يعرض 1 - 20 نتائج من 369 نتيجة بحث عن '"CONVERTIDORES DE POTENCIA"', وقت الاستعلام: 1.12s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

    Thesis Advisors: Martínez Salamero, Luis, El Aroudi, Abdelali

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 621.3

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat Politècnica de Catalunya. Institut d'Organització i Control de Sistemes Industrials

    Thesis Advisors: Biel Solé, Domingo, Sira-Ramírez, Hebertt

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 621.3

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis

    المؤلفون: González Díez, David

    المساهمون: University/Department: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica

    Thesis Advisors: Balcells Sendra, Josep

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 621.3

    وصف الملف: application/pdf

  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    المصدر: Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 No. 4 (2022): Contemporary interdisciplinary affairs; 286-301 ; Sapienza: International Journal of Interdisciplinary Studies; Vol. 3 Núm. 4 (2022): Temas interdisciplinarios contemporáneos; 286-301 ; Sapienza: International Journal of Interdisciplinary Studies; v. 3 n. 4 (2022): Tópicos interdisciplinares contemporâneos ; 286-301 ; 2675-9780 ; 10.51798/sijis.v3i4

    وصف الملف: application/pdf

  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal

    المساهمون: Cortés Guerrero, Camilo Andrés, Martínez, Wilmar Hernán, Grupo de Investigación EMC-UN

    وصف الملف: 1 recurso en línea (201 páginas); application/pdf

    Relation: Unidad de Planeación Minero Energética, “PROYECCIÓN DE LA DEMANDA DE ENERGÍA ELÉCTRICA Y POTENCIA MÁXIMA EN COLOMBIA Revisión Febrero de 2017,” UPME, Bogotá, Tech. Rep., 2017. [Online]. Available: http://www.siel.gov.co/siel/documentos/documentacion/Demanda/UPME_Proyeccion_Demanda_Energia_Febrero_2017.pdf; H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28, January 2010.; H. Gharavi and R. Ghafurian, “Smart grid: The electric energy system of the future,” IEEE Transactions on Power Systems, 2011.; J. A. Momoh, “Smart grid design for efficient and flexible power networks operation and control,” in 2009 IEEE/PES Power Systems Conference and Exposition, March 2009, pp. 1–8.; R. H. Lasseter, “Microgrids,” in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), vol. 1, 2002, pp. 305–308 vol.1.; N. Hatziargyriou, N. Jenkins, et. al. , “Microgrids: Large scale integration of microgeneration to low voltage grids,” Modern power systems, 2003.; N. Hatziargyriou, “Microgrid: architectures and control,” Microgrid : architectures and control, pp. 1–24, 2003.; C. Schwaegerl and L. Tao, “More microgrids: Advanced architectures and control concepts for more microgrids,” Modern power systems, 2009.; B. Nordman and K. Christensen, “Local power distribution with nanogrids,” 2013 International Green Computing Conference Proceedings, pp. 1–8, 2013. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6604464; B. Nordman, K. Christensen, and A. Meier, “Think globally, distribute power locally: The promise of nanogrids,” Computer, vol. 45, no. 9, pp. 89–91, 2012.; H. Kakigano, Y. Miura, and T. Ise, “Configuration and control of a dc microgrid for residential houses,” Transmission and Distribution Conference and Exposition: Asia and Pacific, T and D Asia 2009, pp. 1–4, 209.; D. Burmester, R. Rayudu, W. Seah, and D. Akinyele, “A review of nanogrid topologies and technologies,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 760–775, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2016.09.073; B. Nordman and K. Christensen, “DC Local Power Distribution with microgrids and nanogrids,” 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, pp. 199–204, 2015.; A. Narváez, “Concepción del proceso de diseño de un Sistema Híbrido de Almacenamiento de Energía compuesto por baterías y supercondensadores, con aplicación a microrredes eléctricas residenciales, proyecto de tesis doctoral,” aprobada.; J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122–132, 2012.; R. A. Dougal, S. Liu, and R. E. White, “Power and life extension of battery-ultracapacitor hybrids,” IEEE Transactions on Components and Packaging Technologies, vol. 25, no. 1, pp. 120–131, 2002.; W. Gao, “Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell ultracapacitor hybrid powertrain,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp. 846–855, 2005.; A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, 2010.; D. O. Akinyele and R. K. Rayudu, “Review of energy storage technologies for sustainable power networks,” Sustain. Energy Technol. Assessments, 2014.; QUANTA TECHNOLOGY., “Electric Energy Storage Systems.” proceedings of the 10th WSEAS international conference on energy, environment, ecosystems and sustainable development 2013. [Online]. Available: http://quanta-technology.com/sites/default/files/doc-files/ Energy_Storage-12-01-13.pdf; A. Narvaez, C. Cortes, and C. L. Trujillo, “Comparative analysis of topologies for the interconnection of batteries and supercapacitors in a hybrid energy storage system,” in 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2017, pp. 1–6.; Z. Kong, N. Cui, and P. Li, “Energy management strategy coordinating lithium-ion battery and ultra-capacitor for electric vehicle,” in 2017 36th Chinese Control Conference (CCC). IEEE, Jul. 2017. [Online]. Available: https://doi.org/10.23919/chicc.2017.8028837; Z. Chen, W. Yong, and W. Gao, “Pi and sliding mode control of a multi-input-multi-output boost- boost converter,” 2014.; G. A. Ramos, R. Costa-castelló, and J. M. Olm, Digital Repetitive Control under Varying Frequency Conditions, 1st ed., Springer, Ed. Springer-Verlag Berlin Heidelberg, 2013.; M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-Ion Batteries, 1st ed., S. Ltd., Ed. Saga, Japan: Springer, 2016.; B. Scrosati and J. Garche, “Lithium batteries: Status, prospects and future,” Journal of Power Sources, vol. 195, no. 9, pp. 2419–2430, 2010.; L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol. 226, pp. 272–288, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2012.10.060; J. M. Tarascon, J. M. Tarascon, M. Armand, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11713543; V. A. Shah, J. A. Joshi, R. Maheshwari, and R. Roy, “Review of Ultracapacitor Technology and its Applications,” Journal on power systems, no. December, 2008.; L. Murata Manofacturing Co., “High Performance Electrical Double-Layer Capacitors,” Technical Guides, no. 1, p. 16, 2013.; BOOSTCAP Energy Storage Modules for Heavy Duty Transportation Applications, Maxwell Technologies, 6 2016, ver. 2.2.; A. Burke, “Ultracapacitors: Why, how, and where is the technology,” Journal of Power Sources, vol. 91, no. 1, pp. 37–50, 2000.; M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, and R. J. Staniewicz, “Main aging mechanisms in Li ion batteries,” Journal of Power Sources, vol. 146, no. 1-2, pp. 90–96, 2005.; A. Narvaez, C. Cortes, and C. Trujillo, “Real-time frequency-decoupling control for a hybrid energy storage system in an active parallel topology connected to a residential microgrid with intermittent generation,” in Applied Computer Sciences in Engineering, J. C. Figueroa-García, E. R. López-Santana, and J. I. Rodriguez-Molano, Eds. Cham: Springer International Publishing, 2018, pp. 596–605.; A. Latorre, C. A. Cortes, and W. Martinez, “Ems for bidirectional boost converters of a hybrid energy storage system for residential microgrid applications,” in 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), 2018, pp. P.1–P.9.; N. Mohan, Power Electronics: Converters, Applications and Design, I. John Wiley & Sons, Ed. Wiley, 1995.; D. Hart, Power Electronics. McGraw Hill, University of Valparaiso, 2011.; Y. Gu, W. Li, and X. He, “Frequency-coordinating virtual impedance for autonomous power management of dc microgrid,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2328– 2337, 2015.; Q. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, C. Wen, and M. Y. Lee, “A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous dc microgrid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5930–5941, 2017.; Q. Xu, J. Xiao, X. Hu, P. Wang, and M. Y. Lee, “A decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state-ofcharge recovery,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7098–7108, 2017.; S. Bacha, I. Munteanu, and A. I. Bratcu, Power electronic converters modeling and control : with case studies. London: Springer, 2014.; R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Springer US, 2001. [Online]. Available: https://doi.org/10.1007/b100747; M. Korkmaz, O. Aydogdu, and H. Dogan, “Design and performance comparison of variable parameter nonlinear PID controller and genetic algorithm based PID controller,” in 2012 International Symposium on Innovations in Intelligent Systems and Applications. IEEE, Jul. 2012. [Online]. Available: https://doi.org/10.1109/inista.2012.6246935; S. Lee and H. Almurib, “Control techniques for power converters in photovoltaic hybrid energy storage system,” in 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014. Institution of Engineering and Technology, 2014. [Online]. Available: https://doi.org/10.1049/cp.2014.1494; C.-T. Chen, Analog and Digital Control System Design: Transfer-Function, State-Space, and Algebraic Methods. USA: Oxford University Press, Inc., 1995.; S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge estimation,” in Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148). IEEE, 2001. [Online]. Available: https://doi.org/10.1109/acc.2001.945964; H. D. Morales, “Fundamentos de control,” no publicado.; B. Hauke, “Application report slva477b: Basic calculation of a buck converter’s power stage,” Texas Instruments, Low PowerDC/DC Applications, pp. 1–8, 2011, rev. 2015.; C. Edwards and S. Spurgeon, Sliding Mode Control: Theory And Applications, ser. Series in Systems and Control. Taylor & Francis, 1998. [Online]. Available: https://books.google. com.co/books?id=uH2RJhIPsiYC; E. Okyere, A. Bousbaine, G. T. Poyi, A. K. Joseph, and J. M. Andrade, “Lqr controller design for quad-rotor helicopters,” The Journal of Engineering, vol. 2019, no. 17, pp. 4003–4007, 2019.; K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice-Hall, 1998.; B. Francis and W. Wonham, “Internal model principle in control theory,” Automatica 12, pp. 457–465, 1976.; S. Bhattacharyya, A. Datta, and L. Keel, Linear Control Theory: Structure, Robustness, and Optimization, ser. Automation and Control Engineering. CRC Press, 2018. [Online]. Available: https://books.google.com.co/books?id=2vK4aqHqW1IC; Juwari, S. Chin, N. Samad, and B. Aziz, “Two-degree-of-freedom internal model control for parallel cascade scheme,” in 2008 International Symposium on Information Technology. IEEE, Aug. 2008. [Online]. Available: https://doi.org/10.1109/itsim.2008.4632063; A. Ghosh, M. Prakash, S. Pradhan, and S. Banerjee, “A comparison among PID, sliding mode and internal model control for a buck converter,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2014. [Online]. Available: https://doi.org/10.1109%2Fiecon.2014.7048624; A. T. Azar and F. E. Serrano, “Robust IMC–PID tuning for cascade control systems with gain and phase margin specifications,” Neural Computing and Applications, vol. 25, no. 5, pp. 983–995, Mar. 2014. [Online]. Available: https://doi.org/10.1007/s00521-014-1560-x; OP4510 Simulator, OPAL-RT Technologies, 7 2015. [Online]. Available: https://blob.opal-rt.com/medias/L00161_0124.pdf; HV Floating MOS-Gate Driver ICs, International Rectifier, 3 2007. [Online]. Available: https://www.mouser.in/pdfDocs/HVFloatingMOS-GateDriverICs.pdf; M. Oswal, J. Paul, and R. Zhao, “A comparative study of lithium-ion batteries,” Storage systems for renewables, 2015.; HIGH CAPACITY K2B12V7EB ENERGY MODULE, K2 Energy, 4 2016, rev. 3.; P. Sharma and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Conversion and Management, vol. 51, no. 12, pp. 2901–2912, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2010.06.031; M. Mastragostino, C. Arbizzani, and F. Soavi, “Polymer-based supercapacitors,” Journal of Power Sources, vol. 97–98, pp. 812 – 815, 2001, proceedings of the 10th International Meeting on Lithium Batteries. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378775301006139; J. Pascual, I. S. Martin, A. Ursua, P. Sanchis, and L. Marroyo, “Implementation and control of a residential microgrid based on renewable energy sources, hybrid storage systems and thermal controllable loads,” in 2013 IEEE Energy Conversion Congress and Exposition. IEEE, Sep. 2013. [Online]. Available: https://doi.org/10.1109/ecce.2013.6646995; A. Latorre "Control de convertidores de potencia para un sistema híbrido de almacenamiento de energía en aplicaciones de de microrredes residenciales", Universidad Nacional de Colombia, Noviembre de 2020 p.p. 1-201; https://repositorio.unal.edu.co/handle/unal/79339

  15. 15
    Dissertation/ Thesis

    المؤلفون: Salas Castaño, Maria Claudia

    المساهمون: López Santos, Oswaldo, Barrero Mendoza, Oscar, Suárez Sierra, Oscar Javier

    وصف الملف: 80 páginas; application/pdf

    Relation: D. W. Kweku et al., “Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming,” Journal of Scientific Research and Reports, vol. 17, no. 6, pp. 1–9, 2018.; M. Allen, M. Babiker, Y. Chen, H. de Coninck, and S. Conors, “Global Warming of 15°C. An IPCC Special Report on the impacts of global warming of 15°C above pre-industrial levels and related global greenhouse gas emission pathways,” IPCC Special Report, 2018.; U.S. Energy Information Administration, “U.S. CO2 emissions from energy consumption by source and sector,” 2021. https://www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php.; European Parliament, “Air emissions accounts for greenhouse gases by NACE,” 2022. https://ec.europa.eu/eurostat/databrowser/view/ env_ac_aigg_q/default/ table?lang=en.; D. Pérez Jaramillo, M. C. Guitiérrez, and R. Mix Vidal, “Electromovilidad. Panorama actual en América Latina y el Caribe,” Banco Interamericano de Desarrollo, 2019.; G. Máñes Gomis, E. Bermúdez Forn, J.L. Pardo González and J. Orbea Otazua, “Movilidad eléctrica: Avances en América Latina y el Caribe 2019,” Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), 2020.; International Energy Agency (IEA), “Global EV Outlook 2023,” Paris, 2023.; ANDEMOS, “Aumentó la penetración de vehículos eléctricos e híbridos en América Latina durante el 2022,” Bogotá, 2023.; T. Gnann, S. Funke, N. Jakobsson, P. Plötz, F. Sprei, and A. Bennehag, “Fast charging infrastructure for electric vehicles: Today’s situation and future needs,” Transportation Research Part D: Transport and Environment, vol. 62, pp. 314–329, 2018.; M. Li, M. Feng, D. Luo, and Z. Chen, “Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles,” Cell Reports Physical Science, vol. 1, no. 10, p. 100212, 2020.; D. Ronanki, A. Kelkar, and S. S. Williamson, “Extreme fast charging technology—prospects to enhance sustainable electric transportation,” Energies, vol. 12, no. 19, pp. 1–17, 2019.; M. Ahmadi, N. Mithulananthan, and R. Sharma, “A review on topologies for fast charging stations for electric vehicles,” 2016 IEEE International Conference Power System Technology (POWERCON), pp. 1–6, 2016.; M. Safayatullah, M. Tamasas Elrais, G. Sumana, R. Rezaii, and I. Batarseh, “A Comprehensive Review of Power Converter Topologies and Control Methods for Electric Vehicle Fast Charging Applications,” IEEE Access, vol. 10, pp. 40753–40793, 2022.; K. Shi, F. Shen, D. Lv, P. Lin, M. Chen, and D. Xu, “A novel start-up scheme for modular multilevel converter,” 2012 IEEE Energy Conversion Congress and Expostion (ECCE), pp. 4180–4187, 2012.; M. Norambuena, S. Kouro, S. Dieckerhoff, and J. Rodriguez, “Reduced Multilevel Converter: A Novel Multilevel Converter with a Reduced Number of Active Switches,” IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 3636–3645, 2018.; P. Yang, Y. Xia, M. Yu, W. Wei, and Y. Peng, “A Decentralized Coordination Control Method for Parallel Bidirectional Power Converters in a Hybrid AC-DC Microgrid,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6217–6228, 2018.; A. Kuperman, U. Levy, J. Goren, A. Zafransky, and A. Savernin, “Battery charger for electric vehicle traction battery switch station,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5391–5399, 2013.; N. H. Kutkut, D. M. Divan, D. W. Novotny, and R. Marion, “Design considerations and topology selection for a 120 kW IGBT converter for EV fast charging,” IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 169–178, 1998.; R. Collin, Y. Miao, A. Yokochi, P. Enjeti, and A. Von Jouanne, “Advanced electric vehicle fast-charging technologies,” Energies, vol. 12, no. 10, 2019.; C. Suarez and W. Martinez, “Fast and Ultra-Fast Charging for Battery Electric Vehicles - A Review,” 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 569–575, 2019.; RAE, “Vehículo de motor eléctrico.”.; J. Trashorras Montecelos, Vehículos eléctricos, Madrid, 2019.; IEEE Standard for Technical Specifications of a DC Quick Charger for Use with Electric Vehicles, IEEE 2030.1.1-2021, 2021.; J. M. Kim, J. Lee, T. H. Eom, K. H. Bae, M. H. Shin, and C. Y. Won, “Design and Control Method of 25kW High Efficient EV Fast Charger,” 2018 21st International Conference on Electrical Machines and Systems (ICEMS), pp. 2603–2607, 2018.; X. Liang, S. Srdic, J. Won, E. Aponte, K. Booth, and S. Lukic, “A 12.47 kV medium voltage input 350 kW EV fast charger using 10 kV SiC MOSFET,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 581–587, 2019.; M. Ehsani, K. V. Singh, H. O. Bansal, and R. T. Mehrjardi, “State of the Art and Trends in Electric and Hybrid Electric Vehicles,” Proceedings of the IEEE, vol. 109, no. 6, pp. 967–984, 2021.; SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Coupler, SAE J1772, 2010.; G. Joos, M. De Freige, and M. Dubois, “Design and simulation of a fast charging station for PHEV/EV batteries,” 2010 IEEE Electrical Power & Energy Conference (EPEC), pp. 1-5, 2010.; M. Brenna, F. Foiadelli, C. Leone, and M. Longo, “Electric Vehicles Charging Technology Review and Optimal Size Estimation,” Journal of Electrical Engineering & Technology, vol. 15, no. 6, pp. 2539–2552, 2020.; S. N. Manias, “DC-DC Converters,” in Power Electronics and Motor Drive Systems, cap. 7, pp. 501–534, 2017.; F. Bordry, “Power converters : definitions , classification and converter topologies,” Specialised CERN Accelerator Course on Power Converters, Warrington, UK, pp. 13–42, 2004.; D. Czarkowski, “DC-DC Converters,” in Power Electronics Handbook, 4th ed., Butterworth-Heinemann, NY, United States, cap. 10, pp. 275–288, 2018.; M. Andresen, V. Raveendran, G. Buticchi, and M. Liserre, “Lifetime-based power routing in parallel converters for smart transformer application,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1675–1684, 2017.; A. Cid-Pastor, L. Martinez-Salamero, C. Alonso, R. Leyva, and S. Singer, “Paralleling DC-DC switching converters by means of power gyrators,” IEEE Transactions on Power Electronics, vol. 22, no. 6, pp. 2444–2453, 2007; F. Cavenago et al., “Control,” in Modern Spacecraft Guidance, Navigation, and Control: From System Modeling to AI and Innovative Applications, Elsevier, cap. 10, pp. 543–630, 2023.; Electric Vehicle Conductive Charging System-Part 1: General Requirements, IEC 61851-1:2017, 2017.; Residual Direct Current Detecting Device (RDC-DD) to be Used for Mode 3 Charging of Electric Vehicles, IEC 62955:2018, 2018.; H. Tu, H. Feng, S. Srdic, and S. Lukic, “Extreme Fast Charging of Electric Vehicles : A Technology Overview,” IEEE Transactions on Transportation Electrification, vol. 5, no. 4, pp. 861–878, 2019.; L. A. D. Ta, N. D. Dao, and D.-C. Lee, “High-Efficiency Hybrid LLC Resonant Converter for On-board Chargers of Plug-in Electric Vehicles,” IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8324–8334, 2020.; H. Li, Z. Zhang, S. Wang, J. Tang, X. Ren, and Q. Chen, “A 300-kHz 6.6-kW SiC Bidirectional LLC On-board Charger,” IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1435–1445, 2020.; H. Haga and F. Kurokawa, “Modulation Method of a Full - Bridge Three - level LLC Resonant Converter for Battery Charger of Electrical Vehicles,” IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2498–2507, 2017.; R. W. A. A. De Donker, D. M. Divan and M. H. Kheraluwala, “A three-phase soft-switched high power density DC/DC converter for high power applications,” IEEE Transactions on Industry Applications, vol. 27, no. 1, pp. 63–73, 1991.; Y. Yan, H. Bai, A. Foote and W. Wang, “Securing Full-Power-Range Zero Voltage Switching in Both Steady-State and Transient Operations for a Dual Active Bridge Based Bidirectional Electric Vehicle Charger,” IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7506-7519, 2020.; K. Shi, D. Zhang, Z. Zhou, M. Zhang, D. Zhang and Y. Gu, “A Novel Phase-shift Dual Full-bridge Converter with Full Soft-switching Range and Wide Conversion Range,” IEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7747-7760, 2016.; R. P. Twiname, D. J. Thrimawithana, U. K. Madawala, and C. A. Baguley, “A Dual-Active Bridge Topology With a Tuned CLC Network,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6543–6550, 2015.; S. S. Muthuraj, V. K. Kanakesh, P. Das, and S. K. Panda, “Triple Phase Shift Control of LLL Tank Based Bidirectional Dual Active Bridge Converter,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 8035–8053, 2017.; Y. Xuan, X. Yang, W. Chen, T. Liu and X. Hao, “A Novel Three-level CLLC Resonant DC-DC Converter for Bidirectional EV Charger in DC Microgrids,” IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2334–2344, 2021.; L. Corradini, D. Seltzer, D. Bloomquist, R. Zane, D. Maksimovic and B. Jacobson, “Minimum Current Operation of Bidirectional Dual-Bridge Series Resonant DC / DC Converters,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3266–3276, 2012.; M. Jung, G. Lempidis, D. Hölsch and J. Steffen, “Control and Optimization Strategies for Interleaved DC-DC Converters for EV Battery Charging Applications,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 6022–6028, 2015.; K. Drobnic et al., “An Output Ripple-Free Fast Charger for Electric Vehicles Based on Grid-Tied Modular Three-Phase Interleaved Converters,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 6102–6114, 2019.; V. Repecho, D. Biel, R. Ramos, and P. Garcia Vega, “Fixed-switching frequency interleaved sliding mode 8-phase synchronous buck converter,” IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 676–688, 2018.; J. Zhang, J.-S. Lai, R.-Y. Kim, and W. Yu, “High-Power Density Design of a Soft-Switching High-Power Bidirectional DC – DC Converter,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1145–1153, 2007.; L. Tan, B. Wu, S. Rivera, and V. Yaramasu, “Comprehensive DC Power Balance Management inHigh-Power Three-Level DC–DC Converter for Electric Vehicle Fast Charging,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 89–100, 2016.; O. Rodríguez Villalón and A. Medina-Rios, “Transfer function with nonlinear characteristics definition based on multidimensional laplace transform and its application to forced response power systems,” Energies, vol. 12, no. 21, p. 4061, 2019.; R. Pandey and B. Singh, “A Power Factor Corrected LLC Resonant Converter for Electric Vehicle Charger Using Cuk Converter,” IEEE Transactons on Industry Applications, vol. 55, no. 6, pp. 6278–6286, 2019.; P. Prem, P. Sivaraman, J. S. Sakthi Suriya Raj, M. Jagabar Sathik and D. Almakhles, “Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station,” Automatika, vol. 61, no. 4, pp. 614–625, Aug 2020.; S. Cuoghi, R. Mandrioli, L. Ntogrmarzidis, and G. Gabriele, “Multileg Interleaved Buck Converter for EV Charging : Discrete-Time Model and Direct Control Design,” Energies, vol. 13, no. 2, p. 466, Jan 2020.; A. K. Seth and M. Singh, “Unified adaptive neuro-fuzzy inference system control for OFF board electric vehicle charger,” International Journal of Electrical Power & Energy Systems, vol. 130, p. 106896, Sep 2021.; A. M. Mohammed, S. N. H. Alalwan, A. Taşcıkaraoğlu and J. P. S. Catalão, “Sliding mode-based control of an electric vehicle fast charging station in a DC microgrid,” Sustainable Energy, Grids and Networks, vol. 32, p. 100820, Dec 2022.; S. Luo, Z. Ye, R-L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” 30th Annual IEEE Power Electronics Specialists Conference, vol. 2, pp. 901–908, Jul 1999.; K. Siri, C. Q. Lee, and T-E. Wu, “Current Distribution Control For Parallel Connected Converters : Part I,” IEEE Transactions on Aerospace and Electronics Systems, vol. 28, no. 3, pp. 829–840, Jul 1992.; P. J. Grbovic, “A Novel Current Sharing Control for Modular Parallel Connected Power Converters,” 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6, Jun 2014.; M. Cousineau and Z. Xiao, “Fully Masterless Control of Parallel Converter,” 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1–10, Sep 2013.; H. Du, C. Jiang, G. Wen, W. Zhu and Y. Cheng, “Current Sharing Control for Parallel DC-DC Buck Converters Based on Finite-Time Control Technique,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2186–2198, Apr 2019.; Nissan Leaf specifications, Nissan, 2013, [Online]. Available: http://www.leftlanenews.com/new-car-buying/nissan/leaf/specifications/.; https://hdl.handle.net/20.500.12313/3916

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Dissertation/ Thesis

    المساهمون: Gil Gonzalez, Walter Julián

    وصف الملف: 62 Páginas; application/pdf

    Relation: [1] Dinesh Segaran. Dynamic modelling and control of dual active bridge bi-directional dc-dc converters for smart grid applications. PhD thesis, RMIT University, 2013.; [2] Walter Juli´an Gil-Gonzalez, Oscar Danilo Montoya, Alejandro Garces, Federico Martin Serra, and Guillermo Magaldi. Output voltage regulation for dc–dc buck converters: a passivity–based pi design. In 2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS), pages 189–192. IEEE, 2019.; [3] Walter Gil-Gonz´alez, Sebasti´an Riffo, Oscar Danilo Montoya, Carlos Restrepo, and Jesus C Hern´andez. Adaptive voltage control for second-order dc-dc converters supplying an unknown constant power load: A generalized pbc plus damping injection design. IEEE Access, 2023.; [4] Luis Fernando Mosquera Machado and Jhon Jairo Ordo˜nez Urbano. Dise˜no y construcci´on de un convertidor dc/dc tipo boost con pwm ajustable orientado a la ense˜nanza. 2016.; 5] Carlos Andr´es Pe˜naloza-Luna, German Enrique Gallego-Rodr´ıguez, Jhon Jairo Ram´ırez-Mateus, Karla Cecilia Puerto-L´opez, and Karla Yohana S´anchez-Mojica. Simulaci´on de un convertidor dc/dc cuadr´atico elevador con control modo corriente mediante matlab/simulink. Mundo FESC, 12(S1), 2022.; [6] Steven Ospina Hurtado. An´alisis de controladores no lineales para convertidor DC-DC tipo buck-boost aplicado a un generador e´olico. PhD thesis, Universidad Tecnol´ogica de Pereira. Facultad de Ingenier´ıas El´ectrica . . . , 2019.; [7] Olga Posada ´Alvarez et al. Revisi´on y modelado de los convertidores dc-dc bidireccionales principales. 2022.; [8] Jorge Rub´en Morf´In Orozco, Heriberto Rodr´ıguez Estrada, and El´ıas Rodr´ıguez Segura. Convertidor bidireccional multifase para aplicaciones de micro redes de cd. Pistas Educativas, 39(128), 2018.; [9] Miguel ´Angel March´an Vaca. Control no lineal de convertidores para mejorar la estabilidad y confiabilidad de una microrred cc conectada a la red de distribuci´on. Master’s thesis, 2021.; [10] SX Garrido J´acome and L Ortiz Matos. Estrategia activa de tolerancia a fallas para el control buck-boost de micro-redes el´ectricas en dc. Universidad Polit´ecnica Salesiana, 2019.; [11] R Rajasekaran and P Usha Rani. Bidirectional dc-dc converter for microgrid in energy management system. International Journal of Electronics, 108(2):322–343, 2021.; [12] Oscar Danilo Montoya, JL Villa, and Walter Gil-Gonzale. Pbc design for voltage regulation in buck converters with parametric uncertainties. In 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), pages 1–6. IEEE, 2019.; [13] Marcela Gonz´alez Valencia and Alfonso Alzate G´omez. Dise˜no est´atico de un convertidor dc/dc reductor-elevador bidireccional. Tecnura, 14(26):7–14, 2010.; 14] Jesus Linares Flores, Jorge Luis Barahona Avalos, and Carlos Alberto Bautista Espinosa. Passivity-based controller and online algebraic estimation of the load parameter of the dc-to-dc power converter cuk type. IEEE Latin America Transactions, 9(1):784–791, 2011.; [15] Muhammad H Rashid. Electr´onica de potencia: circuitos, dispositivos y aplicaciones. Pearson Educaci´on, 2004.; [16] Gerardo Morichetti, Germ´an Oggier, Guillermo Rub´en Bossio, Cristian Hern´an De Angelo, and Guillermo Oscar Garc´ıa. Implementaci´on de un convertidor reductorelevador bidireccional para veh´ıculos el´ectricos g. Converter, 2002.; [17] Bhim Singh and Munesh Kumar Singh. Adaptive energy shaping control of buck converter feeding cpl in dc micro-grid system. In 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control (STPEC), pages 1–5. IEEE, 2021.; [18] Eduardo Hern´andez-M´arquez, Ram´on Silva-Ortigoza, Jos´e Rafael Garc´ıa-S´anchez, Mariana Marcelino-Aranda, and Griselda Salda˜na-Gonz´alez. A dc/dc buck-boost converter–inverter–dc motor system: Sensorless passivity-based control. IEEE Access, 6:31486–31492, 2018.; [19] Dar´ıo Weitz. Analysis of the history of innovations in feedback control systems. 341, 2000.; [20] Jeisson Andr´es Rivera Yepes and Manuel David Cardona Isaza. An´alisis comparativo de diferentes topolog´ıas de convertidores buck-boost utilizando matlab. 2018.; [21] Anupam Kumar, Abdul Hamid Bhat, et al. Comparative analysis of dual active bridge isolated dc to dc converter with buck-boost and flyback converters for bidirectional energy transfer. Journal of Electrical Engineering, 20(4):12–12, 2020.; [22] Didier Giraldo Buitrago and Eduardo Giraldo Su´arez. Teor´ıa de control an´alogo. Universidad Tecnol´ogica de Pereira, 2009.; [23] N. Mohan, T.M. Undeland, and W.P. Robbins. Electr´onica de potencia: convertidores, aplicaciones y dise˜no. McGraw-Hill: Educaci´on. McGraw Hill, 2009.; [24] Liuping Wang and Robin Ping Guan. State Feedback Controller and Observer Design, pages 1–66. 2023.; [25] Richard Alfredo Chicango Chinchu˜na. Dise˜no e implementaci´on de un convertidor dc/dc bidireccional para estabilizaci´on de nivel de voltaje en un bus dc mediante ultracapacitores. B.S. thesis, Quito, 2017., 2017.; [26] Francisco L´opez Cort´es. Desarrollo e implementaci´on del sistema de control de un convertidor DC-DC bidireccional. PhD thesis, Universitat Polit`ecnica de Val`encia, 2023.; [27] A Rachid, H El Fadil, K Gaouzi, and F Z Belhaj. Output Feedback Control of Bidirectional DC-DC Power Converter for BEV Charger. Proceedings of Engineering & Technology (PET), 19(Special Issue), 2017.; [28] Walter Gil-Gonz´alez, Oscar Danilo Montoya, Carlos Restrepo, and Jes´us C Hern´andez. Control de voltaje adaptativo sin sensores para convertidores cc-cc cl´asicos que alimentan cargas desconocidas: un enfoque generalizado basado en la pasividad de pi. Sensores, 21(19):6367, 2021.; [29] Sebasti´an Riffo,Walter Gil-Gonz´alez, Oscar Danilo Montoya, Carlos Restrepo, and Javier Mu˜noz. Adaptive sensorless pi+ passivity-based control of a boost converter supplying an unknown cpl. Mathematics, 10(22):4321, 2022.; [30] Daniel W Hart and Andr´es Barrado Bautista. Electr´onica de potencia, volume 32. Prentice Hall Madrid, Espa˜na, 2001.; [31] Serkan Dusmez and Alireza Khaligh. A supervisory power-splitting approach for a new ultracapacitor-battery vehicle deploying two propulsion machines. IEEE Transactions on Industrial Informatics, 10(3), 2014.; [32] Francisco Xavier Toapanta Moscoso. Dise˜no y simulaci´on del control en cuatro cuadrantes de una m´aquina dc con un conversor dc/dc tipo cˆuk bidireccional. B.S. thesis, Quito: EPN, 2022., 2022.; 33] R. Ortega, Z.P. Jiang, and D.J. Hill. Passivity-based control of nonlinear systems: a tutorial. In Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), volume 5, pages 2633–2637 vol.5, 1997.; [34] Jainha Andrea Altamar Bermejo and Hern´an David Vergara Pestana. T´ecnicas de control aplicadas al convertidor buck dcdc para regulaci´on de tensi´on en cargas lineales. 2020.; [35] Rafael Cisneros, Romeo Ortega, Matteo Pirro, Gianluca Ippoliti, Gilbert Bergna, and Marta Molinas Cabrera. Global tracking passivity-based pi control for power converters: An application to the boost and modular multilevel converters. In 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pages 1359–1365, 2014.; [36] Plexim. Application example. https://www.plexim.com/support/ application-examples/976, 2023. Visitado el: 15/10.; Universidad Tecnológica de Pereira; Repositorio Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home; https://hdl.handle.net/11059/14993

  19. 19
    Dissertation/ Thesis
  20. 20
    Dissertation/ Thesis