-
1Dissertation/ Thesis
المؤلفون: Zabaleta Razquin, Itziar
المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
Thesis Advisors: Bertalmío, Marcelo
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Image processing, Style transfer, Color grading, Retinal noise, Texture addition, Coding efficiency, Image quality assessment, Image quality metric, Procesamiento de imágenes, Ruido retiniano, Adición de textura, Codificación eficiente, Calidad de imagen, Métrica de calidad de imagen
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/672840
-
2Academic Journal
المؤلفون: Victor Ramos, María Rosaria Baldissera Salgado, Javier Mauricio Mora Méndez, Diego Pineda, David González
المصدر: Revista Investigaciones y Aplicaciones Nucleares, Iss 6, Pp 46-55 (2022)
مصطلحات موضوعية: tomografía computarizada, dosis, calidad de imagen, ruido, resolución espacial, Nuclear engineering. Atomic power, TK9001-9401, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798
وصف الملف: electronic resource
-
3Conference
المؤلفون: Venero Gómez, Guillermo, Torre-Ferrero, Carlos, Llata García, José Ramón, Sainz Gutiérrez, José Joaquín, Revestido Herrero, Elías, Velasco González, Francisco Jesús
مصطلحات موضوعية: Vehículos submarinos, Visión estereoscópica, Calidad de imagen, Turbidez, Filtrado de imagen, Underwater vehicles, Stereo vision, Image quality, Turbidity, Image filtering
Relation: https://doi.org/10.17979/spudc.9788497498609.017; Venero, G., Torre, C., Llata, J.R., Sanz, J.J., Revestido, E., Velasco, F.J. Mejora de reconstrucción estéreo subacuática mediante caracterización de turbidez. XLIV Jornadas de Automática, 17-22. https://doi.org/10.17979/spudc.9788497498609.017; http://hdl.handle.net/2183/33544
-
4Academic Journal
المؤلفون: Luis Ramón Cadena Martínez, Beatriz Yolanda Álvarez Alfonso, Enrique Gaona, Eleni Mitsoura, Alberto Ernesto Hardy Pérez, Anallely Moctezuma Oropeza
المصدر: Revista de Medicina e Investigación Universidad Autónoma del Estado de México, Vol 10, Iss 1, Pp 6-10 (2022)
مصطلحات موضوعية: mastografía digital de campo completo (ffdm), tomosíntesis digital de mama (dbt), dosis glandular media (agm), calidad de imagen, Medicine (General), R5-920
وصف الملف: electronic resource
-
5Book
المساهمون: Avendaño Arias, Johan Andrés, Avendaño Arias, Johan Andrés 0000-0002-7193-2070
مصطلحات موضوعية: Transformadas Wavelet Daubechies, Agricultura de precisión, Fusión de imágenes, Índices espectrales, Índices de calidad de imágen, Ingeniería Catastral y Geodesia -- Tesis y disertaciones académicas, Tecnología agrícola, Innovaciones agrícolas, Procesamiento digital de imágenes, Sistemas de información geográfica, Transformed Wavelet Daubechies, Precision agriculture, Image fusion, Spectral indices, Image Quality Indexes
وصف الملف: pdf; application/pdf
Relation: http://hdl.handle.net/11349/31978
الاتاحة: http://hdl.handle.net/11349/31978
-
6Academic Journal
المؤلفون: Pérez Pérez, Andrés Daniel
المساهمون: González, Fabio Augusto, Perdomo Charry, Oscar Julían, MindLab
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines, Calidad de Imagen, Evaluación de Calidad, Fondo de Ojo, Calidad de Imagen sin Referencia, IA Móvil, Aprendizaje Profundo, Clasificación, Degradación Sintética de la Calidad, Mejora de la Imagen, Red de Adversarios Generativos Condicional, Image Quality, Quality Assessment, Eye Fundus, Non-reference Image Quality, Mobile AI, Deep Learning, Classification, Synthetic Quality Degradation, Image Enhancement, Conditional Generative Adversarial Network
وصف الملف: 1 recurso en línea (63 páginas); application/pdf
Relation: Araceli Fernández Revuelta. Técnica de exploración del fondo de ojo. AMF, 8(7):383–387, 2012.; Huiqi Li and Opas Chutatape. Automatic location of optic disk in retinal images. In Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), volume 2, pages 837–840. IEEE, 2001.; National Eye Institute. Facts about diabetic eye disease, June 2015.; Gwenole Quellec, Loïc Bazin, Guy Cazuguel, Ivan Delafoy, Beatrice Cochener, and Mathieu Lamard. Suitability of a low-cost, handheld, nonmydriatic retinograph for diabetic retinopathy diagnosis. Translational vision science & technology, 5(2):16–16, 2016.; Nathan Efron. Contact lens practice e-book. Elsevier Health Sciences, 2016.; J Morgan Micheletti, Andrew M Hendrick, Farah N Khan, David C Ziemer, and Francisco J Pasquel. Current and next generation portable screening devices for diabetic retinopathy. Journal of diabetes science and technology, 10(2):295–300, 2016.; UK National Screening Committee et al. Essential elements in developing a diabetic retinopathy screening programme. London: UK National Screening Committee, APRIL 2007; Andrés D Pérez, Oscar Perdomo, and Fabio A Gonzélez. A lightweight deep learning model for mobile eye fundus image quality assessment. In 15th International Symposium on Medical Information Processing and Analysis, volume 11330, page 113300K. International Society for Optics and Photonics, 2020.; Andrés D Pérez, Oscar Perdomo, Hernán Rios, Francisco Rodríguez, and Fabio A González. A conditional generative adversarial network-based method for eye fundus image quality enhancement. In International Workshop on Ophthalmic Medical Image Analysis, volume 12069, pages 185–194. Springer, 2020.; Oscar Julián Perdomo-Charry, Andrés Daniel Pérez-Pérez, Melissa De-la PavaRodríguez, Hernán Andrés Ríos-Calixto, Víctor Alfonso Arias-Vanegas, Juan Sebastián Lara-Ramírez, Santiago Toledo-Cortés, Jorge Eliecer Camargo-Mendoza, Francisco José Rodríguez-Alvira, and Fabio Augusto González-Osorio. Sophia: System for ophthalmic image acquisition, transmission, and intelligent analysis. Revista Facultad de Ingeniería, 29(54):e11769–e11769, 2020.; EC Yeadon and JA Clarke. Modulation transfer function measurements on channel image intensifies. In Advances in Electronics and Electron Physics, volume 33, pages 593–600. Elsevier, 1972.; HH Hopkins. The development of image evaluation methods. In Image Assessment and Specification, volume 46, pages 2–18. International Society for Optics and Photonics, 1974.; Jack D Finley. An automated visual edge match system for image quality assessment. In Data Extraction and Classification from Film, volume 117, pages 76–88. International Society for Optics and Photonics, 1977.; Edward L Gliatti. Image evaluation methods. In Airborne Reconnaissance III, volume 137, pages 6–12. International Society for Optics and Photonics, 1978; Hans J Tiziani. Image quality criteria for aerial survey lenses. 1978.; Gilbert G Kuperman. Investigation of photographic image quality estimators. Technical report, AIR FORCE AEROSPACE MEDICAL RESEARCH LAB WRIGHTPATTERSON AFB OH, 1980.; Ian Overington. Image quality and observer performance. In Image Quality, volume 310, pages 2–9. International Society for Optics and Photonics, 1981.; N Nill. A visual model weighted cosine transform for image compression and quality assessment. IEEE Transactions on communications, 33(6):551–557, 1985.; AR Buffett. Visual perception of luminance contrast: implications for the assessment of subjective image quality. Displays, 7(1):30–36, 1986.; PF Sharp. Quantifying image quality. Clinical physics and physiological measurement, 11(4A):21, 1990.; Harrison H Barrett. Objective assessment of image quality: effects of quantum noise and object variability. JOSA A, 7(7):1266–1278, 1990.; Harrison H Barrett, Jie Yao, Jannick P Rolland, and Kyle J Myers. Model observers for assessment of image quality. Proceedings of the National Academy of Sciences, 90(21):9758–9765, 1993.; Ahmet M Eskicioglu and Paul S Fisher. Image quality measures and their performance. IEEE Transactions on communications, 43(12):2959–2965, 1995.; LG Månsson. Methods for the evaluation of image quality: a review. Radiation protection dosimetry, 90(1-2):89–99, 2000.; Zhou Wang and Alan C Bovik. A universal image quality index. IEEE signal processing letters, 9(3):81–84, 2002.; Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.; Hamid R Sheikh and Alan C Bovik. Image information and visual quality. IEEE Transactions on image processing, 15(2):430–444, 2006.; Andrés G Marrugo, María S Millán, Gabriel Cristóbal, Salvador Gabarda, and Héctor C Abril. No-reference quality metrics for eye fundus imaging. In International Conference on Computer Analysis of Images and Patterns, pages 486–493. Springer, 2011.; Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assessment in the spatial domain. IEEE Transactions on image processing, 21(12):4695–4708, 2012.; Thomas Köhler, Attila Budai, Martin F Kraus, Jan Odstrčilik, Georg Michelson, and Joachim Hornegger. Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In Proceedings of the 26th IEEE international symposium on computer-based medical systems, pages 95–100. IEEE, 2013.; Ugur Sevik, Cemal Kose, Tolga Berber, and Hidayet Erdol. Identification of suitable fundus images using automated quality assessment methods. Journal of biomedical optics, 19(4):046006, 2014.; Ramon Pires and Anderson Rocha. Diabetic retinopathy image quality assessment, detection, screening and referral. In Anais do XXVII Concurso de Teses e Dissertações, pages 61–66. SBC, 2014.; Xiao-Wei Yan, Gong-Ping Yang, Xian-Jing Meng, and Zhe Han. A classification-based method for retinal image quality assessment. , 21(3):75–83, 2014.; Dwarikanath Mahapatra. Retinal image quality classification using neurobiological models of the human visual system. 2016.; Ruwan Tennakoon, Dwarikanath Mahapatra, Pallab Roy, Suman Sedai, and Rahil Garnavi. Image quality classification for dr screening using convolutional neural networks. 2016.; Lamiaa Abdel-Hamid, Ahmed El-Rafei, and Georg Michelson. No-reference quality index for color retinal images. Computers in biology and medicine, 90:68–75, 2017.; Jing Sun, Cheng Wan, Jun Cheng, Fengli Yu, and Jiang Liu. Retinal image quality classification using fine-tuned cnn. In Fetal, Infant and Ophthalmic Medical Image Analysis, pages 126–133. Springer, 2017.; Pedro Costa, Aurelio Campilho, Bryan Hooi, Asim Smailagic, Kris Kitani, Shenghua Liu, Christos Faloutsos, and Adrian Galdran. Eyequal: Accurate, explainable, retinal image quality assessment. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 323–330. IEEE, 2017.; FengLi Yu, Jing Sun, Annan Li, Jun Cheng, Cheng Wan, and Jiang Liu. Image quality classification for dr screening using deep learning. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 664–667. IEEE, 2017.; Kang Zhou, Zaiwang Gu, Annan Li, Jun Cheng, Shenghua Gao, and Jiang Liu. Fundus image quality-guided diabetic retinopathy grading. In Computational Pathology and Ophthalmic Medical Image Analysis, pages 245–252. Springer, 2018.; Gabriel Tozatto Zago, Rodrigo Vareão Andreão, Bernadette Dorizzi, and Evandro Ottoni Teatini Salles. Retinal image quality assessment using deep learning. Computers in biology and medicine, 103:64–70, 2018.; Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.; Sajib Kumar Saha, Basura Fernando, Jorge Cuadros, Di Xiao, and Yogesan Kanagasingam. Automated quality assessment of colour fundus images for diabetic retinopathy screening in telemedicine. Journal of digital imaging, 31(6):869–878, 2018.; Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.; Aaron S Coyner, Ryan Swan, J Peter Campbell, Susan Ostmo, James M Brown, Jayashree Kalpathy-Cramer, Sang Jin Kim, Karyn E Jonas, RV Paul Chan, Michael F Chiang, et al. Automated fundus image quality assessment in retinopathy of prematurity using deep convolutional neural networks. Ophthalmology Retina, 3(5):444–450, 2019.; Huazhu Fu, Boyang Wang, Jianbing Shen, Shanshan Cui, Yanwu Xu, Jiang Liu, and Ling Shao. Evaluation of retinal image quality assessment networks in different colorspaces. In International Conference on Medical Image Computing and ComputerAssisted Intervention, pages 48–56. Springer, 2019.; Frédéric Drago, Karol Myszkowski, Thomas Annen, and Norishige Chiba. Adaptive logarithmic mapping for displaying high contrast scenes. In Computer graphics forum, volume 22, pages 419–426. Wiley Online Library, 2003.; Alessandro Mecocci and Gregorio Molinari. Color recovery in outdoor environments: a novel integrated approach using retinex, gray world and stretching. In IEEE 6th Workshop on Multimedia Signal Processing, 2004., pages 75–78. IEEE, 2004.; Brian Funt, Florian Ciurea, and John McCann. Retinex in matlab. In Color and Imaging Conference, volume 2000, pages 112–121. Society for Imaging Science and Technology, 2000.; Adrian Stoica, Mohamed-Chaker Larabi, and Christine Fernandez-Maloigne. Visual quality enhancement for colour images in the framework of the jpeg2000 compression standard. International Journal of Robotics and Automation, 20(2):109–122, 2005.; Abiodun M Aibinu, Muhammad I Iqbal, M Nilsson, and Momoh-Jimoh E Salami. A new method of correcting uneven illumination problem in fundus image. 2007.; Sascha D Cvetkovic, Johan Schirris, et al. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms. In Visual Communications and Image Processing 2009, volume 7257, page 725717. International Society for Optics and Photonics, 2009.; Sima Sahu, Amit Kumar Singh, SP Ghrera, Mohamed Elhoseny, et al. An approach for de-noising and contrast enhancement of retinal fundus image using clahe. Optics & Laser Technology, 110:87–98, 2019.; Uvais Qidwai and Umair Qidwai. Blind deconvolution for retinal image enhancement. In 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), pages 20–25. IEEE, 2010.; Andrés G Marrugo, Maria S Millan, Michal Sorel, and Filip Sroubek. Retinal image restoration by means of blind deconvolution. Journal of Biomedical Optics, 16(11):116016, 2011.; Yao Yi and Dongbo Zhang. Observation model based retinal fundus image normalization and enhancement. In 2011 4th International Congress on Image and Signal Processing, volume 2, pages 719–723. IEEE, 2011.; Niladri Sekhar Datta, Himadri Sekhar Dutta, Mallika De, and Saurajeet Mondal. An effective approach: image quality enhancement for microaneurysms detection of nondilated retinal fundus image. Procedia Technology, 10:731–737, 2013.; Cheng-Yu Lu, Bing-Zhong Jing, Patrick PK Chan, Daoman Xiang, Wanhua Xie, Jianxun Wang, and Daniel S Yeung. Vessel enhancement of low quality fundus image using mathematical morphology and combination of gabor and matched filter. In 2016 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pages 168–173. IEEE, 2016.; Thang Vu, Cao Van Nguyen, Trung X Pham, Tung M Luu, and Chang D Yoo. Fast and efficient image quality enhancement via desubpixel convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV), pages 0–0, 2018.; Farha Fatina Wahid, K Sugandhi, and G Raju. Two stage histogram enhancement schemes to improve visual quality of fundus images. In International Conference on Advances in Computing and Data Sciences, pages 1–11. Springer, 2018.; Shilpa Joshi and PT Karule. Review of preprocessing techniques for fundus image analysis. AMSE-IIETA Journals-2017-Series: Advances B, 60(2):593–612, 2018.; Anirban Mitra, Sudipta Roy, Somais Roy, and Sanjit Kumar Setua. Enhancement and restoration of non-uniform illuminated fundus image of retina obtained through thin layer of cataract. Computer methods and programs in biomedicine, 156:169–178, 2018.; Imran Qureshi, Jun Ma, and Kashif Shaheed. A hybrid proposed fundus image enhancement framework for diabetic retinopathy. Algorithms, 12(1):14, 2019.; Tae Keun Yoo, Joon Yul Choi, and Hong Kyu Kim. Cyclegan-based deep learning technique for artifact reduction in fundus photography. Graefe’s Archive for Clinical and Experimental Ophthalmology= Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, 2020.; Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.; Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.; Jake Bouvrie. Notes on convolutional neural networks. 2006.; Daniel Shu Wei Ting, Louis R Pasquale, Lily Peng, John Peter Campbell, Aaron Y Lee, Rajiv Raman, Gavin Siew Wei Tan, Leopold Schmetterer, Pearse A Keane, and Tien Yin Wong. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2):167–175, 2019.; Jaime Guillermo Carbonell, Tom Michael Mitchell, and Ryszard Stanis law Michalski. Machine learning: An artificial intelligence approach. Springer-Verlag, 1984.; Marc Lalonde, Langis Gagnon, and MC Boucher. Automatic image quality assessment in optical fundus images. Crim report-00/12-11, CRIM, 2000.; Langis Gagnon, Marc Lalonde, Mario Beaulieu, and Marie-Carole Boucher. Procedure to detect anatomical structures in optical fundus images. In Medical imaging 2001: Image processing, volume 4322, pages 1218–1225. International Society for Optics and Photonics, 2001.; Marc Lalonde Ý, Langis Gagnon Ý, and Marie-Carole Boucher. Automatic visual quality assessment in optical fundus images. 2001.; DB Usher, M Himaga, MJ Dumskyj, and JF Boyce. Automated assessment of digital fundus image quality using detected vessel area. In Proceedings of Medical Image Understanding and Analysis, pages 81–84. Citeseer, 2003.; A Toniappa, SA Barman, E Corvee, MJ Moseley, K Cocker, and AR Fielder. Image quality assessment in retinal images of premature infants taken with retcam 120 digital fundus camera. The Imaging Science Journal, 53(1):51–59, 2005.; Alan D Fleming, Sam Philip, Keith A Goatman, John A Olson, and Peter F Sharp. Automated assessment of diabetic retinal image quality based on clarity and field definition. Investigative ophthalmology & visual science, 47(3):1120–1125, 2006.; Yi-Han Wen, A Bainbridge-Smith, and AB Morris. Automated assessment of diabetic retinal image quality based on blood vessel detection. Proc. Image Vis. Comput, 1:132–136, 2007.; Herman Bartling, Peter Wanger, and Lene Martin. Automated quality evaluation of digital fundus photographs. Acta ophthalmologica, 87(6):643–647, 2009.; Herbert Davis, Stephen Russell, Eduardo Barriga, Michael Abramoff, and Peter Soliz. Vision-based, real-time retinal image quality assessment. In 2009 22nd IEEE International Symposium on Computer-Based Medical Systems, pages 1–6. IEEE, 2009.; Luca Giancardo, Fabrice Meriaudeau, Thomas P Karnowski, Edward Chaum, and Kenneth Tobin. Quality assessment of retinal fundus images using elliptical local vessel density. New developments in biomedical engineering, pages 201–223, 2010.; Jan Paulus, Jörg Meier, Rüdiger Bock, Joachim Hornegger, and Georg Michelson. Automated quality assessment of retinal fundus photos. International journal of computer assisted radiology and surgery, 5(6):557–564, 2010.; Michele Moscaritolo, Henry Jampel, Ingrid Zimmer-Galler, Frederick Knezevich, and Ran Zeimer. A computer algorithm to quantitatively assess quality of digital optic disc images. Ophthalmic Surgery, Lasers and Imaging Retina, 41(2):279–284, 2010.; Andrew Hunter, James A Lowell, Maged Habib, Bob Ryder, Ansu Basu, and David Steel. An automated retinal image quality grading algorithm. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 5955–5958. IEEE, 2011.; Honggang Yu, Carla Agurto, Simon Barriga, Sheila C Nemeth, Peter Soliz, and Gilberto Zamora. Automated image quality evaluation of retinal fundus photographs in diabetic retinopathy screening. In 2012 IEEE Southwest symposium on image analysis and interpretation, pages 125–128. IEEE, 2012.; João Miguel Pires Dias, Carlos Manta Oliveira, and Luís A da Silva Cruz. Evaluation of retinal image gradability by image features classification. Procedia Technology, 5:865–875, 2012.; Yijun Huang, Sapna Gangaputra, Kristine E Lee, Ashwini R Narkar, Ronald Klein, Barbara EK Klein, Stacy M Meuer, and Ronald P Danis. Signal quality assessment of retinal optical coherence tomography images. Investigative ophthalmology & visual science, 53(4):2133–2141, 2012.; Ramon Pires, Herbert F Jelinek, Jacques Wainer, and Anderson Rocha. Retinal image quality analysis for automatic diabetic retinopathy detection. In 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, pages 229–236. IEEE, 2012.; Gajendra Jung Katuwal, John Kerekes, Rajeev Ramchandran, Christye Sisson, and Navalgund Rao. Automatic fundus image field detection and quality assessment. In 2013 IEEE Western New York Image Processing Workshop (WNYIPW), pages 9–13. IEEE, 2013.; João Miguel Pires Dias, Carlos Manta Oliveira, and Luis A da Silva Cruz. Retinal image quality assessment using generic image quality indicators. Information Fusion, 19:73–90, 2014.; Mahnaz Fasih, JM Pierre Langlois, Houssem Ben Tahar, and Farida Cheriet. Retinal image quality assessment using generic features. In Medical Imaging 2014: ComputerAided Diagnosis, volume 9035, page 90352Z. International Society for Optics and Photonics, 2014.; Hanung Adi Nugroho, Titin Yulianti, Noor Akhmad Setiawan, and Dhimas Arief Dharmawan. Contrast measurement for no-reference retinal image quality assessment. In 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE), pages 1–4. IEEE, 2014.; Diana Veiga, Carla Pereira, Manuel João Ferreira, Luís Gon¸calves, and João Monteiro. Quality evaluation of digital fundus images through combined measures. Journal of Medical Imaging, 1(1):014001, 2014.; M. Fasih. Retinal image quality assessment using supervised classification. PhD thesis, École Polytechnique de Montréal, 2014.; Shaoze Wang, Kai Jin, Haitong Lu, Chuming Cheng, Juan Ye, and Dahong Qian. Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE transactions on medical imaging, 35(4):1046–1055, 2015.; Elaheh Imani, Hamid Reza Pourreza, and Touka Banaee. Retinal image quality assessment using shearlet transform. In Integral Methods in Science and Engineering, pages 329–339. Springer, 2015.; Shantala Giraddi, Anoop Betageri, and Chaitra Besthar. Quality assessment and grading of diabetic retinopathy. International Journal of Recent Scientific Research Research, 6(4):3259–3264, 2015.; LS Abdel Hamid, A El-Rafei, S El-Ramly, G Michelson, and J Hornegger. No-reference wavelet based retinal image quality assessment. In Computational Vision and Medical Image Processing V: Proceedings of the 5th Eccomas Thematic Conference on Computational Vision and Medical Image Processing (VipIMAGE), Spain, page 123, 2015.; RA Welikala, MM Fraz, PJ Foster, PH Whincup, Alicja R Rudnicka, Christopher G Owen, DP Strachan, Sarah A Barman, et al. Automated retinal image quality assessment on the uk biobank dataset for epidemiological studies. Computers in biology and medicine, 71:67–76, 2016.; Zhenjie Yao, Zhipeng Zhang, Li-Qun Xu, Qingxia Fan, and Ling Xu. Generic features for fundus image quality evaluation. In 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), pages 1–6. IEEE, 2016.; Lamiaa Abdel-Hamid, Ahmed El-Rafei, Salwa El-Ramly, Georg Michelson, and Joachim Hornegger. Retinal image quality assessment based on image clarity and content. Journal of biomedical optics, 21(9):096007, 2016.; Dwarikanath Mahapatra, Pallab K Roy, Suman Sedai, and Rahil Garnavi. A cnn based neurobiology inspired approach for retinal image quality assessment. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1304–1307. IEEE, 2016.; Adrian Galdran, Teresa Araújo, Ana Maria Mendon¸ca, and Aurélio Campilho. Retinal image quality assessment by mean-subtracted contrast-normalized coefficients. In European Congress on Computational Methods in Applied Sciences and Engineering, pages 844–853. Springer, 2017.; Sajib Kumar Saha, Basura Fernando, Jorge Cuadros, Di Xiao, and Yogesan Kanagasingam. Deep learning for automated quality assessment of color fundus images in diabetic retinopathy screening. arXiv preprint arXiv:1703.02511, 2017.; Pedro Costa, Adrian Galdran, Maria Inȇs Meyer, Michael David Abràmoff, Meindert Niemeijer, Ana Maria Mendon¸ca, and Aurélio Campilho. Towards adversarial retinal image synthesis. arXiv preprint arXiv:1701.08974, 2017.; Feng Shao, Yan Yang, Qiuping Jiang, Gangyi Jiang, and Yo-Sung Ho. Automated quality assessment of fundus images via analysis of illumination, naturalness and structure. IEEE Access, 6:806–817, 2017; Ana Rita Vieira Rodrigues. Retinal image quality assessment using deep convolutional neural networks. PhD thesis, 2018.; Aditya Raj, Anil Kumar Tiwari, and Maria G Martini. Fundus image quality assessment: survey, challenges, and future scope. IET Image Processing, 13(8):1211–1224, 2019; JL Lauermann, M Treder, M Alnawaiseh, CR Clemens, N Eter, and F Alten. Automated oct angiography image quality assessment using a deep learning algorithm. Graefe’s Archive for Clinical and Experimental Ophthalmology, 257(8):1641–1648, 2019.; Xuewei Wang, Shulin Zhang, Xiao Liang, Chun Zheng, Jinjin Zheng, and MINGZHAI Sun. A cnn-based retinal image quality assessment system for teleophthalmology. Journal of Mechanics in Medicine and Biology, 19(05):1950030, 2019.; Jorge Jiménez-García, Roberto Romero-Oraá, María García, María I López-Gálvez, and Roberto Hornero. Combination of global features for the automatic quality assessment of retinal images. Entropy, 21(3):311, 2019.; Robin Alais, Petr Dokládal, Ali Erginay, Bruno Figliuzzi, and Etienne Decencière. Fast macula detection and application to retinal image quality assessment. Biomedical Signal Processing and Control, 55:101567, 2020.; Bhargav Bhatkalkar, Abhishek Joshi, Srikanth Prabhu, and Sulatha Bhandary. Automated fundus image quality assessment and segmentation of optic disc using convolutional neural networks. International Journal of Electrical & Computer Engineering (2088-8708), 10, 2020.; Hao Liu, Ning Zhang, Shangang Jin, Dayou Xu, and Weizhe Gao. Small sample color fundus image quality assessment based on gcforest. Multimedia Tools and Applications, pages 1–19, 2020.; Roberto Romero Oraá, María García, Javier Oraá-Pérez, María I López, and Roberto Hornero. Automatic fundus image quality assessment: diagnostic accuracy in clinical practice. Investigative Ophthalmology & Visual Science, 61(7):2033–2033, 2020.; Yaxin Shen, Bin Sheng, Ruogu Fang, Huating Li, Ling Dai, Skylar Stolte, Jing Qin, Weiping Jia, and Dinggang Shen. Domain-invariant interpretable fundus image quality assessment. Medical Image Analysis, 61:101654, 2020.; Jane Asmuth, Bojidar Madjarov, Paul Sajda, and Jeffrey W Berger. Mosaicking and enhancement of slit lamp biomicroscopic fundus images. British journal of ophthalmology, 85(5):563–565, 2001.; Tusheng Lin and Yibin Zheng. Adaptive image enhancement for retinal blood vessel segmentation. Electronics Letters, 38(19):1090–1091, 2002.; Nayer M Wanas, Mahmoud R El-Sakka, and Mohamed S Kamel. Enhancement of vessel contours in retinal angiograms. In 2000 Canadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No. 00TH8492), volume 2, pages 908–912. IEEE, 2000.; Birgit Sander, Michael Larsen, Lars Thrane, Jesper Leth Hougaard, and Thomas Martini Jørgensen. Enhanced optical coherence tomography imaging by multiple scan averaging. British Journal of Ophthalmology, 89(2):207–212, 2005.; Kamel Belkacem-Boussaid, Balaji Raman, Gilberto Zamora, Yeshwanth Srinivasan, and Sven-Erick Bursell. Retinal image enhancement based on the human visual system. In Medical Imaging 2006: Image Processing, volume 6144, page 61446J. International Society for Optics and Photonics, 2006.; Aliaa AA Youssif, Atef Z Ghalwash, Amr S Ghoneim, et al. Comparative study of contrast enhancement and illumination equalization methods for retinal vasculature segmentation. In Cairo International Biomedical Engineering Conference, pages 1–5, 2006.; Shoude Chang, Xianyang Cai, and Costel Flueraru. Image enhancement for multilayer information retrieval by using full-field optical coherence tomography. Applied optics, 45(23):5967–5975, 2006.; Juan M Bueno, Jennifer J Hunter, Christopher J Cookson, Marsha L Kisilak, and Melanie CW Campbell. Improved scanning laser fundus imaging using polarimetry. JOSA A, 24(5):1337–1348, 2007.; Gopal Datt Joshi and Jayanthi Sivaswamy. Colour retinal image enhancement based on domain knowledge. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 591–598. IEEE, 2008.; Sathit Intajag, Phiphat Laohasongkram, and Pongtorn Chatree. Retinal image enhancement by indices fuzziness. In 2008 SICE Annual Conference, pages 3168–3173. IEEE, 2008.; Jing-long GU and Jian-xin SHEN. The enhancement of eye fundus image based on rough sets and wavelet unsharp masking [j]. Manufacture Information Engineering of China, 21, 2009.; Luca Giancardo, Fabrice Meriaudeau, Thomas P Kamowski, Yaqin Li, Kenneth W Tobin, and Edward Chaum. Automatic quality enhancement and nerve fibre layer artefacts removal in retina fundus images by off axis imaging. In 2011 18th IEEE International Conference on Image Processing, pages 49–52. IEEE, 2011.; G Russell, JP Oakley, N McLoughlin, and V Nourrit. Enhancement of color retinal images in poor imaging conditions. In 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings, pages 176–178. IEEE, 2012.; V Krishna Sree and P Sudhakar Rao. Hardware implementation of enhancement of retinal fundus image using simulink. In 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pages 239–244. IEEE, 2013.; Agung W Setiawan, Tati R Mengko, Oerip S Santoso, and Andriyan B Suksmono. Color retinal image enhancement using clahe. In International Conference on ICT for Smart Society, pages 1–3. IEEE, 2013.; Husna Ab Rahim, Ahmad Syahir Ibrahim, W Mimi Diyana W Zaki, and Aini Hussain. Methods to enhance digital fundus image for diabetic retinopathy detection. In 2014 IEEE 10th International Colloquium on Signal Processing and its Applications, pages 221–224. IEEE, 2014; Caroline Kulcsár, Riadh Fezzani, Guy Le Besnerais, Aurélien Plyer, and Xavier Levecq. Fast and robust image registration with local motion estimation for image enhancement and activity detection in retinal imaging. In 2014 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), pages 1–5. IEEE, 2014.; Thani Jintasuttisak and Sathit Intajag. Color retinal image enhancement by rayleigh contrast-limited adaptive histogram equalization. In 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), pages 692–697. IEEE, 2014.; CG Ravichandran and J Benadict Raja. A fast enhancement/thresholding based blood vessel segmentation for retinal image using contrast limited adaptive histogram equalization. Journal of Medical Imaging and Health Informatics, 4(4):567–575, 2014.; Niladri Sekhar Datta, P Saha, Himadri Sekhar Dutta, Debasree Sarkar, Sushanta Biswas, and P Sarkar. A new contrast enhancement method of retinal images in diabetic screening system. In 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), pages 255–260. IEEE, 2015.; P Bartczak, D Čerāne, P Fält, P Ylitepsa, E Hietanen, N Penttinen, L Laaksonen, L Lensu, M Hauta-Kasari, and H Uusitalo. Spectrally tunable light source based on a digital micromirror device for retinal image contrast enhancement. Lithuanian Journal of Physics, 55(3), 2015.; Sharad Kumar Yadav, Shailesh Kumar, Basant Kumar, and Rajiv Gupta. Comparative analysis of fundus image enhancement in detection of diabetic retinopathy. In 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pages 1–5. IEEE, 2016.; Toufique A Soomro, Junbin Gao, Mohammad AU Khan, Tariq M Khan, and Manoranjan Paul. Role of image contrast enhancement technique for ophthalmologist as diagnostic tool for diabetic retinopathy. In 2016 International conference on digital image computing: techniques and applications (DICTA), pages 1–8. IEEE, 2016.; Andrey Krylov, Andrey Nasonov, Alexander Razgulin, and Tatiana Romanenko. A post-processing method for 3d fundus image enhancement. In 2016 IEEE 13th International Conference on Signal Processing (ICSP), pages 49–52. IEEE, 2016.; Yi He, Yuanyuan Wang, Ling Wei, Xiqi Li, Jinsheng Yang, and Yudong Zhang. Improving retinal image quality using registration with an sift algorithm in quasi-confocal line scanning ophthalmoscope. In Oxygen Transport to Tissue XXXIX, pages 183–190. Springer, 2017.; AMRR Bandara and PWGRMPB Giragama. A retinal image enhancement technique for blood vessel segmentation algorithm. In 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), pages 1–5. IEEE, 2017.; Mei Zhou, Kai Jin, Shaoze Wang, Juan Ye, and Dahong Qian. Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Transactions on Biomedical Engineering, 65(3):521–527, 2017.; Syaiful Anam, Zuraidah Fitriah, Nur Shofianah, and Ratno Bagus Edy Wibowo. Fundus image enhancement by using maximum entropy and perona-malik diffusion filter. 2017.; P Sujith Reddy, Himanshu Singh, Anil Kumar, LK Balyan, and Heung-No Lee. Retinal fundus image enhancement using piecewise gamma corrected dominant orientation based histogram equalization. In 2018 International Conference on Communication and Signal Processing (ICCSP), pages 0124–0128. IEEE, 2018.; Yaroub Elloumi, Mohamed Akil, and Nasser Kehtarnavaz. A computationally efficient retina detection and enhancement image processing pipeline for smartphone-captured fundus images. 2018.; Kai Jin, Mei Zhou, Shaoze Wang, Lixia Lou, Yufeng Xu, Juan Ye, and Dahong Qian. Computer-aided diagnosis based on enhancement of degraded fundus photographs. Acta ophthalmologica, 96(3):e320–e326, 2018.; Andrey Krylov, Andrey Nasonov, Konstantin Chesnakov, Alexandra Nasonova, Seung Oh Jin, Uk Kang, and Sang Min Park. Vessel preserving cnn-based image resampling of retinal images. In International Conference Image Analysis and Recognition, pages 589–597. Springer, 2018.; Krishna Gopal Dhal and Sanjoy Das. Colour retinal images enhancement using modified histogram equalisation methods and firefly algorithm. International Journal of Biomedical Engineering and Technology, 28(2):160–184, 2018.; Noratikah Mazlan, Haniza Yazid, and Nur Rafidah Sabri. Enhancement of retinal images for microaneurysms detection in diabetic retinopathy. In 2018 IEEE Student Conference on Research and Development (SCOReD), pages 1–5. IEEE, 2018.; Nur Rafidah Binti Sabri and Haniza Binti Yazid. Image enhancement methods for fundus retina images. In 2018 IEEE Student Conference on Research and Development (SCOReD), pages 1–6. IEEE, 2018.; Qijing You, Cheng Wan, Jing Sun, Jianxin Shen, Hui Ye, and Qiuli Yu. Fundus image enhancement method based on cyclegan. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4500–4503. IEEE, 2019.; Farha Fatina Wahid and G Raju. A dual step strategy for retinal thin vessel enhancement/extraction. In 2019 Amity International Conference on Artificial Intelligence (AICAI), pages 666–671. IEEE, 2019.; Bharath Subramani and Magudeeswaran Veluchamy. Fuzzy contextual inference system for medical image enhancement. Measurement, 148:106967, 2019.; Rido Zulfahmi, Dea Sella Noviyanti, Ghiena Rifka Utami, Alya Nathasya Harison, Putra Sunan Agung, et al. Improved image quality retinal fundus with contrast limited adaptive histogram equalization and filter variation. In 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), pages 49–54. IEEE, 2019.; Kai-jian Xia, Jian-qiang Wang, and Jian Cai. A novel medical image enhancement algorithm based on improvement correction strategy in wavelet transform domain. Cluster Computing, 22(5):10969–10977, 2019.; Nurul Atikah Binti Mohd Sharif, Nor Hazlyna Binti Harun, Yuhanis Binti Yusof, Zunaina Embong, Juhaida Binti Abu Bakar, Muhammad Khusairi Osman, Nurul Fatin Shazzwanie Shamsudin, and Lim Xiao Feng. Performance of image enhancement methods for diabetic retinopathy based on retinal fundus image. In 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE), pages 18–23. IEEE, 2020.; Jucelino Cardoso Marciano dos Santos, Gilberto Arantes Carrijo, Cristiane de Fátima dos Santos Cardoso, Júlio César Ferreira, Pedro Moises Sousa, and Ana Cláudia Patrocínio. Fundus image quality enhancement for blood vessel detection via a neural network using clahe and wiener filter. Research on Biomedical Engineering, pages 1–13, 2020.; Gopinath Palanisamy, Natarajan B Shankar, Palanisamy Ponnusamy, and Varun P Gopi. A hybrid feature preservation technique based on luminosity and edge based contrast enhancement in color fundus images. Biocybernetics and Biomedical Engineering, 2020.; Safinaz ElMahmoudy, Lamiaa Abdel-Hamid, Ahmed El-Rafei, and Salwa El-Ramly. Wavelet-based retinal image enhancement. In International Conference on Image Analysis and recognition, pages 313–324. Springer, 2020.; Ankit Kandpal and Neelu Jain. Retinal image enhancement using edge-based texture histogram equalization. In 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), pages 477–482. IEEE, 2020.; Carlos H Morimoto and Marcio RM Mimica. Eye gaze tracking techniques for interactive applications. Computer vision and image understanding, 98(1):4–24, 2005.; Ren Yang, Mai Xu, Zulin Wang, and Tianyi Li. Multi-frame quality enhancement for compressed video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6664–6673, 2018.; Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1125–1134, 2017.; Oscar Julian Perdomo Charry and Fabio Augusto González Osorio. A systematic review of deep learning methods applied to ocular images. 2019.; Nasr Gharaibeh, Obaida M Al-Hazaimeh, Bassam Al-Naami, and Khalid MO Nahar. An effective image processing method for detection of diabetic retinopathy diseases from retinal fundus images. International Journal of Signal and Imaging Systems Engineering, 11(4):206–216, 2018.; B Singh and K Jayasree. Implementation of diabetic retinopathy detection system for enhance digital fundus images. International Journal of advanced technology and innovation research, 7(6):874–876, 2015.; Tyler Coye. A novel retinal blood vessel segmentation algorithm for fundus images. MATLAB Central File Exchange (Jan 2017), 2015; SIVA SUNDHARA RAJA and S Vasuki. Screening diabetic retinopathy in developing countries using retinal images. Applied Medical Informatics., 36(1):13–22, 2015.; Karel Zuiderveld. Contrast limited adaptive histogram equalization. Graphics gems, pages 474–485, 1994.; https://repositorio.unal.edu.co/handle/unal/79282
-
7Academic Journal
المؤلفون: Millán García-Varela, María Sagrario
المساهمون: Academia Colombiana de Ciencias Exactas, Físicas y Naturales
مصطلحات موضوعية: Calidad de imagen, Función de transferencia de modulación, Aberraciones ópticas, Cirugía de cataratas, Óptica visual, Lente intraocular, Imaging quality, Modulation transfer function, Optical aberrations, Cataract surgery, Visual optics, Intraocular lens
وصف الملف: application/pdf
Relation: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales; 45; 1022; 1038; 177; https://repositorio.accefyn.org.co/handle/001/2003; https://doi.org/10.18257/raccefyn.1522
-
8Dissertation/ Thesis
المؤلفون: Cruz Bejar, Willy Aldair
المساهمون: Ormeño Ayala, Yeshica Isela
مصطلحات موضوعية: Redes neuronales, Calidad de imagen, Peso animal, Distorsiones de imagen, http://purl.org/pe-repo/ocde/ford#1.02.01
وصف الملف: application/pdf
Relation: 253T20240981; http://hdl.handle.net/20.500.12918/9624
-
9Dissertation/ Thesis
المؤلفون: Avila González, Luz Daniela
المساهمون: Pulgarín Giraldo, Juan Diego, Universidad Autónoma de Occidente, Corchuelo Guzmán, Valentina
مصطلحات موضوعية: Ingeniería Biomédica, Control de calidad, Ecografía, Calidad de imagen, Eventos diarios, Daily events, Image quality, Quality control, Ultrasound
وصف الملف: 73 páginas; application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document
Relation: Benguria-Arrate, G., Gutiérrez-Ibarluzea, I., Bayón-Yusta, J., y Galnares-Cordero, L. (2019). Indicaciones, utilidad y uso de la ecografía en Atención Primaria. Ministerio de Sanidad, Consumo y Bienestar Social. Servicio de Evaluación de Tecnologías Sanitarias del País Vasco.; Bhatia, V. P., y Gilbert, B. R. (2020). History of ultrasound. In Practical Urological Ultrasound: Third Edition (pp. 1–11). Springer International Publishing. https://doi.org/10.1007/978-3-030-52309-1_1; Castrillón-Giraldo, W. S., Morales-Aramburo, J., y Jaramillo-Garzón, W. (2020). Control de calidad en equipos de rayos X en intervencionismo: Quality control of X-ray equipment used in intervention studies. Revista Colombiana de Cardiologia, 27, 88–95. https://doi.org/10.1016/j.rccar.2019.09.009; Díaz-Rodríguez, N., Garrido-Chamorro, R., y Castellano-Alarcón, J. (2007). Ecografía: principios físicos, ecógrafos y lenguaje ecográfico. SEMERGEN - Medicina de Familia, 33, 362–369. https://doi.org/https://doi.org/10.1016/S1138-3593(07)73916-3.; Dietrich, C. F., Bolondi, L., Duck, F., Evans, D. H., Ewertsen, C., Fraser, A. G., Gilja, O. H., Jenssen, C., Merz, E., Nolsoe, C., Nürnberg, D., Lutz, H., Piscaglia, F., Saftiou, A., Vilmann, P., Dong, Y., y Hill, C. R. (2022). History of Ultrasound in Medicine from its birth to date (2022), on occasion of the 50 Years Anniversary of EFSUMB A publication of the European Federation of Societies for Ultrasound In Medicine and Biology (EFSUMB), designed to record the historical development of medical ultrasound. In Medical Ultrasonography (Vol. 24, Issue 4, pp. 434–450). Societatea Romana de Ultrasonografie in Medicina si Biologie. https://doi.org/10.11152/mu-3757; El Hospital. (2017, August 4). Protección radiológica y controles de calidad en Colombia. https://www.elhospital.com/es/noticias/proteccion-radiologica-y-controles-de-calidad-encolombia; Fuertes, T., González, B., y García, Bonel. (2013). Implementación y puesta en marcha de un programa de control de calidad en ecografía. Un trabajo multidisciplinar. Revista Fisica Medica, 14, 29–38.; Goske, M. J., Charkot, E., Herrmann, T., John, S. D., Mills, T. T., Morrison, G., y Smith, S. N. (2011). Image Gently: Challenges for radiologic technologists when performing digital radiography in children. Pediatric Radiology, 41(5), 611–619. https://doi.org/10.1007/s00247-010-1957-3; Hangiandreou, N. J., Stekel, S. F., Tradup, D. J., Gorny, K. R., y King, D. M. (2011). Four-Year Experience with a Clinical Ultrasound Quality Control Program. Ultrasound in Medicine and Biology, 37(8), 1350–1357. https://doi.org/10.1016/j.ultrasmedbio.2011.05.007; INVIMA. (s.f.). Dispositivos médicos y equipos biomédicos - Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Retrieved September 25, 2023, from https://www.invima.gov.co/dispositivos-medicos-y-equipos-biomedicos; Joint Commission International. (2021). Joint Commission International Accreditation Standards for Hospitals (I. Joint Commission Resources, Ed.; 7th ed.).; Mayette, M., y Mohabir, P. K. (2020). CAPÍTULO 2 Física y modos de los ultrasonidos.; Migault, L., Bowman, J. D., Kromhout, H., Figuerola, J., Baldi, I., Bouvier, G., Turner, M. C., Cardis, E., y Vila, J. (2019). Development of a job-exposure matrix for assessment of occupational exposure to high-frequency electromagnetic fields (3 kHz–300 GHz). Annals of Work Exposures and Health, 63(9), 1013–1028. https://doi.org/10.1093/annweh/wxz067; Millán Armengol, A. (2018). Radiaciones no ionizantes I. Ultrasonidos: Bases físicas, equipos y control de calidad. In Fundamentos de Física Médica (Vol. 9, pp. 1–429). Aula Documental de Investigación.; Ministerio de Salud y Protección Social. (2018). Resolución No. 482 de febrero 22 de 2018. https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%20No.%20482%20de%202018.pdf; Ministerio de salud y protección social. (2019). Resolución No. 3100 de 2019. https://www.minsalud.gov.co/Normatividad_Nuevo/Resoluci%C3%B3n%20No.%203100%20de%202019.pdf; Segura-Grau, A., Sáez-Fernández, A., Rodríguez-Lorenzo, A., y Díaz-Rodríguez, N. (2014). Curso de ecografía abdominal. Introducción a la técnica ecográfica. Principios físicos. Lenguaje ecográfico. Semergen, 40(1), 42–46. https://doi.org/10.1016/j.semerg.2013.09.008; Tsapaki, V., Tsalafoutas, I. A., Triantopoulou, S. S., y Triantopoulou, C. (2022). Development and implementation of a quality control protocol for B-mode ultrasound equipment. Journal of Ultrasound, 25(2), 155–165. https://doi.org/10.1007/s40477-021-00579-7; Vuorenmaa, A., Siitama, E., Hakulinen, U., y Eskola, H. (2023). Technical Performance Assessment and Quality Control of Ultrasound Device Monitors. Ultrasound in Medicine and Biology, 49(1), 380–387. https://doi.org/10.1016/j.ultrasmedbio.2022.08.019; Walker, F. O. (2012). Principios básicos de ecografía. Elsevier España, 1–23; Ávila González, L. D. (2024). Diseño de un sistema de control de calidad para equipos generadores de imágenes por ultrasonido en el Hospital Universitario Fundación Valle de Lili. (Proyecto de grado). Universidad Autónoma de Occidente. Cali. Colombia. https://hdl.handle.net/10614/15635; https://hdl.handle.net/10614/15635; Universidad Autónoma de Occidente; Respositorio Educativo Digital UAO; https://red.uao.edu.co/
-
10Dissertation/ Thesis
المساهمون: Benavente i Vidal, Robert
مصطلحات موضوعية: Super-resolució d'imatges satel·litals, Real-ESRGAN, Validació de rendiment, Millora de la qualitat d'imatge, Xarxa Generativa Antagònica, Super-resolución de imágenes satelitales, Validación de rendimiento, Mejora de calidad de imagen, Red Generativa Adversarial, Satellite image super-resolution, Performance validation, Image quality enhancement, Generative Adversarial Network
وصف الملف: application/pdf
Relation: https://ddd.uab.cat/record/298977; urn:oai:ddd.uab.cat:298977; urn:tfgcv:2858305
الاتاحة: https://ddd.uab.cat/record/298977
-
11Conference
المساهمون: Universidad de Sevilla. Departamento de Administración de Empresas y Comercialización e Investigación de Mercados (Marketing)
مصطلحات موضوعية: Clases, Servicios docentes universitarios, Calidad, Calidad de imagen
Relation: II Jornadas Andaluzas de Calidad en la Enseñanza Universitaria. Desarrollo de Planes de Calidad para la Universidad. Materiales para la Calidad. (2000), p 143-158; Sevilla, España; https://idus.us.es/handle//11441/73727
-
12Academic Journal
المؤلفون: Lloret, Tomás, Navarro-Fuster, Víctor, Ramirez, Manuel G., Neipp, Cristian, Ortuño, Manuel, Beléndez, Augusto, Pascual, Inmaculada
المساهمون: Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías, Holografía y Procesado Óptico
مصطلحات موضوعية: Holografía, Lentes Holográficas, Holografía de Volumen, Fotopolímeros, Calidad de Imagen, MTF, Aberraciones, Holography, Holographic Lenses, Volume Holography, Photopolymers, Image Quality, Aberrations, Óptica, Física Aplicada
Relation: https://doi.org/10.7149/OPA.52.2.51011; info:eu-repo/grantAgreement/MINECO//FIS2014-56100-C2-1-P; info:eu-repo/grantAgreement/MINECO//FIS2015-66570-P; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-82919-R; Óptica Pura y Aplicada. 2019, 52(2): 1-10. doi:10.7149/OPA.52.2.51011; 2171-8814 (Internet); http://hdl.handle.net/10045/93890
-
13Academic Journal
المؤلفون: Vivas García, Jeison Eduardo
المساهمون: Poveda, Jairo Fernando, Plazas de Pinzón, María Cristina
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::621 - Física aplicada, 530 - Física, Tomógrafo por emisión de positrones, PET-CT, Resolución espacial, Fracción de dispersión, Sensibilidad, Calidad de imagen, Pruebas NEMA NU-2-2007, Point Spread Function, Positron emission tomograph, Scatter Fraction, Count Losses and Randoms Measurement, Sensitivity and Image Quality, NEMA NU-2-2007 Test
وصف الملف: application/pdf
Relation: R. Powsner, M. Palmer, and E. Powsner, Essentials of Nuclear Medicine Physics and Instrumentation. 2013.; M. Phelps, PET: Physics, Instrumentation, and Scanners. Springer New York, 2006.; B. Antonio, R. Puchal, and La Sociedad Española de Física Médica , Fundamentos de Física Médica, Volumen 6 Medicina Nuclear: bases físicas, equipos y control de calidad. Sociedad Española de Física Médica, 2011.; BiMedis, "www.bimedis.com/a-item/pet-scanners-siemens-biograph-mct-128- 1007936," 2018.; P. GmbH, "Consistent easy operation curiementor," Physikalisch-Technische Werkstatten, PTW, p. 4, 2006.; "Biodex medical systems, inc. 2019."; "Performance measurements of positron emission tomographs," Rosslyn VA: National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2007, pp. 1-48, 2007.; "National institute of standars and technology, physical measurement laboratory, 2008, https://www.nist.gov/pml/fundamental-physical-constants."; C. S. Levin and E. J. Hoffman, "Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution," Physics in Medicine & Biology, vol. 44, no. 3, p. 781, 1999.; SIEMENS, "Biograph mct, system specifications," SIEMENS Medical Solutions, www.siemens.com/mi, pp. 1-8, 2009.; L. Román, PET/CT: fundamentos. Amolca, 2007.; IAEA, "International atomic energy agency, protección radiolóogica de los pacientes, exploraciones de pet/ct." url https://rpop.iaea.org/RPOP/RPoP/Contentes/InformationFor/HealthProfessionals/6 OtherClinicalSpecialities/PETCTscan.htm, 2013. Accedido 2020.; K. Iniewski and W. Davros, Medical Imaging Principles, Detectors, and Electronics. 2009.; S. Mattsson and C. Hoeschen, Radiation Protection in Nuclear Medicine. Springer, Berlin, Heidelberg, 2013.; D. Bailey, J. Humm, A. Todd-Pokropek, and A. Aswegen, Nuclear Medicine Physics A Handbook for Teachers and Students. 2014.; L. Illanes and M. E. Echeverry, Física de la Médicina Nuclear: Introducción al control y verificación de los equipos. Una guía práctica. Editorial de la Universidad de la Plata, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 2019.; R. Puchal Añe, Filtros en Medicina Nuclear. Barcelona, 2017.; M. Soret, S. L. Bacharach, and I. Buvat, "Partial-volume effect in pet tumor imaging," Journal of Nuclear Medicine, vol. 48, no. 6, pp. 932-945, 2007.; M. Quaye, "Assessment of image quality of a pet/ct scanner for a standarized image situation using a nema body phantom. \the impact of different image reconstruction parameters on image quality," Master's thesis, The University of Bergen, 2013.; J. M. Ferreyra, Evaluación de los factores metodológicos que afectan la cuantifcación de imáagenes de PET/CT. PhD thesis, Universidad Nacional de Cuyo, 2011.; "Performance measurements of positron emission tomographs," Rosslyn, VA: National Electrical Manufacturers Association. NEMA Standards Publication NU 2-1994, 1994.; "Performance measurements of positron emission tomographs," Rosslyn, VA: National Electrical Manufacturers Association. NEMA Standards Publication NU 2-2001, 2001.; SIEMENS, "Nema 2007, test instructions," SIEMENS Medical Solutions p41, www.usa.siemens.com/healthcare, pp. 1-53, 2009.; NIH, "National institute of health." https://www.nih.gov/. Consulta 2019.; ImageJ, "Imagej, image processing and analysis in java." https://imagej.nih.gov/nihimage/https://imagej.nih.gov/ij/download.html. Consulta 2018-2019.; Matlab, "The mathworks, inc., matlab." https://la.mathworks.com/products/matlab.html, 1994-2020. Accedido 2018-2019.; J. M. Martí-Climent, E. Prieto, I. Domínguez-Prado, M. García-Velloso, M. Rodríguez- Fraile, J. Arbizu, C. Vigil, C. Caicedo, I. Peñuelas, and J. Richter, "Aportación del tiempo de vuelo y de la modelización de la respuesta a una fuente puntual a las características de funcionamiento del tomógrafo pet/tac biograph mct," Revista Españoola de Medicina Nuclear e Imagen Molecular, vol. 32, no. 1, pp. 13-21, 2013.; G. Tarantola, F. Zito, and P. Gerundini, "PET instrumentation and reconstruction algorithms in whole-body applications," Journal of nuclear medicine : official publication, Society of Nuclear Medicine, vol. 44, pp. 756-69, 06 2003.; C. C. Watson, M. E. Casey, B. Bendriem, J. P. Carney, D. W. Townsend, S. Eberl, S. Meikle, and F. P. DiFilippo, "Optimizing injected dose in clinical pet by accurately modeling the counting-rate response functions specific to individual patient scans," Journal of Nuclear Medicine, vol. 46, no. 11, pp. 1825-1834, 2005.; https://repositorio.unal.edu.co/handle/unal/77631
-
14Academic Journal
المؤلفون: Arribas DÃaz,Ana Begoña, Vela Orús,Pilar
المصدر: AngiologÃa v.75 n.6 2023
مصطلحات موضوعية: EcografÃa Doppler, Configuración, Knobology, Calidad de imagen, Optimización de imagen
وصف الملف: text/html
-
15Academic JournalEvaluación “a distancia” de calidad de imagen en Tomografía Computada: validación de una herramienta
المؤلفون: López Díaz, Adlín, Almeida Montes, Rey Daniel, Garrido Reyes, Jennifer, Calderón Marín, Carlos Fabián, Reyes González, Yudmila
المصدر: Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones, ISSN 1815-5928, Vol. 44, Nº. 2, 2023
مصطلحات موضوعية: Computer Tomography, At distance, Quality control, Image quality phantom, A distancia, Tomografía computada, Maniquí de calidad de imagen, Control de calidad
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9513946; (Revista) ISSN 0258-5944; (Revista) ISSN 1815-5928
-
16Academic Journal
المؤلفون: González.López, Dagoberto, Camacho Soto, José Alonso, Salvador Hernández, Lourdes, Santos Gutiérrez, Fredys
المصدر: Acta Médica Costarricense, ISSN 2215-5856, Vol. 65, Nº. 2, 2023 (Ejemplar dedicado a: Acta Médica Costarricense April-June), pags. 1-7
مصطلحات موضوعية: Tomografía computarizada, control automático de exposición, calidad de imagen, dosis, Computerized tomography, automatic exposure control, image quality, dose
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9097765; (Revista) ISSN 0001-6012; (Revista) ISSN 2215-5856
-
17
المؤلفون: Maguiña Bocanegra, Luz Maria
المساهمون: Neyra Aguilar, Félix Alexander, Calvo Moreno, Gino Mauricio
مصطلحات موضوعية: purl.org/pe-repo/ocde/ford#3.02.08 [http], Radiografía Torácica, purl.org/pe-repo/ocde/ford#3.02.07 [http], Hospitalización, Calidad de Imagen, COVID-19, Unidad de Cuidados Intensivos, purl.org/pe-repo/ocde/ford#3.02.12 [http], purl.org/pe-repo/ocde/ford#3.03.08 [http]
وصف الملف: application/pdf
-
18
المساهمون: Ramírez Toscano, Erika Giovana, Loyola Sosa, Steev Orlando
مصطلحات موضوعية: Análisis Cualitativo, purl.org/pe-repo/ocde/ford#3.01.09 [http], Angiotomografía Coronaria, purl.org/pe-repo/ocde/ford#3.02.04 [http], Calidad de Imagen, purl.org/pe-repo/ocde/ford#3.02.12 [http]
وصف الملف: application/pdf
-
19Dissertation/ Thesis
المؤلفون: Morales Rojas, Alejandra
المساهمون: Ramos Correa, Victor Alfonso, López Castellanos, María Esperanza, Abril Fajardo, Andrea Johana, Díaz Londoño, Gloria María, Salazar Hurtado, Edison de Jesús
مصطلحات موضوعية: Tomografía computarizada, Dosis, Calidad de imagen, NRD, Computed tomography, Dose, Image quality, DRL, Maestría en física médica - Tesis y disertaciones académicas, Hospital Universitario San Ignacio (Bogotá, Colombia), Radiación, Radiografía, Radiólogos
وصف الملف: PDF; application/pdf
Relation: http://hdl.handle.net/10554/65540; instname:Pontificia Universidad Javeriana; reponame:Repositorio Institucional - Pontificia Universidad Javeriana; repourl:https://repository.javeriana.edu.co
الاتاحة: http://hdl.handle.net/10554/65540
-
20Dissertation/ Thesis
المؤلفون: Maguiña Bocanegra, Luz Maria
المساهمون: Neyra Aguilar, Félix Alexander, Calvo Moreno, Gino Mauricio
مصطلحات موضوعية: Calidad de Imagen, Radiografía Torácica, COVID-19, Hospitalización, Unidad de Cuidados Intensivos, http://purl.org/pe-repo/ocde/ford#3.02.07, http://purl.org/pe-repo/ocde/ford#3.02.08, http://purl.org/pe-repo/ocde/ford#3.02.12, http://purl.org/pe-repo/ocde/ford#3.03.08
وصف الملف: application/pdf
Relation: 208390; https://hdl.handle.net/20.500.12866/13663