Basin, Texas. Bulletin of the Seismological Society of America 109, 1615–1634.; Herrmann, R.B., Park, S.-K., Wang, C.-Y., 1981. The Denver earthquakes of 1967e1968. Bull. Seismol. Soc. Am. 71, 731e745.; Hettner, A., 1892. Die kordillere von Bogota: Ergzh zu Petermanns Mitteilungen Bd. 22. Erganzungsheft 104, 1e131.; Hickman SH, Healy JH, ZobackMD. 1985. In situ stress, natural fracture distribution, and borehole elongation in the Auburn geothermal well, Auburn, New York. J. Geophys. Res. 90:5497–512; Hitzman, M.W. et al., 2012. Induced Seismicity Potential in Energy Technologies, The National Academies Press, Washington D.C.; Holland AA. 2013a. Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bull. Seismol. Soc. Am. 103:1784–92; Holland AA. 2013b. Optimal fault orientations within Oklahoma. Seismol. Res. Lett. 84:876–90; Hornbach MJ, Jones M, Scales M, DeShon HR, Magnani MB, et al. 2016. Ellenburger wastewater injection and seismicity in North Texas. Phys. Earth Planet. Inter. 261:54–68; Horton, S., 2012. Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake. Seismological Research Letters 83, 250–260.; Houston, H. 4.13 - Deep Earthquakes. In: Schubert, G. (ed). Treatise on Geophysics (Second Edition). Elsevier, Oxford, pp 329–354 (2015).; Hsieh PA, Bredehoeft JD. 1981. A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J. Geophys. Res. 86:903–20; Huang Y, Beroza GC, Ellsworth WL. 2016. Stress drop estimates of potentially induced earthquakes in the Guy-Greenbrier sequence. J. Geophys. Res. 121:6597–607; Huang, Y., Ellsworth, W.L., Beroza, G.C., 2017. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science advances 3, e1700772.; Hubach, E., 1957. Contribución a las unidades estratigráficas de Colombia, (enumeración regional, de más reciente a más antiguas). Servicio Geológico Nacional, p. 165. Informe no. 1212.; Idárraga-García, J., Kendall, J.-M., & Vargas, C. A. (2016). Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry, Geophysics, Geosystems, 17(9), 3655–3673. https://doi.org/10.1002/2016GC006323.; Ishii, M., Shearer, P., Houston, H., Vidale, J., 2007. Teleseismic P wave imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra earthquake ruptures using the Hi-net array. JGR 112.; Jadamec, M.A., Billen, M.I., 2010. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature465 (7296), 338–341. http://dx.doi.org/10.1038/nature09053.; Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293(5534), 1460–1463.; Jung, H., Green, H. W. & Dobrzhinetskaya, L. F. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428, 545–549, doi:10.1038/nature02412 (2004).; Kagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison, J. geophys. Res., 102, 2835–2852, doi:10.1029/96JB03386.; Kagan, Y.Y., 1999. Universality of the seismic moment-frequency relation, Pure appl. Geophys., 15, 537–573.; Kanamori, H., 1977. The energy release in great earthquakes, J. geophys. Res., 82 (20), 2981–2987.; Kang, J.Q., Zhu, J.B., Zhao, J., 2019. A review of mechanisms of induced earthquakes: from a view of rock mechanics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 5, 171–196.; Kao, H., Shan, S.-J., 2004. The source-scanning algorithm: mapping the distribution of seismic sources in time and space. GJI 157, 589e594.; Karato, S., 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett.20 (15), 1623–1626. http://dx.doi.org/10.1029/93GL01767.; Kawakatsu, H. & Watada, S. Seismic Evidence for Deep-Water. Science 316, 1468–1471, doi:10.1126/science.1140855 (2007).; Keleman, P.B., Hirth, G., 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature446, 787–790.; Kellogg, J., Vega, V., 1995. Tectonic development of Panama, Costa Rica, and Colombian Andes: constraints from global positioning system geodetic studies and gravity. Spec. Pap. Geol. Soc. Am. 295, 75e90.; Keranen KM, Savage HM, Abers GA, Cochran ES. 2013. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology 41:699–702; Keranen, K.M., Weingarten, M., 2018. Induced seismicity. Annual Review of Earth and Planetary Sciences 46, 149–174.; Keranen, K.M., Weingarten, M., Abers, G.A., Bekins, B.A. & Ge, S., 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345(6195), 448–451.; Khosravikia, F., Clayton, P., Nagy, Z., 2019. Artificial neural network-based framework for developing ground-motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas. Seismological Research Letters 90, 604–613.; Kikuchi, M., Kanamori, H., 1991. Inversion of complex body waves III. Bull. Seismol. Soc. Am. 81, 2335e2350.; Kim, K.H., Ree, J.H., Kim, Y.H., Kim, S., Kang, S.Y. & Seo, W., 2018. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, 360(6392), 1007–1009.; Kim, W.Y., 2013. Induced seismicity associated with fluid injection into deep well in Youngstown, Ohio, J. geophys. Res., 18, 3506–3518.; King VM, Block LV, Yeck WL, Wood CK, Derouin SA. 2014. Geological structure of the Paradox Valley Region, Colorado, and relationship to seismicity induced by deep well injection. J. Geophys. Res. 119:4955– 78; Kirby, S.H., Stein, S., Okal, E., Rubie, D.C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys.34, 261–306.; Kneller, E.A., van Keken, P.E., Karato, S.-I., Park, J., 2005. B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett.429, 781–797. http://dx.doi.org/10.1016/j.epsl.2005.06.049.; Kohlstedt, D. L., B. Evans y S. J. Mackwell (1995), Strength of the lithosphere: Constraints imposed by laboratory experiments, Journal of Geophysical Research, 100, 17587-17602.; Korhonen, J.V. & Fairhead, J. & Hamoudi, M. & Hemant, K. & Lesur, V. & Mandea, Mioara & Maus, Steffany & Purucker, M. & Ravat, Dhananjay & Sazonova, T. & Erwan, Thebault & Ccgm, Cgmw. (2007). Magnetic Anomaly Map of the World 1:50M (Release: July 2007).; Koulakov I. (2009), LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bulletin of the Seismological Society of America, 99(1), 194-214, doi:10.1785/0120080013.; Koulakov, I., A. Jakovlev, and B. G. Luehr (2009b), Anisotropic structure beneath central Java from local earthquake tomography, Geochem. Geophys. Geosyst., 10 Q02011, doi:10.1029/2008GC002109.; Koulakov, I., and S. Sobolev (2006). Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data, Geophys. J. Int. 164, no. 1 218–235.; Krüger, F., Ohrnberger, M., 2005. Tracking the rupture of the Mw ¼ 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature 435, 937e941.; Lambert C. 2017. Structural controls on fluid migration and seismic variability in northern Oklahoma. Master’s Thesis, Dep. Earth Atmos. Sci., Cornell Univ., Ithaca, NY; Langenbruch, C., Shapiro, S.A., 2015. Quantitative analysis of rock stress heterogeneity: Implications for the seismogenesis of fluid-injection-induced seismicity. Geophysics 80, WC73–WC88.; Langenbruch, C., Weingarten, M., Zoback, M.D., 2018. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nature communications 9, 3946.; Langenbruch, C., Zoback, M.D., 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Science advances 2, e1601542.; Lara, M., Cardona, A., Monsalve, G., Yarce, J., Montes, C., Valencia, V López-Martínez, M. (2013). Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America Journal of South American Earth Sciences, 45, 24–41. https://doi.org/10.1016/j.jsames.2012.12.006; Lengliné, O., Boubacar, M. & Schmittbuhl, J., 2017. Seismicity related to the hydraulic stimulation of GRT1, Rittershoffen, France, Geophys. J. Int., 208(3), 1704–1715.; Liener, B.R., Havskov, J., 1995. A computer program for locating earthquakes locally, regionally and globally. Seismol. Res. Lett. 66, 26e36. http://dx.doi.org/10.1785/gssrl.66.5.26.; Liu E, Crampin S, Queen JH. 1991. Fracture detection using crosshole surveys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, Oklahoma. Geophys. J. Int. 107:449–63; Llenos AL, Michael AJ. 2013. Modeling earthquake rate changes in Oklahoma and Arkansas: possible signatures of induced seismicity. Bull. Seismol. Soc. Am. 103:285; Lui, S.K., Huang, Y., 2019. Do injection-induced earthquakes rupture away from injection wells due to fluid pressure change? Bulletin of the Seismological Society of America 109, 358–371.; Lund, B., Slunga, R., 1999. Stress tensor inversion using detailed microearthquake information and stability constraints: application to Olfus in southwest Iceland. J. Geophys. Res. 104, 14 947e14 964.; Majer EL, Baria R, Stark M, Oates S, Bommer J, et al. 2007. Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–222; Malin, P.E., et al. (1988). Bull. Seismol. Soc. Am. 78, 401-420.; Manga M, Wang CY, Shirzaei M. 2016. Increased stream discharge after the 3 September 2016 Mw 5.8 Pawnee, Oklahoma earthquake. Geophys. Res. Lett. 43:11588–94; Maxwell, S., Zhang, F., Damjanac, B., 2015. Geomechanical modeling of induced seismicity resulting from hydraulic fracturing. The Leading Edge 34, 678–683.; Maxwell, S.C., Rutledge, J., Jones, R., & Fehler, M., 2010, Petroleum reservoir characterization using downhole microseismic monitoring, Geophysics, 75, 75A129-75A137.; McCourt, W.J., Aspden, J.A., Brook, M., 1984. New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J. Geol. Soc. Lond. 141, 831e845.; McGarr, A. & Barbour, A.J., 2018. Injection-induced moment released can also be aseismic, Geophys. Res. Lett., 45(11)5344–5311.; McGarr, A. (1992). Pure Appl. Geophys. 139, 781-800.; McGarr, A. and D. Simpson (1997). In: "Rock bursts and Seismicity in Mines," pp. 385-396, Balkema.; McGarr, A., 1976. Seismic moments and volume changes, J. geophys. Res., 81(1):1487–1494.; McGarr, A., 2014. Maximum magnitude earthquakes induced by fluid injection, J. geophys. Res., 119, 1008–1019.; McGarr, A., Simpson, D., Seeber, L., 2002. Case histories of induced and triggered seismicity. In: Lee, W., Kanamori, H., Jennings, P., Kisslinger, C. (Eds.), International Handbook of Earthquake and Engineering Seismology Academic Press, London, pp. 647e664. Chapter 40.; McNamara, D. et al., 2015. Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma, Lead. Edge, 34(6), 628–639.; Megard, F., 1987. Cordillera Andes and Marginal Andes: A Review of Andean Geology North of the Arica Elbow (18 Deg. S), in J. W. H.; Michael, A.J., 1984. Determination of stress from slip data: faults and folds. J. Geophys. Res. 89, 11 517e11 526.; Michael, A.J., 1987. Use of focal mechanisms to determine stress: a control study. J. Geophys. Res. 92 (B1), 357e368.; Mignan, A., 2016. Static behaviour of induced seismicity. Nonlinear Processes in Geophysics 23, 107–113.; Mignan, A., Broccardo, M., Wiemer, S., Giardini, D., 2017. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific reports 7, 1–10.; Mishra, O. P. & Zhao, D. P. Seismic evidence for dehydration embrittlement of the subducting Pacific slab. Geophys. Res. Lett. 31, L09610, doi:10.1029/2004GL019489 (2004).; Miyazawa, M., Venkataraman, A., Snieder, R., & Payne, M.A., 2008. Analysis of microearthquake data at Cold Lake and its applications to reservoir monitoring, Geophysics, 73, 015-021.; Mogi, K., 1967. Regional variation in magnitude - frequency relation of earthquake, Bull. Earthq. Res. Inst., 45, 313–325.; Molina, Indira & Velasquez, Juan & Rubinstein, Justin & Garcia, Alexander & DIONICIO, VIVIANA. (2020). Seismicity induced by massive wastewater injection near Puerto Gaitán, Colombia. Geophysical Journal International. 223. 777-791. 10.1093/gji/ggaa326.; Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V., & Jaramillo, C. (2010). Clockwise rotation of the Santa Marta Massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería Basins. Journal of South American Earth Sciences, 29(4), 832–848. https://doi.org/10.1016/j.jsames.2009.07.010; Montgomery, S., 1992. Petroleum potential of upper and middle Magdalena basins, Colombia, part 2: plate tectonics, reservoirs, source rocks, and field histories. Pet. Front. 9, 67.; Mora, A., et al., 2010. The eastern foothills of the eastern cordillera of Colombia: an example of multiple factors controlling structural styles and active tectonics, Bull. Geol. Soc. Am., 122 (11–12), 1846–1864.; Mora-Bohórquez, J. A., Ibánez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., & Serna, L. (2017). Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central Andes against the Caribbean basin. Journal of South American Earth Sciences, 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001; Mousavi, S.M., Beroza, G.C., Hoover, S.M., 2018. Variabilities in probabilistic seismic hazard maps for natural and induced seismicity in the central and eastern United States. The Leading Edge 37, 141a1–141a9.; Mukuhira, Y., Asanuma, H., Niitsuma, H. & Haring, M.O., 2013. Characteristics of large-magnitude microseismic events recorded during and after stimulation of a geothermal reservoir at Basel, Switzerland, Geothermics, 45, 1–17.; Nicholson, C., Roeloffs, E., Wesson, R.L., 1992. Triggered earthquakes and deep well activities. Pure Appl. Geophys. 139, 561e578.; Novakovic, M., Atkinson, G.M., Assatourians, K., 2018. Empirically calibrated ground-motion prediction equation for Oklahoma. Bulletin of the Seismological Society of America 108, 2444– 2461.; Ojeda, A., & Havskov, J. (2001). Crustal structure and local seismicity in Colombia. Journal of Seismology, 5(4), 575–593. https://doi.org/10.1023/A:1012053206408; Pardo, A., Barrero, D., Vargas, C.A., Martínez, J., 2007. Sedimentary Basins of Colombia: Geological Framework. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de Hidrocarburos ANH.; Pardo-Casas, F., Molnar, P., 1987. Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6, 233e248.; Pennington, W. D. (1981), Subduction of the eastern Panama basin and seismotectonics of northwestern South America, J. Geophys. Res., 86(B11), 10753-10770, doi:10.1029/JB086iB11p10753.; Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Llenos, A.L., Ellsworth, W.L., Michael, A.J., Rubinstein, J.L., McGarr, A.F., Rukstales, K.S., 2016. Seismic-hazard forecast for 2016 including induced and natural earthquakes in the central and eastern United States. Seismological Research Letters 87, 1327–1341.; Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Rubinstein, J.L., Llenos, A.L., Michael, A.J., Ellsworth, W.L., McGarr, A.F., Holland, A.A., et al., 2015. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: Results of 2014 workshop and sensitivity studies.; Petersen, M.D., Mueller, C.S., Moschetti, M.P., Hoover, S.M., Shumway, A.M., McNamara, D.E., Rennolet, S.B., Moschetti, M.P., Thompson, E.M., Yeck, W.L., 2018. A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas. Earthquake Spectra 34, 1–20.; Pilger Jr., R.H., 1984. Cenozoic plate kinematics subduction and magmatism: south American Andes. J. Geol. Soc. Lond. 141, 793e802.; Porritt, R. W., T. W. Becker, and G. Monsalve (2014), Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia, Geophys. Res. Lett., 41, 8775-8783, doi:10.1002/2014GL061958.; Poveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction related magmatism in the overriding plate. Journal of Geophysical Research: Solid Earth, 123, 1459–1485. https://doi.org/10.1002/2017JB014688; Poveda, E., Monsalve, G., & Vargas, C. A. (2015). Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120, 2408–2425. https://doi.org/10.1002/2014JB011304; Prieto, G.A., Beroza, G.C., Barrett, S.A., López, G.A., Florez, M., 2012. Earthquake nests as natural laboratories for the study of intermediate-depth earth-quake mechanics. Tectonophysics 570–571, 42–56. http://dx.doi.org/10.1016/j.tecto.2012.07.019.; Raleigh CB, Healy JH, Bredehoeft JD. 1976. An experiment in earthquake control at Rangely, Colorado. Science 191:1230–37; Rubinstein JL, Ellsworth WL, McGarr A, Benz HM. 2014. The 2001–present induced earthquake sequence in the Raton basin of northern New Mexico and southern Colorado. Bull. Seismol. Soc. Am. 104:2162–81; Rubinstein, J.L. & Babaie Mahani, A., 2015. Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhaced Oil Recovery, and Induced Seismicity, Seismol. Res. Lett., 86, 1060–1067, 10.1785/0220150067.; Rubinstein, J.L., Ellsworth, W.L., Dougherty, S.L., 2018. The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America 108, 674–689.; Rubinstein, J.L., Ellsworth, W.L., McGarr, A., Benz, H.M., 2014. The 2001–present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado. Bulletin of the Seismological Society of America 104, 2162–2181.; Rutledge, J.T. & Phillips, W.S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas, Geophysics, 68, 441-452.; Saffer DM, Tobin HJ. 2011. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39:157–86; Salazar, J. M., and C. A. Vargas (2015). Fractal dimension and seismotectonic deformation rates along an inter-plate setting: Seismic regime along the Caribbean plate boundary zone, in Petroleum Geology and Potential of the Colombian Caribbean Margin, C. Bartolini and P. Mann (Editors), AAPG Memoir 108, Chapt. 11, 271–294, ISBN13: 978-0-89181-388-0.; Sanchez, J., & Mann, P. (2015). Integrated structural and basinal analysis of the Cesar-Rancheria Basin, Colombia: Implications for its tectonic history and petroleum systems. In C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin, AAPG Memoir (Vol. 108, pp. 431–470). Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/13531945M1083648; Sarkar, S., 2008. Reservoir monitoring using induced seismicity at a petroleum field in Oman: PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, US.; Savage HM, Keranen KM, Schaff D, Dieck C. 2017a. Possible precursory signals in damage zone foreshocks. Geophys. Res. Lett. 44:5411–17; Savvaidis, A., Lomax, A., Breton, C., 2020. Induced Seismicity in the Delaware Basin, West Texas, is Caused by Hydraulic Fracturing and Wastewater Disposal. Bulletin of the Seismological Society of America 110, 2225–2241.; Scanlon, B.R., Weingarten, M.B., Murray, K.E., Reedy, R.C., 2019. Managing basin-scale fluid budgets to reduce injection-induced seismicity from the recent US shale oil revolution. Seismological Research Letters 90, 171–182.; Schoenball, M., Ellsworth, W.L., 2017. A systematic assessment of the spatiotemporal evolution of fault activation through induced seismicity in Oklahoma and southern Kansas. Journal of Geophysical Research: Solid Earth 122, 10–189.; Schultz, R., Atkinson, G., Eaton, D.W., Gu, Y.J. & Kao, H., 2018. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play, Science, 359(6373), 304–308.; Schultz, R., Beroza, G., Ellsworth, W., Baker, J., 2020. Risk-Informed Recommendations for Managing Hydraulic Fracturing–Induced Seismicity via Traffic Light Protocols. Bulletin of the Seismological Society of America 110, 2411–2422.; Schultz, R., Quitoriano, V., Wald, D.J., Beroza, G.C., 2021. Quantifying nuisance ground motion thresholds for induced earthquakes. Earthquake Spectra, 8755293020988025.; Sella, G., Dixon, T.H., Mao, A., 2002. REVEL: a model of recent plate velocities from space geodesy. J. Geophys. Res.107 (B4). http://dx.doi.org/10.1029/2000JB000033. 2081.; Shapiro, S.A., Dinske, C., Langenbruch, C. & Wenzel, F., 2010. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations, Leading Edge, 29(3), 304–309.; Shapiro, S.A., Huenges, E. & Borm, G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site, Geophys. J. Int., 131(2), F15–F18.; Shapiro, S.A., Rothert, E., Rath, V. & Rindschwentner, J., 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity, Geophysics, 67, 212–220.; Shelly DR, Moran SC, Thelen WA. 2013. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophys. Res. Lett. 40:1506–12; Sibson RH. 2000. Fluid involvement in normal faulting. J. Geodyn. 29:469–99; Skoumal RJ, Brudzinski MR, Currie BS. 2015a. Distinguishing induced seismicity from natural seismicity in Ohio: demonstrating the utility of waveform template matching. J. Geophys. Res. 120:6284–96; Skoumal RJ, Brudzinski MR, Currie BS. 2015b. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio. Bull. Seismol. Soc. Am. 105:189–97; Skoumal RJ, Brudzinski MR, Currie BS. 2016. An efficient repeating signal detector to investigate earthquake swarms. J. Geophys. Res. 121:5880–97; Skoumal, R.J., Barbour, A.J., Brudzinski, M.R., Langenkamp, T., Kaven, J.O., 2020. Induced seismicity in the Delaware Basin, Texas. Journal of Geophysical Research: Solid Earth 125, e2019JB018558.; Smalley PC, Muggeridge AH. 2010. Reservoir compartmentalization: Get it before it gets you. Geol. Soc. Lond. Spec. Publ. 347:25–41; Snee, J.E.L., Zoback, M.D., 2018. State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity. The Leading Edge 37, 127–134.; Sokos, E.N., Zahradnik, J., August 2008. ISOLA a Fortran code and a MATLAB GUI to perform multiple-point source inversion of seismic data. Comp. Geosci 34 (8), 967e977. http://dx.doi.org/10.1016/j.cageo.2007.07.005. ISSN 0098-3004.; Spottiswoode, S.M. and A. McGarr (1975). Bull. Seismol. Soc. Am. 65, 93-112.; Suckale, J., 2010. Induced seismicity in hydrocarbon fields, Chapter 2 in advances in Geophysics, 51.; Sumy DF, Cochran ES, Keranen KM, Wei M, Abers GA. 2014. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J. Geophys. Res. 119:1904–23; Sumy DF, Neighbors CJ, Cochran ES, Keranen KM. 2017. Low stress drops observed for aftershocks of the 2011 Mw 5.7 Prague, Oklahoma, earthquake. J. Geophys. Res. 122:3813–34; Syracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., & Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050; Taboada, A., L.A. Rivera, A. Fuenzalida, A. Cisternas, H. Philip, H. Bijwaard, J. Olaya, and C. Rivera, 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics. v.19, no. 5, p. 787-813.; Takei, Y., 2002. Effect of pore geometry on VP/VS: from equilibrium geometry to crack. J. Geophys. Res.107 (B2), 2043. http://dx.doi.org/10.1029/2001JB000522.; Townend J, Zoback MD. 2000. How faulting keeps the crust strong. Geology 28:399–402; Trenkamp, R., J. Kellogg, J. Freymueller and H. Mora, (2002). Wide plate margin, southern Central America and northwestern South America, CASA GPS observations, Journal of South American Earth Sciences 15, 157-171, Elsevier.; Trugman, D.T., Savvaidis, A., 2021. Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research Letters; Tsapanos, T., 1990. b-Value of two tectonic parts in the circum-Pacific belt, Pure appl. Geophys, 143, 229–242, doi:10.1007/BF00876999.; van der Elst NJ, Savage HM, Keranen KM, Abers GA. 2013. Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States. Science 341:164–67; van der Elst, N.J., Page, M.T., Weiser, D.A., Goebel, T.H.W. & Hosseini, S.M., 2016. Induced earthquake magnitudes are as large as (statistically) expected, J. geophys. Res., 121, 4575–4590.; van der Hilst, R., Mann, P., 1994. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology22, 451–454.; van der Sluis, A., and H. A. van der Vorst (1987). Numerical solution of large, sparse linear algebraic systems arising from tomographic problems, in Seismic Tomography, G. Nolet (Editor), Reidel, Dordrecht, 49–83.; van Elk, J., Doornhof, D., Bommer, J.J., Bourne, S.J., Oates, S.J., Pinho, R., Crowley, H., 2017. Hazard and risk assessments for induced seismicity in Groningen. Netherlands Journal of Geosciences 96, s259–s269; van Thienen-Visser, K., Breunese, J., 2015. Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge 34, 664–671.; Vargas, C.A. & Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama arc-indenter with northwestern South America Bull, Seismol. Soc. Am., 103(3) 2025–2046.; Vavrycuk, V., 2014. Seismology iterative joint inversion for stress and fault orientations from focal mechanisms. GJI Geophys. J. Int. 199, 69e77 (Praha, Czech Republic).; Verdon, J.P., Bommer, J.J., 2020. Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. Journal of Seismology, 1–26.; Walker, K., Shearer, P., 2009. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili Mw 7.8 and Denali fault Mw 7.9 strike-slip earthquakes with global P wave back projection imaging. J. Geophys. Res. 114.; Walsh, F.R., Zoback, M.D., 2015. Oklahoma’s recent earthquakes and saltwater disposal. Science advances 1, e1500195.; Walters, R.J., Zoback, M.D., Baker, J.W., Beroza, G.C., 2015. Characterizing and responding to seismic risk associated with earthquakes potentially triggered by fluid disposal and hydraulic fracturing. Seismological Research Letters 86, 1110–1118.; Wang, R., Gu, Y.J., Schultz, R., Chen, Y., 2018. Faults and non-double-couple components for induced earthquakes. Geophysical Research Letters 45, 8966–8975.; Wang, Z., Carpenter, N.S., Zhang, L., Woolery, E.W., 2017. Assessing potential ground-motion hazards from induced earthquakes. Natural Hazards Review 18, 04017018; Weatherley DK, Henley RW. 2013. Flash vaporization during earthquakes evidenced by gold deposits. Nat. Geosci. 6:294; Wech, A., Kenneth, W., Creager, C., Houston, H. & Vidale, J., 2010. An earthquake like magnitude–frequency distribution of slow slip in Northern Cascadia, Geophys. Res. Lett., 37, L22310, doi:10.1029/2010GL044881.; Weingarten M, Ge S, Godt JW, Bekins BA, Rubinstein JL. 2015. High-rate injection is associated with the increase in US mid-continent seismicity. Science 348:1336–40; Wesnousky, S.G., 1999. Crustal deformation processes and the stability of the Gutenberg-Richter relationship. Bull. seism. Soc. Am., 89 (4),1131–1137.; White, J.A. & Foxall, W., 2016. Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges, Int. J. Greenhouse Gas Control, 49, 413–424.; Wibberley CA, Gonzalez-Dunia J, Billon O. 2017. Faults as barriers or channels to production-related flow: insights from case studies. Pet. Geosci. 23:134–47; Wiemer, S. & Wyss, M., 2000. Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan, Bull. Seism. Soc. Am., 90, 859–869.; Wu, Q., Chapman, M., Chen, X., 2018. Stress-Drop Variations of Induced Earthquakes in Oklahoma Stress-Drop Variations of Induced Earthquakes in Oklahoma. Bulletin of the Seismological Society of America 108, 1107–1123.; Yeck WL, Weingarten M, Benz HM, McNamara DE, Bergman EA, et al. 2016. Far-field pressurization likely caused one of the largest injections induced earthquakes by reactivating a large preexisting basement fault structure. Geophys. Res. Lett. 43:10198–207; Yoris, F., Lugo, J., 2009. Características de la trampa estratigráfica de Carbonera basal en el Sureste de Llanos Orientales. In: X Simposio Bolivariano Exploración Petrolera en Cuencas Subandinas, Cartagena, Colombia, Julio, 2009.; Zakharova NV, Goldberg DS. 2014. In situ stress analysis in the northern Newark Basin: implications for induced seismicity from CO2 injection. J. Geophys. Res. 119:2362–74; Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., Majer, E. & Bruhn, D., 2014. Analysis of induced seismicity in geothermal reservoirs—an overview, Geothermics, 52, 6–21.; Zang, A., Yoon, J.S., Stephansson, O. & Heidbach, O., 2013. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity, Geophys. J. Int., 195(2), 1282–1287.; Zarifi, Z., J. Havskov, and A. Hanyga (2007), An insight into the Bucaramanga nest, Tectonophysics, 443, 93–105.; Zhang Y, Person M, Rupp J, Ellett K, Celia MA, et al. 2013. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. Groundwater 51:525–38; Zhang, Z., Schwartz, S., 1994. Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas fault system. Journal of Geophysical Research 99, 9651–9661.; Zoback, M.D. and J.H. Healy (1984). Ann. Geophys. 2, 689-698.; https://repositorio.unal.edu.co/handle/unal/84799; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
9
المؤلفون: Fandiño Toro, Hermes Alexander
المساهمون: Branch Bedoya, John William, Restrepo Martinez, Alejandro, GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial, GPIMA: Grupo de Promoción e Investigación en Mecánica Aplicada
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: 620 - Ingeniería y operaciones afines, Termografía, Fotoelasticidad, Procesamiento digital de imágenes, Stress field, Termografía infrarroja, Esfuerzo térmico, Photoelasticity, 003 - Sistemas [000 - Ciencias de la computación, información y obras generales], Desplazamiento de franjas, Campo de esfuerzos, Infrared thermography, Digital image processing, Termoelasticidad, Fringe pattern displacement
وصف الملف: 210 páginas; application/pdf
-
10Academic Journal
المؤلفون: Núñez Vallejo, R.
مصطلحات موضوعية: B-value, Campo de esfuerzos, Enjambres símicos, Mecanismo focal compuesto, Zonas de actividad sísmica, Tectónica de placas, Seismic zones, Plate tectonics
وصف الملف: 8 p.; application/pdf
Relation: Reproducción del documento original; http://hdl.handle.net/11674/6053
الاتاحة: http://hdl.handle.net/11674/6053
-
11Academic Journal
المؤلفون: Ken Kurokawa, Kenshiro Otsuki, Toshiaki Hasenaka
المصدر: Geofísica Internacional, Vol 34, Iss 3, Pp 309-320 (1995)
مصطلحات موضوعية: tectónica, campo de esfuerzos, volcanes, fractales, faja volcánica trans-mexicana, michoacán, Geophysics. Cosmic physics, QC801-809
وصف الملف: electronic resource
-
12
المؤلفون: Briñez de león, Juan Carlos
المساهمون: Restrepo Martínez, Alejandro, Branch Bedoya, John William, Universidad Nacional de Colombia - Sede Medellín, GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial
مصطلحات موضوعية: Color fringe patterns, Birrefringencia, Birefringence, Stress field, Procesamiento digital de secuencias de imágenes, Patrones de franjas de color, Computational hybrid methods, 003 - Sistemas [000 - Ciencias de la computación, información y obras generales], Pattern recognition, Campo de esfuerzos, Métodos híbridos computacionales, Digital image sequence processing, Fotoelasticidad digital, Digital photoelasticity, Reconocimiento de patrones
وصف الملف: application/pdf
-
13Academic Journal
المؤلفون: Lacan, P., Ortuño, M.
المصدر: Journal of Iberian Geology; Vol. 38 Núm. 1 (2012); 9-30 ; Journal of Iberian Geology; Vol 38 No 1 (2012); 9-30 ; 1886-7995 ; 1698-6180
مصطلحات موضوعية: Neotectonics, Seismogenetic sources, Stress field, Geodynamics, Isostatic compensation of erosion, Neotectónica, Fuentes sismogenéticas, Campo de esfuerzos, Geodinámica, Compensación isostática a la erosión
وصف الملف: application/pdf
Relation: https://revistas.ucm.es/index.php/JIGE/article/view/39203/37800; https://revistas.ucm.es/index.php/JIGE/article/view/39203
-
14Academic Journal
المؤلفون: C. L. Liesa Carrera, J. L. Simón Gómez
المصدر: Estudios Geologicos, Vol 50, Iss 1-2, Pp 47-57 (1994)
مصطلحات موضوعية: falla, campo de esfuerzos, tectónica alpina, cordillera ibérica, Geology, QE1-996.5
وصف الملف: electronic resource
-
15Dissertation/ Thesis
المؤلفون: Fandiño Toro, Hermes Alexander
المساهمون: Branch Bedoya, John William, Restrepo Martinez, Alejandro, GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial, GPIMA: Grupo de Promoción e Investigación en Mecánica Aplicada
مصطلحات موضوعية: 000 - Ciencias de la computación, información y obras generales::003 - Sistemas, 620 - Ingeniería y operaciones afines, Termografía, Esfuerzo térmico, Fotoelasticidad, Termografía infrarroja, Termoelasticidad, Campo de esfuerzos, Procesamiento digital de imágenes, Desplazamiento de franjas, Photoelasticity, Infrared thermography, Stress field, Digital image processing, Fringe pattern displacement
وصف الملف: 210 páginas; application/pdf
Relation: J. C. Briñez, A. R. Martı́nez, and J. W. Branch, “Computational hybrid phase shifting technique applied to digital photoelasticity,” Optik, vol. 157, pp. 287–297, 2018.; R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance analysis,” IEEE Transactions on Consumer electronics, vol. 51, no. 4, pp. 1260–1267, 2005.; S. Yamanaka, “Solid state color camera,” Oct. 18 1977. US Patent 4,054,906.; E. Rodriguez and F. Filisko, “Temperature changes in poly (methyl methacrylate) and high-density polyethylene during rapid compressive deformation,” Polymer Engineering & Science, vol. 26, no. 15, pp. 1060–1065, 1986.; R. Vergara-Puello, H. A. Fandiño-Toro, and A. Restrepo-Martı́nez, “Stresses analysis through digital photoelasticity and infrared thermography in an epoxy sample affected by cyclic loads: A cost-effective proposal,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 115090B, International Society for Optics and Photonics, 2020.; D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” JOSA A, vol. 11, no. 1, pp. 107–117, 1994.; M. Ekman and A. Nurse, “Absolute determination of the isochromatic parameter by load-stepping photoelasticity,” Experimental mechanics, vol. 38, no. 3, pp. 189–195, 1998.; E. Patterson and Z. Wang, “Towards full field automated photoelastic analysis of complex components,” Strain, vol. 27, no. 2, pp. 49–53, 1991.; M. Rahman, N. Schott, and L. K. Sadhu, “Glass transition of abs in 3d printing,” in COMSOL Conference, Boston, MA, 2016.; J. Gough Phil. Mem., 2nd series, vol. 1, p. 288.; M. H. Belgen, “Structural stress measurements with an infrared radiometer(structural stress measurements in terms of induced temperature increments, using ir radiometer),” ISA transactions, vol. 6, pp. 49–53, 1967.; A. Wong, N. Rajic, and Q. Nguyen, “50th anniversary article: Seeing stresses through the thermoelastic lens—a retrospective and prospective from an australian viewpoint,” Strain, vol. 51, no. 1, pp. 1–15, 2015.; C. Middleton, A. Gaio, R. Greene, and E. Patterson, “Towards automated tracking of initiation and propagation of cracks in aluminium alloy coupons using thermoelastic stress analysis,” Journal of Nondestructive Evaluation, vol. 38, no. 1, p. 18, 2019.; A. Garinei and R. Marsili, “Thermoelastic stress analysis of the contact between a flat plate and a cylinder,” Measurement, vol. 52, pp. 102–110, 2014.; I. Ubero-Martı́nez, L. Rodrı́guez-Tembleque, J. Cifuentes-Rodrı́guez, and J. Vallepuga-Espinosa, “Non-linear interface thermal conditions in three-dimensional thermoelastic contact problems,” Computers & Structures, vol. 241, p. 106354, 2020.; G. Allevi, M. Cibeca, R. Fioretti, R. Marsili, R. Montanini, and G. Rossi, “Qualification of additively manufactured aerospace brackets: A comparison between thermoelastic stress analysis and theoretical results,” Measurement, vol. 126, pp. 252–258, 2018.; F. Di Carolo, R. De Finis, D. Palumbo, and U. Galietti, “A thermoelastic stress analysis general model: Study of the influence of biaxial residual stress on aluminium and titanium,” Metals, vol. 9, no. 6, p. 671, 2019.; Z. S. Hosseini, M. Dadfarnia, B. P. Somerday, P. Sofronis, and R. O. Ritchie, “On the theoretical modeling of fatigue crack growth,” Journal of the Mechanics and Physics of Solids, vol. 121, pp. 341–362, 2018.; A. Vivekanandan and K. Ramesh, “Study of crack interaction effects under thermal loading by digital photoelasticity and finite elements,” Experimental Mechanics, vol. 60, no. 3, pp. 295–316, 2020.; R. Greene and E. Patterson, “An integrated approach to the separation of principal surface stresses using combined thermo-photo-elasticity,” Experimental mechanics, vol. 46, no. 1, pp. 19–29, 2006.; T.-W. Lin, L. Rowe, A. Kaczkowski, G. Horn, and H. T. Johnson, “Polarization-resolved imaging for both photoelastic and photoluminescence characterization of photovoltaic silicon wafers,” Experimental Mechanics, vol. 56, no. 8, pp. 1339–1350, 2016.; I. Matyash, I. Minailova, and B. Serdega, “Research of mechanical stresses in irradiated tin-doped silicon crystals,” Materials Science in Semiconductor Processing, vol. 71, pp. 263–267, 2017.; O. Oliinyk, B. Tsyganok, B. Serdega, and I. Matiash, “Investigation of nonstationary thermo-photo-elastic effect using the polarization modulation of radiation,” in Proceedings of the 2011 34th International Spring Seminar on Electronics Technology (ISSE), pp. 294–298, IEEE, 2011.; S. Mrzljak, M. Trautmann, G. Wagner, and F. Walther, “Influence of aluminum surface treatment on tensile and fatigue behavior of thermoplastic-based hybrid laminates,” Materials, vol. 13, no. 14, p. 3080, 2020.; F. Furgiuele, P. Magaro, C. Maletta, and E. Sgambitterra, “Functional and structural fatigue of pseudoelastic niti: Global vs local thermo-mechanical response,” Shap. Mem. Superelasticity, vol. 6, pp. 242–255, 2020.; J. Freire, V. Paiva, G. Gonzáles, R. Vieira, J. Diniz, A. Ribeiro, and A. Almeida, “Fatigue monitoring of a dented pipeline specimen using infrared thermography, dic and fiber optic strain gages,” in Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3, pp. 57–66, Springer, 2020.; K. E. Donne, R. D. Thomas, C. Davies, and G. Calvert, “Photoelastic stress and thermographic measurements of automotive windscreen defects generated by projectile impact,” Quality and Reliability Engineering International, vol. 24, no. 8, pp. 897–902, 2008.; E. Umezaki and M. Abe, “Development of system for simultaneous measurement of stress and temperature,” in Key Engineering Materials, vol. 326, pp. 163–166, Trans Tech Publ, 2006.; O. Janssens, M. Loccufier, and S. Van Hoecke, “Thermal imaging and vibration-based multisensor fault detection for rotating machinery,” IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 434–444, 2018.; O. Janssens, M. Loccufier, R. Van de Walle, and S. Van Hoecke, “Data-driven imbalance and hard particle detection in rotating machinery using infrared thermal imaging,” Infrared Physics & Technology, vol. 82, pp. 28–39, 2017.; G. Everett, “Comparison between the thermoelastic method and other experimental techniques for stress measurement,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, vol. 1084, pp. 54–58, International Society for Optics and Photonics, 1989.; B. Foust and R. Rowlands, “Thermoelastic determination of individual stresses in a diametrally loaded disk,” Strain, vol. 47, no. 2, pp. 146–153, 2011.; S.-J. Lin, D. Matthys, and R. Rowlands, “Separating stresses thermoelastically in a central circularly perforated plate using an airy stress function,” Strain, vol. 45, no. 6, pp. 516–526, 2009.; D. Palumbo and U. Galietti, “Data correction for thermoelastic stress analysis on titanium components,” Experimental Mechanics, vol. 56, no. 3, pp. 451–462, 2016.; J. Thatcher, D. Crump, C. Devivier, P. Bailey, and J. Dulieu-Barton, “Low cost infrared thermography for automated crack monitoring in fatigue testing,” Optics and Lasers in Engineering, vol. 126, p. 105914, 2020.; L. H. Groom and A. G. Zink, “Techniques in experimental mechanics applicable to forest products research,” Gen. Tech. Rep. SO-125. New Orleans, LA: US Dept of Agriculture, Forest Service, Southern Forest Experiment Station. 45 p., vol. 125, 1994.; N. Rajic and N. Street, “A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis,” Quantitative InfraRed Thermography Journal, vol. 11, no. 2, pp. 207–221, 2014.; J. Freire, R. Waugh, R. Fruehmann, and J. Dulieu-Barton, “Using thermoelastic stress analysis to detect damaged and hot spot areas in structural components,” J. Mech. Eng. Autom, vol. 5, pp. 623–634, 2015.; G. Pitarresi, R. Cappello, and G. Catalanotti, “Quantitative thermoelastic stress analysis by means of low-cost setups,” Optics and Lasers in Engineering, vol. 134, p. 106158, 2020.; M. Weihrauch, C. Middleton, R. Greene, and E. Patterson, “Low-cost thermoelastic stress analysis,” in Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, Volume 6, pp. 15–19, Springer, 2020.; W. Wang, R. Fruehmann, and J. Dulieu-Barton, “Application of digital image correlation to address complex motions in thermoelastic stress analysis,” Strain, vol. 51, no. 5, pp. 405–418, 2015.; K. Ramesh and S. Sasikumar, “Digital photoelasticity: Recent developments and diverse applications,” Optics and Lasers in Engineering, p. 106186, 2020.; A. Ajovalasit, G. Petrucci, and M. Scafidi, “Review of rgb photoelasticity,” Optics and Lasers in Engineering, vol. 68, pp. 58–73, 2015.; M. Scafidi, G. Pitarresi, A. Toscano, G. Petrucci, S. Alessi, and A. Ajovalasit, “Review of photoelastic image analysis applied to structural birefringent materials: glass and polymers,” Optical Engineering, vol. 54, no. 8, p. 081206, 2015.; A. Baldi, F. Bertolino, and F. Ginesu, “A temporal phase unwrapping algorithm for photoelastic stress analysis,” Optics and lasers in engineering, vol. 45, no. 5, pp. 612–617, 2007.; J.-T. Wu and M.-J. Huang, “Isochromatic photoelastic phase map unwrapping: temporal versus spatial approach,” Optical Engineering, vol. 54, no. 8, p. 081207, 2015.; S. Xia and M. Mello, “Phase-multiplied photoelastic and series interferometer arrangement for full-field stress measurement in single crystals,” Experimental mechanics, vol. 51, no. 4, pp. 653–666, 2011.; Y. Ju, Z. Zheng, H. Xie, J. Lu, L. Wang, and K. He, “Experimental visualisation methods for three-dimensional stress fields of porous solids,” Experimental Techniques, vol. 41, no. 4, pp. 331–344, 2017.; M. S.-B. Fernández, “Data acquisition techniques in photoelasticity,” Experimental Techniques, vol. 35, no. 6, pp. 71–79, 2011.; D. F. Woolard and M. K. Hinders, “Coatings for combined thermoelastic and photoelastic stress measurement,” in Nondestructive Evaluation of Bridges and Highways III, vol. 3587, pp. 88–96, International Society for Optics and Photonics, 1999.; D. Woolard, M. Hinders, and C. Welch, “Combined thermoelastic and photoelastic full-field stress measurement,” in Review of Progress in Quantitative Nondestructive Evaluation, pp. 1431–1438, Springer, 1999.; R. Greene, A. Clarke, S. Turner, and E. Patterson, “Some applications of combined thermoelastic-photoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 42, no. 3, pp. 173–182, 2007.; J. C. Briñez-de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Computational analysis of bayer colour filter arrays and demosaicking algorithms in digital photoelasticity,” Optics and Lasers in Engineering, vol. 122, pp. 195–208, 2019.; J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fast fourier transform as color variation descriptor for imaging the stress field from photoelasticity videos,” in Imaging Systems and Applications, pp. JW2A–46, Optical Society of America, 2019.; H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-bedoya, “Texture analysis for evaluating the bayer and demosaicking effects in photoelasticity images,” in Computational Optical Sensing and Imaging, pp. JW2A–50, Optical Society of America, 2019.; H. Fandiño-Toro, J. Briñez-De León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Fringe patterns recognition in digital photoelasticity images using texture features and multispectral wavelength analysis,” Optical Engineering, vol. 57, no. 9, p. 093105, 2018. 13, 56; M. Hunter, B. Godde, and B. Olk, “Effects of absolute luminance and luminance contrast on visual search in low mesopic environments,” Attention, Perception, & Psychophysics, vol. 80, no. 5, pp. 1265–1277, 2018.; F. Bianconi, A. Álvarez-Larrán, and A. Fernández, “Discrimination between tumour epithelium and stroma via perception-based features,” Neurocomputing, vol. 154, pp. 119–126, 2015.; H. Aben and C. Guillemet, Photoelasticity of glass. Springer Science & Business Media, 2012.; D. Mahler and F. Peyton, “Photoelasticity as a research technique for analyzing stresses in dental structures,” Journal of dental research, vol. 34, no. 6, pp. 831–838, 1955.; S. M. Yang, S. Hong, and S. Y. Kim, “Wavelength dependent in-plane birefringence of transparent flexible films determined by using transmission ellipsometry,” Japanese Journal of Applied Physics, vol. 57, no. 5S, p. 05GB03, 2018.; K. E. Daniels, J. E. Kollmer, and J. G. Puckett, “Photoelastic force measurements in granular materials,” Review of Scientific Instruments, vol. 88, no. 5, p. 051808, 2017.; P. S. Theocaris and E. E. Gdoutos, Matrix theory of photoelasticity, vol. 11. Springer, 2013.; A. Sarma, S. Pillai, G. Subramanian, and T. Varadan, “Computerized image processing for whole-field determination of isoclinics and isochromatics,” Experimental Mechanics, vol. 32, no. 1, pp. 24–29, 1992.; W. Shang, X. Ji, and X. Yang, “Study on several problems of automatic full-field isoclinic parameter measurement by digital phase shifting photoelasticity,” Optik - International Journal for Light and Electron Optics, vol. 126, no. 19, pp. 1981–1985, 2015.; M. Hariprasad, K. Ramesh, and B. Prabhune, “Evaluation of conformal and non-conformal contact parameters using digital photoelasticity,” Experimental Mechanics, vol. 58, no. 8, pp. 1249–1263, 2018.; W. Samad and J. Considine, “Sensitivity analysis of hybrid thermoelastic techniques,” in Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 9, pp. 29–36, Springer, 2017.; K. V. N. Surendra and K. Y. Simha, “Digital image analysis around isotropic points for photoelastic pattern recognition,” Optical Engineering, vol. 54, no. 8, p. 081209, 2015.; T. Kihara, “Measurement of applied stresses and residual stresses on a residual stress model by applying two different loads,” Experimental mechanics, vol. 51, no. 8, pp. 1275–1283, 2011.; M. Ayatollahi, M. Mirsayar, and M. Dehghany, “Experimental determination of stress field parameters in bi-material notches using photoelasticity,” Materials & Design, vol. 32, no. 10, pp. 4901–4908, 2011.; C. A. Magalhães, A. L. M. A. Magalhães, et al., “Computational methods of phase shifting to stress measurement with photoelasticity using plane polariscope,” Optik, vol. 130, pp. 213–226, 2017.; K. Ramesh, M. P. Hariprasad, and V. Ramakrishnan, “Robust multidirectional smoothing of isoclinic parameter in digital photoelasticity,” Optical Engineering, vol. 54, no. 8, p. 081205, 2015.; Y. V. Tokovyy, K.-M. Hung, and C.-C. Ma, “Determination of stresses and displacements in a thin annular disk subjected to diametral compression,” Journal of Mathematical Sciences, vol. 165, no. 3, pp. 342–354, 2010.; X. P. Maldague, “Introduction to ndt by active infrared thermography,” Materials Evaluation, vol. 60, no. 9, pp. 1060–1073, 2002.; F. Di Carolo, L. Savino, D. Palumbo, A. Del Vecchio, U. Galietti, and M. De Cesare, “Standard thermography vs free emissivity dual color novel cira physics technique in the near-mid ir ranges: Studies for different emissivity class materials from low to high temperatures typical of aerospace re-entry,” International Journal of Thermal Sciences, vol. 147, p. 106123, 2020.; R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non-destructive testing,” Sensors, vol. 14, no. 7, pp. 12305–12348, 2014.; N. Rajic and D. Rowlands, “Thermoelastic stress analysis with a compact low-cost microbolometer system,” Quantitative infrared thermography journal, vol. 10, no. 2, pp. 135–158, 2013.; J. Dulieu-Barton and P. Stanley, “Development and applications of thermoelastic stress analysis,” The Journal of Strain Analysis for Engineering Design, vol. 33, no. 2, pp. 93–104, 1998.; X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A systematic survey,” in Visual Communications and Image Processing 2008, vol. 6822, p. 68221J, International Society for Optics and Photonics, 2008.; H. S. Malvar, L.-w. He, and R. Cutler, “High-quality linear interpolation for demosaicing of bayer-patterned color images,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. iii–485, IEEE, 2004.; J. Wu, M. Anisetti, W. Wu, E. Damiani, and G. Jeon, “Bayer demosaicking with polynomial interpolation,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5369–5382, 2016.; Z. Dengwen, S. Xiaoliu, and D. Weiming, “Colour demosaicking with directional filtering and weighting,” IET Image Processing, vol. 6, no. 8, pp. 1084–1092, 2012.; J. E. Adams Jr, “Interactions between color plane interpolation and other image processing functions in electronic photography,” in Cameras and Systems for Electronic Photography and Scientific Imaging, vol. 2416, pp. 144–151, International Society for Optics and Photonics, 1995.; B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating projections,” IEEE transactions on image processing, vol. 11, no. 9, pp. 997–1013, 2002.; Y. M. Lu, M. Karzand, and M. Vetterli, “Demosaicking by alternating projections: theory and fast one-step implementation,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2085–2098, 2010.; D. Ramji, C. A. Palagan, A. Nithya, A. Appathurai, and E. J. Alex, “Soft computing based color image demosaicing for medical image processing,” Multimedia Tools and Applications, vol. 79, no. 15, pp. 10047–10063, 2020.; A. Stojkovic, I. Shopovska, H. Luong, J. Aelterman, L. Jovanov, and W. Philips, “The effect of the color filter array layout choice on state-of-the-art demosaicing,” Sensors, vol. 19, no. 14, p. 3215, 2019.; C. Bonanomi, S. Balletti, M. Lecca, M. Anisetti, A. Rizzi, and E. Damiani, “I3d: a new dataset for testing denoising and demosaicing algorithms,” Multimedia Tools and Applications, vol. 79, no. 13, pp. 8599–8626, 2020.; A. Restrepo-Martinez and J. C. Briñez, “Dynamic color descriptor based frenet-serret to classify stress zones from pixel variations recorded in photoelasticity videos,” in Optics and Photonics for Information Processing XIII, vol. 11136, p. 111360G, International Society for Optics and Photonics, 2019.; H. Fandiño-Toro, J. de Briñez-de León, A. Restrepo-Martı́nez, and J. W. Bedoya, Branch-Bedoya, “Relevance analysis for texture descriptors in studies of dynamic photoelasticity,” in Laser Applications to Chemical, Security and Environmental Analysis, pp. JM4A–37, Optical Society of America, 2018.; H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Análisis de campos de esfuerzos utilizando fotoelasticidad visible e infrarroja,” Visión electrónica, vol. 11, no. 1, pp. 89–98, 2017.; H. Fandiño-Toro, J. Briñez de León, A. Restrepo-Martı́nez, and J. W. Branch-Bedoya, “Texture analysis integrated to infrared light sources for identifying high fringe concentrations in digital photoelasticity,” in Applications of Digital Image Processing XL, vol. 10396, p. 103962D, International Society for Optics and Photonics, 2017.; Y. Caulier, K. P. Spinnler, T. M. Wittenberg, and S. Bourennane, “Specific features for the analysis of fringe images,” Optical Engineering, vol. 47, no. 5, p. 057201, 2008.; C. Yan, N. Sang, and T. Zhang, “Local entropy-based transition region extraction and thresholding,” Pattern Recognition Letters, vol. 24, no. 16, pp. 2935–2941, 2003.; N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.; Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.; L. Goldstein, J. Thompson, J. Schroeder, and J. Slattery, “Stress-optic coefficients of znse,” Applied optics, vol. 14, no. 10, pp. 2432–2434, 1975.; J. Szczesniak, D. Cuddeback, and J. Corelli, “Stress-induced birefringence of solids transparent to 1-to 12-μm light,” Journal of Applied Physics, vol. 47, no. 12, pp. 5356–5359, 1976.; C. Chen, J. Szczesniak, and J. Corelli, “Infrared stress birefringence in kbr, kcl, lif, and znse,” Journal of Applied Physics, vol. 46, no. 1, pp. 303–309, 1975.; W. Jun and A. Asundi, “Strain contouring with gabor filters: filter bank design,” Applied optics, vol. 41, no. 34, pp. 7229 7236, 2002.; A. K. Asundi and J. Wang, “Strain contouring using gabor filters: principle and algorithm,” OptEn, vol. 41, pp. 1400–1405, 2002.; R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621, 1973.; F. R. De Siqueira, W. R. Schwartz, and H. Pedrini, “Multi-scale gray level co-occurrence matrices for texture description,” Neurocomputing, vol. 120, pp. 336–345, 2013.; L. Nanni, A. Lumini, and S. Brahnam, “Survey on lbp based texture descriptors for image classification,” Expert Systems with Applications, vol. 39, no. 3, pp. 3634–3641, 2012.; F. Van Der Heijden, R. P. Duin, D. De Ridder, and D. M. Tax, Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons, 2005.; T. Sakagami, S. Kubo, Y. Fujinami, and Y. Kojima, “Experimental stress separation technique using thermoelasticity and photoelasticity and its application to fracture mechanics,” JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 47, no. 3, pp. 298–304, 2004.; S. Barone and E. Patterson, “Full-field separation of principal stresses by combined thermo-and photoelasticity,” Experimental Mechanics, vol. 36, no. 4, pp. 318–324, 1996.; M. Solaguren-Beascoa Fernández, J. Alegre Calderón, P. Bravo Diez, and I. Cuesta Segura, “Stress-separation techniques in photoelasticity: a review,” The Journal of Strain Analysis for Engineering Design, vol. 45, no. 1, pp. 1–17, 2010.; S. Yoneyama and K. Sakaue, “Instantaneous phase-stepping photoelasticity and hybrid stress analysis for a curving crack under thermal load,” in Imaging Methods for Novel Materials and Challenging Applications, Volume 3, pp. 391–402, Springer, 2013.; Y. K. Godovsky, “Thermomechanics of glassy and crystalline polymers,” in Thermophysical Properties of Polymers, pp. 127–162, Springer, 1992.; F. Valiorgue, A. Brosse, P. Naisson, J. Rech, H. Hamdi, and J. M. Bergheau, “Emissivity calibration for temperatures measurement using thermography in the context of machining,” Applied Thermal Engineering, vol. 58, no. 1-2, pp. 321–326, 2013.; X. P. Maldague, Nondestructive evaluation of materials by infrared thermography. Springer Science & Business Media, 2012.; A. Rühl, S. Kolling, V. Mende, and B. Kiesewetter, “Computational design of a heated pmma window validated by infrared thermography,” Glass Structures & Engineering, vol. 1, no. 2, pp. 375–383, 2016.; J. Gu, S. C. Tam, Y. L. Lam, Q. Zheng, and X. Wei, “Laser-induced temperature-rise measurement by infrared imaging,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing V, vol. 3933, pp. 388–395, International Society for Optics and Photonics, 2000.; J. A. Quiroga and A. González-Cano, “Method of error analysis for phase-measuring algorithms applied to photoelasticity,” Applied optics, vol. 37, no. 20, pp. 4488–4495, 1998.; J. Briñez-De León, J. W. Branch-Bedoya, and A. Restrepo-Martı́nez, “Toward photoelastic sensors: a hybrid proposal for imaging the stress field through load stepping methods,” in OSA Imaging and Applied Optics Congress. (CTh3C.4), Optical Society of America, 2020.; A. E1933-14, “Standard practice for measuring and compensating for emissivity using infrared imaging radiometers,” 2018.; H. Fandiño-Toro, J. Rendón-Arango, J. Briñez-de León, and A. Restrepo-Martı́nez, “Thermal transient stepping: a powerful thermal-based approach for evaluating the stress field by using digital photoelasticity,” in Optics and Photonics for Information Processing XIV, vol. 11509, p. 1150909, International Society for Optics and Photonics, 2020.; https://repositorio.unal.edu.co/handle/unal/79684; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
16Academic Journal
المؤلفون: A. M. Casas Sainz, I. Gil Peña, J. L. Simón Gómez
المصدر: Estudios Geologicos, Vol 46, Iss 5-6, Pp 385-398 (1990)
مصطلحات موضوعية: falla, análisis de fallas, tensor de esfuerzos, campo de esfuerzos, Geology, QE1-996.5
وصف الملف: electronic resource
-
17
المساهمون: Duque Trujillo, José Fernando
المصدر: Repositorio EAFIT
Universidad EAFIT
instacron:Universidad EAFITمصطلحات موضوعية: Cinemática de fallas, Strike-slip tectonics, Fallas de rumbo, Diedros rectos, Tectonics, Fault kinematics, VULCANISMO, Tectónica, GEOMORFOLOGÍA, Palestina Fault System, Northern Andean Block, Campo de esfuerzos, Sistema de Fallas Palestina, TECTÓNICA DE PLACAS, Paleo-stress tensor, Bloque de los Andes del Norte, Right-dihedra, GEOLOGÍA APLICADA
وصف الملف: application/pdf
-
18Academic Journal
مصطلحات موضوعية: Campo de esfuerzos, Cuenca del Tajo, Inversión de esfuerzos, Mecanismo focal, Neotectónica, Geodinámica, 2507 Geofísica
وصف الملف: application/pdf
-
19Academic Journal
المؤلفون: Rodríguez-Pascua, M.A., Vicente Muñoz, Gerardo de
مصطلحات موضوعية: 550.34(234.1), (234.1)550.34, Campo de esfuerzos actual, Cordillera Bética Oriental, Mecanismos focales, Terremotos, Earthquakes, Eastern Betic Cordillera, Focal mechanisms, Present-day stress field, Geodinámica, 2507 Geofísica
وصف الملف: application/pdf
-
20
المؤلفون: Simón Gómez, José Luis
المصدر: Arias Montano. Repositorio Institucional de la Universidad de Huelva
instnameمصطلحات موضوعية: Alpine compression, Utrillas thrust, Lineación de disolución, Compresión alpina, Cabalgamiento de Utrillas, Campo de esfuerzos, Solution lineation, Stress field