يعرض 1 - 20 نتائج من 328 نتيجة بحث عن '"CITOTOXINAS"', وقت الاستعلام: 0.82s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
  4. 4
    Academic Journal
  5. 5
    Dissertation/ Thesis

    المساهمون: García Castañeda, Javier Eduardo, Síntesis y Aplicación de Moléculas Peptídicas, Barragán Cárdenas, Andrea Carolina 000000075458129, Barragán Cárdenas, Andrea Carolina 0000011789, Barragán Cárdenas, Andrea Carolina Andrea-Barragan-Cardenas

    وصف الملف: 186 páginas, ilustraciones (principalmente a color), fotografías; application/pdf

    Relation: Mayo Clinic, “Cancer,” 2018. https://www.mayoclinic.org/diseases-conditions/cancer/symptoms-causes/syc-20370588.; Y. A. Fouad and C. Aanei, “Revisiting the hallmarks of cancer,” Am. J. Cancer Res., vol. 7, no. 5, pp. 1016–1036, 2017.; AACR, “What Is Cancer?,” American Association for Cancer Research, Inc, 2020. https://www.aacr.org/patients-caregivers/about-cancer/what-is-cancer/#:~:text=The term cancer encompasses more,blood stream and bone marrow.; A. G. Waks and E. P. Winer, “Breast Cancer Treatment: A Review,” JAMA - J. Am. Med. Assoc., vol. 321, no. 3, pp. 288–300, 2019, doi:10.1001/jama.2018.19323.; M. Akram, M. Iqbal, M. Daniyal, and A. U. Khan, “Awareness and current knowledge of breast cancer,” Biol. Res., vol. 50, no. 1, pp. 1–23, 2017, doi:10.1186/s40659-017-0140-9.; The global cancer observatory, “Breast cancer,” vol. 419, pp. 3–4, 2020.; WHO, “Breast cancer,” 2019. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/.; Fondo Colombiano de Enfermedades de Alto Costo, Situación del cáncer en la población adulta atendida en el SGSSS de Colombia. Bogotá, 2019.; M. A. Vivas, “CAC: panorama del cáncer de mama en Colombia 2020 La,” ConsultorSalud, vol. 36, no. 4, pp. 344–352, 2021.; Ministerio de Salud y Protección Social de Colombia, Plan Nacional contra el Cancer 2012-2020. 2018.; C. Pardo and E. de Vries, “Breast and cervical cancer survival at instituto nacional de cancerología, Colombia,” Colomb. Med., vol. 49, no. 1, pp. 102–108, 2018, doi:10.25100/cm.v49i1.2840.; E. Vergara-Dagobeth, A. Suárez-Causado, and R. D. Gómez-Arias, “Plan Control del cáncer en Colombia 2012-2021. Un análisis formal,” Rev. Gerenc. y Polit. Salud, vol. 16, no. 33, pp. 16–18, 2017, doi:10.11144/Javeriana.rgps16-33.pccc.; N. Harbeck et al., “Breast cancer,” Nat. Rev. Dis. Prim., vol. 5, no. 1, 2019, doi:10.1038/s41572-019-0111-2; A. L. Tornesello, A. Borrelli, L. Buonaguro, F. M. Buonaguro, and M. L. Tornesello, “Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities,” Molecules, vol. 25, no. 12, pp. 1–25, 2020, doi:10.3390/molecules25122850.; N. K. Kunda, “Antimicrobial peptides as novel therapeutics for non-small cell lung cancer,” Drug Discov. Today, vol. 25, no. 1, pp. 238–247, 2020, doi:10.1016/j.drudis.2019.11.012; K. Kurrikoff, D. Aphkhazava, and Ü. Langel, “The future of peptides in cancer treatment,” Curr. Opin. Pharmacol., vol. 47, pp. 27–32, 2019, doi:10.1016/j.coph.2019.01.008.; M. Jannesari et al., “Breast Cancer Histopathological Image Classification: A Deep Learning Approach,” Proc. - 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2018, no. March 2020, pp. 2405–2412, 2019, doi:10.1109/BIBM.2018.8621307.; Y. Tang, Y. Wang, M. F. Kiani, and B. Wang, “Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer,” Clin. Breast Cancer, vol. 16, no. 5, pp. 335–343, 2016, doi:10.1016/j.clbc.2016.05.012; J. L. Townson and A. F. Chambers, “Dormancy of solitary metastatic cells,” Cell Cycle, vol. 5, no. 16, pp. 1744–1750, 2006, doi:10.4161/cc.5.16.2864.; H. Y. Wen and E. Brogi, “Lobular Carcinoma In Situ,” Surg. Pathol. Clin., vol. 11, no. 1, pp. 123–145, 2018, doi:10.1016/j.path.2017.09.009.; Z. Chen et al., “Invasive lobular carcinoma of the breast: A special histological type compared with invasive ductal carcinoma,” PLoS One, vol. 12, no. 9, pp. 1–17, 2017, doi:10.1371/journal.pone.0182397.; Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi:10.1016/j.gendis.2018.05.001.; F. Imigo, E. Mansilla, I. Delama, M. T. Poblete, and C. Fonfach, “CLASIFICACIÓN MOLECULAR DEL CÁNCER DE MAMA,” Cuad. cirugía, vol. 25, pp. 67–74, 2011.; O. A. Bonilla-Sepúlveda, G. Matute-Turízo, and Severich, “Classification of intrinsic subtypes of breast carcinomas analyzed in a pathology center of Medellin in 2011,” CES Med., vol. 29, no. 1, pp. 36–45, 2015.; Globocan, “Estimated number of incident cases and deaths worldwide,” Glob. Cancer Obs., p. 80, 2020.; H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi:10.3322/caac.21660.; A. Di Sibio, G. Abriata, D. Forman, and M. S. Sierra, “Female breast cancer in Central and South America,” Cancer Epidemiol., vol. 44, pp. S110–S120, 2016, doi:10.1016/j.canep.2016.08.010.; S. K. Al-Ghazal, L. Fallowfield, and R. W. Blamey, “Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction,” Eur. J. Cancer, vol. 36, no. 15, pp. 1938–1943, 2000, doi:10.1016/S0959-8049(00)00197-0.; B. H. L. Howes, D. I. Watson, C. Xu, B. Fosh, M. Canepa, and N. R. Dean, “Quality of life following total mastectomy with and without reconstruction versus breast-conserving surgery for breast cancer: A case-controlled cohort study,” J. Plast. Reconstr. Aesthetic Surg., vol. 69, no. 9, pp. 1184–1191, 2016, doi:10.1016/j.bjps.2016.06.004.; C. Speers and L. J. Pierce, “Postoperative radiotherapy after breast-conserving surgery for early-stage breast cancer a review,” JAMA Oncol., vol. 2, no. 8, pp. 1075–1082, 2016, doi:10.1001/jamaoncol.2015.5805.; K. Rygiel, “Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: An overview,” J. Cancer Res. Ther., vol. 13, no. 2, pp. 186–192, 2017, doi:10.4103/0973-1482.187303.; H. T. Hsu et al., “Symptom Cluster Trajectories During Chemotherapy in Breast Cancer Outpatients,” J. Pain Symptom Manage., vol. 53, no. 6, pp. 1017–1025, 2017, doi:10.1016/j.jpainsymman.2016.12.354.; J. J. Tao, K. Visvanathan, and A. C. Wolff, “Long term side effects of adjuvant chemotherapy in patients with early breast cancer,” The Breast, vol. 24, no. 0 2, pp. S23–S24, 2015, doi:10.1016/s0960-9776(15)70048-2.; S. A. Hussain, S. Williams, A. Stevens, and D. W. Rea, “Endocrine therapy for early breast cancer,” Expert Rev. Anticancer Ther., vol. 4, no. 5, pp. 877–888, 2004, doi:10.1586/14737140.4.5.877.; R. Condorelli and I. Vaz-Luis, “Managing side effects in adjuvant endocrine therapy for breast cancer,” Expert Rev. Anticancer Ther., vol. 18, no. 11, pp. 1101–1112, 2018, doi:10.1080/14737140.2018.1520096.; A. Spellman and S. C. Tang, “Immunotherapy for breast cancer: past, present, and future,” Cancer Metastasis Rev., vol. 35, no. 4, pp. 525–546, 2016, doi:10.1007/s10555-016-9654-9.; N. L. Henry, C. L. Loprinzi, and L. Schapira, “Immunotherapy for Breast Cancer Treatment : Is It an Option ?,” ASCO, 2020. https://www.cancer.net/blog/2020-09/immunotherapy-breast-cancer-treatment-it-option.; K. V. R. Reddy, R. D. Yedery, and C. Aranha, “Antimicrobial peptides: Premises and promises,” Int. J. Antimicrob. Agents, vol. 24, no. 6, pp. 536–547, 2004, doi:10.1016/j.ijantimicag.2004.09.005.; D. Gaspar, A. Salomé Veiga, and M. A. R. B. Castanho, “From antimicrobial to anticancer peptides. A review,” Front. Microbiol., vol. 4, pp. 1–16, 2013, doi:10.3389/fmicb.2013.00294.; D. Wu, Y. Gao, Y. Qi, L. Chen, Y. Ma, and Y. Li, “Peptide-based cancer therapy: Opportunity and challenge,” Cancer Lett., vol. 351, no. 1, pp. 13–22, 2014, doi:10.1016/j.canlet.2014.05.002; T. Jauset and M. E. Beaulieu, “Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead,” Curr. Opin. Pharmacol., vol. 47, pp. 133–140, 2019, doi:10.1016/j.coph.2019.03.014.; B. Chen et al., “Targeting negative surface charges of cancer cells by multifunctional nanoprobes,” Theranostics, vol. 6, no. 11, pp. 1887–1898, 2016, doi:10.7150/thno.16358.; D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochim. Biophys. Acta - Biomembr., vol. 1778, no. 2, pp. 357–375, 2008, doi:10.1016/j.bbamem.2007.11.008.; C. Adessi and C. Soto, “Converting a Peptide into a Drug: Strategies to Improve Stability and Bioavailability,” Curr. Med. Chem., vol. 9, no. 9, pp. 963–978, 2005, doi:10.2174/0929867024606731.; J. M. Davis, L. K. Tsou, and A. D. Hamilton, “Synthetic non-peptide mimetics of α-helices,” Chem. Soc. Rev., vol. 36, no. 2, pp. 326–334, 2007, doi:10.1039/b608043j.; J. Wang et al., “Combating Drug-Resistant Fungi with Novel Imperfectly Amphipathic Palindromic Peptides,” JOURNAL OF MEDICINAL CHEMISTRY, vol. 61, no. 9. pp. 3889–3907, 2018, [Online]. Available: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000432204800009&lang=es&site=eds-live.; M. Felicio et al., “Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2,” Biochim. Biophys. ACTA-BIOMEMBRANES, vol. 1858, no. 7, pp. 1488–1498, 2016, doi: https://doi.org/10.1016/j.bbamem.2016.04.003.; C. Sun et al., “Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences,” Int. J. Mol. Sci., vol. 19, no. 10, 2018, doi:10.3390/ijms19102951.; M. Xie, D. Liu, and Y. Yang, “Anti-cancer peptides: classification, mechanism of action, reconstruction and modification,” Open Biol., vol. 10, no. 7, 2020, doi:10.1098/rsob.200004.; K. J. Cutrona, B. A. Kaufman, D. M. Figueroa, and D. E. Elmore, “Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides,” FEBS Lett., vol. 589, no. 24, pp. 3915–3920, 2015, doi:10.1016/j.febslet.2015.11.002.; H. X. Luong, D. H. Kim, B. J. Lee, and Y. W. Kim, “Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides,” Arch. Pharm. Res., vol. 41, no. 11, pp. 1092–1097, 2018, doi:10.1007/s12272-018-1084-5.; C. Domhan et al., “Replacement of L-amino acids by D-amino acids in the antimicrobial peptide ranalexin and its consequences for antimicrobial activity and biodistribution,” Molecules, vol. 24, no. 16, 2019, doi:10.3390/molecules24162987.; P. Grieco et al., “The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 652–660, 2013, doi:10.1016/j.bbamem.2012.08.027.; W. Yang et al., “Inhibition of proliferative and invasive capacities of breast cancer cells by arginine-glycine-aspartic acid peptide in vitro,” Oncol. Rep., vol. 15, no. 1, pp. 113–117, 2006, doi:10.3892/or.15.1.113.; D. Legrand, “Overview of Lactoferrin as a Natural Immune Modulator,” J. Pediatr., vol. 173, pp. S10–S15, 2016, doi:10.1016/j.jpeds.2016.02.071.; B. Wang, Y. P. Timilsena, E. Blanch, and B. Adhikari, “Lactoferrin: Structure, function, denaturation and digestion,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 4, pp. 580–596, 2019, doi:10.1080/10408398.2017.1381583.; A. Richardson, R. de Antueno, R. Duncan, and D. W. Hoskin, “Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells,” Biochem. Biophys. Res. Commun., vol. 388, no. 4, pp. 736–741, 2009, doi:10.1016/j.bbrc.2009.08.083.; M. Arias et al., “Anticancer activities of bovine and human lactoferricin- derived peptides,” Comput. Cell Biol., vol. 95, no. 1, pp. 91–98, 2017.; C. Chea et al., “Bovine lactoferrin reverses programming of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition in oral squamous cell carcinoma,” Biochem. Biophys. Res. Commun., vol. 507, no. 1–4, pp. 142–147, 2018, doi:10.1016/j.bbrc.2018.10.193.; J. C. Pereira Guedes, “Molecular Mechanisms Underlying the Anticancer Activity of Lactoferrin in Highly Metastatic Cancer Cell Lines,” 2017.; J. Gibbons, R. Kanwar, and J. Kanwar, “Lactoferrin and cancer in different cancer models,” Cancer Cell, no. 1, pp. 1080–1088, 2011.; P. Puddu, P. Valenti, and S. Gessani, “Immunomodulatory effects of lactoferrin on antigen presenting cells,” Biochimie, vol. 91, no. 1, pp. 11–18, 2009, doi:10.1016/j.biochi.2008.05.005.; I. Z. Sadiq, K. Babagana, D. Danlami, L. I. Abdullahi, and A. R. Khan, “Molecular Therapeutic Cancer Peptides: A Closer Look at Bovine Lactoferricin,” Asian J. Biochem. Genet. Mol. Biol., vol. 1, no. 2, pp. 1–9, 2018, doi:10.9734/ajbgmb/2018/v1i2471; J. S. Mader, J. Salsman, D. M. Conrad, and D. W. Hoskin, “Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines,” Mol. Cancer Ther., vol. 4, no. 4, pp. 612–624, 2005, doi:10.1158/1535-7163.MCT-04-0077.; D. I. Chan, E. J. Prenner, and H. J. Vogel, “Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action,” Biochim. Biophys. Acta - Biomembr., vol. 1758, no. 9, pp. 1184–1202, 2006, doi:10.1016/j.bbamem.2006.04.006.; V. A. Solarte, “Péptidos derivados de lactoferricina bovina como agentes anticancerígenos contra el carcinoma de células escamosas de la cavidad oral.,” p. 127, 2016.; D. S. Insuasty-Cepeda et al., “Peptides derived from (Rrwqwrmkklg)2- k-ahx induce selective cellular death in breast cancer cell lines through apoptotic pathway,” Int. J. Mol. Sci., vol. 21, no. 12, pp. 1–13, 2020, doi:10.3390/ijms21124550.; Y. Zhang, C. F. Lima, and L. R. Rodrigues, “Invitro evaluation of bovine lactoferrin potential as an anticancer agent,” Int. Dairy J., vol. 40, pp. 6–15, 2015, doi:10.1016/j.idairyj.2014.08.016.; S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen,” Oncol. Rep., vol. 15, no. 5, pp. 1385–1390, 2006, doi:10.3892/or.15.5.1385.; Y. Vargas et al., “Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines,” Molecules, vol. 22, no. 10, p. 1641, 2017, doi:10.3390/molecules22101641.; J. R. Guerra et al., “The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line,” RSC Adv., vol. 9, no. 36, pp. 20497–20504, 2019, doi:10.1039/c9ra04145a.; N. D. J. Huertas et al., “Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076,” Molecules, vol. 22, no. 3, p. 452, 2017, doi:10.3390/molecules22030452.; A. C. Barragán-Cárdenas et al., “Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin,” RSC Adv., vol. 10, no. 30, pp. 17593–17601, 2020, doi:10.1039/d0ra02688c.; A. C. Barragán-Cárdenas et al., “The Nonapeptide RWQWRWQWR : A Promising Molecule for Breast Cancer Therapy,” ChemistrySelect, vol. 5, pp. 9691–9700, 2020, doi: doi.org/10.1002/slct.202002101 z.; D. S. Insuasty Cepeda et al., “Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology,” Molecules, vol. 24, no. 7, 2019, doi:10.3390/molecules24071215.; ATCC, “MDA-MB-468.” pp. 1–3, 2018.; ATCC, “MDA-MB-231.” pp. 1–3, 2020; ATCC, “MCF-7.” pp. 1–3, 2020.; ATCC, “BT-474.” pp. 1–3, 2018.; ATCC, “MCF-12A.” pp. 1–3, 2020.; J. A. Rodríguez, “Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama,” Repositorio.Unal.Edu.Co, 2019, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/76436.; A. C. Barragán-Cárdenas et al., “Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines,” ACS Omega, 2023, doi:10.1021/acsomega.2c07336.; M. Lara-Márquez et al., “Lipid-rich extract from Mexican avocado (Persea americana var. drymifolia) induces apoptosis and modulates the inflammatory response in Caco-2 human colon cancer cells,” J. Funct. Foods, vol. 64, no. October 2019, p. 103658, 2020, doi:10.1016/j.jff.2019.103658.; Luminex, “Muse® Oxidative Stress Kit,” vol. 100111, no. October, 2019, [Online]. Available: www.luminexcorp.com.; Biolegend, “Assay Kit LEGENDplex TM CRP1 & Co,” no. 75062_V01, [Online]. Available: https://www.biolegend.com/Files/Images/media_assets/pro_detail/datasheets/75062_Hu_Macrophage-Microglia_Panel_V01.pdf.; C. Numbers, “TRIzol TM Reagent,” vol. 15596018, no. 15596026.; M. C. Sandoval-Usme et al., “Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells,” PLoS One, vol. 9, no. 1, 2014, doi:10.1371/journal.pone.0087769.; R. Cabezas-Perez, A. F. Vallejo-Pulido, A. Umaña-Pérez, and M. Sánchez-Gómez, “IGF-II Y LA GONADOTROPINA CORIONICA REGULAN LA PROLIFERACION, MIGRACION E INVASION DE CELULAS DE TROFOBLASTO HUMANO_.pdf,” Acta Biológica Colomb., vol. 16, no. 1, pp. 143–152, 2011.; C. P. Bravo-Chaucanés, Y. Vargas-Casanova, L. C. Chitiva-Chitiva, A. Ceballos-Garzon, G. Modesti-Costa, and C. M. Parra-Giraldo, “Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation,” J. Fungi, vol. 8, no. 8, p. 784, 2022, doi:10.3390/jof8080784; OECD, “Test No. 236: Fish Embryo Acute Toxicity (FET) Test.,” OECD Guidel. Test. Chem. Sect. 2, OECD Publ., no. July, pp. 1–22, 2013, [Online]. Available: http://www.oecd-ilibrary.org.; J. R. Mathiasen and V. C. Moser, “The Irwin Test and Functional Observational Battery (FOB) for Assessing the Effects of Compounds on Behavior, Physiology, and Safety Pharmacology in Rodents,” Curr. Protoc. Pharmacol., vol. 83, no. 1, pp. 1–18, 2018, doi:10.1002/cpph.43.; K. Y. Chang and J. R. Yang, “Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests,” PLoS One, vol. 8, no. 8, 2013, doi:10.1371/journal.pone.0070166.; C. K. Hattotuwagama and D. R. Flower, “Empirical prediction of peptide octanol-water partition coefficients,” Bioinformation, vol. 1, no. 7, pp. 257–259, 2006, doi:10.6026/97320630001257.; N. C. Tan, P. Yu, Y.-U. Kwon, and T. Kodadek, “High-Throughput Evaluation of Relative Cell Permeability between Peptoids and Peptides,” Bioorg Med Chem, vol. 16, no. 11, pp. 5853–5861, 2008, doi:10.1038/nature08365.Reconstructing.; F. Huang and W. M. Nau, “A conformational flexibility scale for amino acids in peptides,” Angew. Chemie - Int. Ed., vol. 42, no. 20, pp. 2269–2272, 2003, doi:10.1002/anie.200250684.; L. S. Vermeer et al., “Conformational flexibility determines selectivity and antibacterial, antiplasmodial,andanticancer potency of cationic -αhelical peptides,” J. Biol. Chem., vol. 287, no. 41, pp. 34120–34133, 2012, doi:10.1074/jbc.M112.359067.; C. K. Wang, J. E. Swedberg, P. J. Harvey, Q. Kaas, and D. J. Craik, “Conformational Flexibility Is a Determinant of Permeability for Cyclosporin,” J. Phys. Chem. B, vol. 122, no. 8, pp. 2261–2276, 2018, doi:10.1021/acs.jpcb.7b12419.; K. Amin and R.-M. Dannenfelser, “In Vitro Hemolysis: Guidance for the Pharmaceutical Scientist,” J. Pharm. Sci., vol. 95, no. 6, pp. 1173–1176, 2006, doi:10.1002/jps.; F. Marques-Garcia, D. H. H. Jung, and S. E. Pérez, “Impact of individualized hemolysis management based on biological variation cut-offs in a clinical laboratory,” Ann. Lab. Med., vol. 42, no. 2, pp. 169–177, 2021, doi:10.3343/ALM.2022.42.2.169.; M. Ravikanth, P. Soujanya, K. Manjunath, T. R. Saraswathi, and C. R. Ramachandran, “Heterogenecity of fibroblasts,” J. Oral Maxillofac. Pathol., vol. 15, no. 2, pp. 247–250, 2011, doi:10.4103/0973-029X.84516.; K. Singh, A. Gangrade, A. Jana, B. B. Mandal, and N. Das, “Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1,2,3-Triazole Ring,” ACS Omega, vol. 4, no. 1, pp. 835–841, 2019, doi:10.1021/acsomega.8b02849; A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res., vol. 45, no. 3, pp. 528–537, 2000, doi:10.1016/S0008-6363(99)00384-3.; K. A. Camilio, “Short Lytic Anticancer Peptides as a Novel Therapy against Cancer,” p. 68, 2013, [Online]. Available: https://munin.uit.no/bitstream/handle/10037/5489/thesis.pdf?sequence=6&isAllowed=y.; N. Yang, M. B. Strøm, S. M. Mekonnen, J. S. Svendsen, and Ø. Rekdal, “The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells,” J. Pept. Sci., vol. 10, no. 1, pp. 37–46, 2004, doi:10.1002/psc.470.; F. Harris, S. Dennison, J. Singh, and P. David, “On the Selectivity and Efficacy of Defense Peptides With Respect to Cancer Cells,” Med. Res. Rev., vol. 33, no. 1, pp. 190–234, 2011, doi:10.1002/med.; A. Won et al., “Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin,” Biochim. Biophys. Acta - Biomembr., vol. 1808, no. 6, pp. 1592–1600, 2011, doi:10.1016/j.bbamem.2010.11.010.; K. Johanna et al., “Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides : Pursuing Production Lower Costs , Lower Hemolysis , and Sustained Antimicrobial Activity,” Int. J. Pept. Res. Ther., no. 0123456789, 2021, doi:10.1007/s10989-021-10207-x.; Z. Ye, X. Zhu, S. Acosta, D. Kumar, T. Sang, and C. Aparicio, “Self-assembly Dynamics and Antimicrobial Activity of All L- and D-amino Acid Enantiomers of a Designer Peptide,” Nanoscale, vol. 11, no. 1, pp. 266–275, 2018, doi:10.1039/c8nr07334a.Self-assembly.; M. Abdulbagi, L. Wang, O. Siddig, B. Di, and B. Li, “D-amino acids and d-amino acid-containing peptides: Potential disease biomarkers and therapeutic targets?,” Biomolecules, vol. 11, no. 11, pp. 1–14, 2021, doi:10.3390/biom11111716.; Z. Feng and B. Xu, “Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches,” Biomol. Concepts, vol. 7, no. 3, pp. 179–187, 2016, doi:10.1515/bmc-2015-0035.; R. Chen, S. Ni, W. Chen, M. Liu, J. Feng, and K. Hu, “Improved anti-triple negative breast cancer effects of docetaxel by RGD-modified lipid-core micelles,” Int. J. Nanomedicine, vol. 16, pp. 5265–5279, 2021, doi:10.2147/IJN.S313166.; R. Mahmoudi et al., “RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells,” J. Biomater. Appl., vol. 35, no. 7, pp. 743–753, 2021, doi:10.1177/0885328220949367.; G. Zheng, M. Zheng, B. Yang, H. Fu, and Y. Li, “Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic (RGD) tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo,” Biomed. Pharmacother., vol. 116, no. 440, p. 109006, 2019, doi:10.1016/j.biopha.2019.109006.; B. Chen et al., “Inhibited effect of an RGD peptide hydrogel on the expression of β1-integrin, FAK, and Akt in Tenon’s capsule fibroblasts,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 109, no. 11, pp. 1857–1865, 2021, doi:10.1002/jbm.b.34847.; A. Heras-Parets, M. P. Ginebra, J. M. Manero, and J. Guillem-Marti, “Guiding Fibroblast Activation Using an RGD-Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration,” Adv. Healthc. Mater., vol. 12, no. 21, 2023, doi:10.1002/adhm.202203307.; D. T. Seroski et al., “Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly,” Commun. Chem., vol. 3, no. 1, 2020, doi:10.1038/s42004-020-00414-w.; F. Jean-François, J. Elezgaray, P. Berson, P. Vacher, and E. J. Dufourc, “Pore formation induced by an antimicrobial peptide: Electrostatic effects,” Biophys. J., vol. 95, no. 12, pp. 5748–5756, 2008, doi:10.1529/biophysj.108.136655.; H. Li, T. Tamang, and C. Nantasenamat, “Toward insights on antimicrobial selectivity of host defense peptides via machine learning model interpretation,” Genomics, vol. 113, no. 6, pp. 3851–3863, 2021, doi:10.1016/j.ygeno.2021.08.023.; Z. Liu, F. Wang, and X. Chen, “Integrin alphaV-beta3-targeted cancer therapy,” Drug Dev. Res., vol. 69, no. 6, pp. 329–339, 2008, doi:10.1002/ddr.20265.Integrin.; S. S. A. A. Hasson et al., “In vitro apoptosis triggering in the BT-474 human breast cancer cell line by lyophilised camel’s milk,” Asian Pacific J. Cancer Prev., vol. 16, no. 15, pp. 6651–6661, 2015, doi:10.7314/APJCP.2015.16.15.6651.; Knut & Alice Wallenberg Foundation, “Integrin αvβ3,” The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000138448-ITGAV/cell+line (accessed Dec. 02, 2023).; Y. Gai et al., “Evaluation of an Integrin αv β3 and Aminopeptidase N Dual- Receptor Targeting Tracer for Breast Cancer Imaging,” Mol Pharm., vol. 17, no. 1, 2020, doi:10.1021/acs.molpharmaceut.9b01134.Detailed.; R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. 15, pp. 7181–7189, 2021, doi:10.1111/jcmm.16748.; J. S. Mader et al., “Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria,” Exp. Cell Res., vol. 313, no. 12, pp. 2634–2650, 2007, doi:10.1016/j.yexcr.2007.05.015.; N. Fester et al., “Enhanced pro-apoptosis gene signature following the activation of TAp63α in oocytes upon γ irradiation,” Cell Death Dis., vol. 13, no. 3, pp. 1–10, 2022, doi:10.1038/s41419-022-04659-2.; H. Thomadaki, M. Talieri, and A. Scorilas, “Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS,” Biol. Chem., vol. 387, no. 8, pp. 1081–1086, 2006, doi:10.1515/BC.2006.133.; D. S. Insuasty-cepeda et al., “Non-natural amino acids into LfcinB-derived peptides : effect in their ( i ) proteolytic degradation and ( ii ) cytotoxic activity against cancer cells,” R. Soc. Open Sci., vol. 10, 2023.; Y. C. Yoo et al., “Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-devived peptide: Involvement of reactive oxygen species,” Biochem. Biophys. Res. Commun., vol. 237, no. 3, pp. 624–628, 1997, doi:10.1006/bbrc.1997.7199.; J. A. Gibbons, J. R. Kanwar, and R. K. Kanwar, “Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer,” BMC Cancer, vol. 15, no. 1, pp. 1–16, 2015, doi:10.1186/s12885-015-1441-4.; N. H. Ha et al., “Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes,” Cancer Res., vol. 71, no. 23, pp. 7259–7269, 2011, doi:10.1158/0008-5472.CAN-11-1143.; M. V. Mouritzen et al., “Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota,” Mol. Ther. - Methods Clin. Dev., vol. 20, no. March, pp. 726–739, 2021, doi:10.1016/j.omtm.2021.02.008.; R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. June, pp. 7181–7189, 2021, doi:10.1111/jcmm.16748.; A. Masjedi et al., “The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer,” Biomed. Pharmacother., vol. 108, no. September, pp. 1415–1424, 2018, doi:10.1016/j.biopha.2018.09.177.; M. Cheng, P. Liu, and L. X. Xu, “Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment,” J. Inorg. Biochem., vol. 210, no. June, p. 111159, 2020, doi:10.1016/j.jinorgbio.2020.111159.; X. P. Jiang, D. C. Yang, R. L. Elliott, and J. F. Head, “Down-regulation of expression of interleukin-6 and its receptor results in growth inhibition of MCF-7 breast cancer cells,” Anticancer Res., vol. 31, no. 9, pp. 2899–2906, 2011.; E. M. El-Fakharany et al., “Therapeutic efficacy of Nano-formulation of lactoperoxidase and lactoferrin via promoting immunomodulatory and apoptotic effects,” Int. J. Biol. Macromol., vol. 220, no. August, pp. 43–55, 2022, doi:10.1016/j.ijbiomac.2022.08.067.; S. A. A.-E. Al-Ameri et al., “Function and regulation of interleukin-10 in breast cancer,” Ann. Res., vol. 3, pp. 162–183, 2020, doi:10.31219/osf.io/me4a5.; A. Cutone et al., “Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action,” Biomolecules, vol. 10, no. 3, pp. 1–26, 2020, doi:10.3390/biom10030456.; W. R. Pan, P. W. Chen, Y. L. S. Chen, H. C. Hsu, C. C. Lin, and W. J. Chen, “Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage,” J. Dairy Sci., vol. 96, no. 12, pp. 7511–7520, 2013, doi:10.3168/jds.2013-7285.; S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts,” Exp. Mol. Pathol., vol. 88, no. 3, pp. 371–375, 2010, doi:10.1016/j.yexmp.2010.02.001.; L. Bugyna, S. Kendra, and H. Bujdáková, “Galleria mellonella—A Model for the Study of aPDT—Prospects and Drawbacks,” Microorganisms, vol. 11, no. 6, 2023, doi:10.3390/microorganisms11061455.; M. El-Harbawi, “Toxicity Measurement of Imidazolium Ionic Liquids Using Acute Toxicity Test,” Procedia Chem., vol. 9, no. December, pp. 40–52, 2014, doi:10.1016/j.proche.2014.05.006.; O. Al-Jamal et al., “Organ-specific toxicity evaluation of stearamidopropyl dimethylamine (SAPDMA) surfactant using zebrafish embryos,” Sci. Total Environ., vol. 741, p. 140450, 2020, doi:10.1016/j.scitotenv.2020.140450.; https://repositorio.unal.edu.co/handle/unal/86375; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co

  6. 6
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis

    المؤلفون: Correa Lozano, Camilo Andrés

    المساهمون: Osorio Roa, Coralia, Franco Ospina, Luis Alberto, Especies Vegetales como Fuente de Aroma, Pigmentos y Compuestos Bioactivos, orcid:0009-0008-1226-4835

    وصف الملف: 126 páginas; application/pdf

    Relation: MinCiencias, Propuestas de la Misión Internacional de Sabios, Vicepresidencia de la República de Colombia, Ministerio de Ciencia, Tecnología e Innovación, Bogotá D. C., 2019. Disponible: https://www.minciencias.gov.co/sala_de_prensa/libro-virtual-la-mision-internacional-sabios-disponible-para-todos. Consultado Julio 2023; Y. Beltrán Barreiro, Árboles alimentarios en la Amazonía colombiana, Ministerio de Medioambiente. 19 Mayo 2021. Disponible: https://visionamazonia.minambiente.gov.co/news/arboles-alimentarios-en-la-amazonia-colombiana/. Consultado Julio 2023; B. Giraldo Benavides, G. Vargas Avila, M. Zubieta Vega y M. W. Coy Torres, Construcción participatica de sistemas productivos sostenibles para la Amazonía norte colombiana, Revista Colombia Amazónica, vol. 1, nº 1, pp. 51-70. ISBN 978-958-8317-76-2, 2004; J. Barrios, C. P. Cordero, F. Aristizabal, F. J. Heredia, A. L. Morales y C. Osorio, Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from uva caimarona (Pourouma cecropiifolia Mart.) fruit, J. Agric. Food Chem., vol. 58, Nn° 4, pp. 2100-2110. DOI:10.1021/jf9041497, 2010; Información de Cáncer en Colombia, 2021. Disponible: https://www.infocancer.co/portal/#!/filtro_mortalidad/. Consultado Julio 2023; L-Sh. Wang y G. D. Stoner, Anthocyanins and their role in cancer prevention, Cancer Lett., vol. 269, n° 2, pp. 281-290. DOI:10.1016/j.canlet.2008.05.020, 2008; Cancillería de Colombia, Siete países suscriben el Pacto de Leticia por la Amazonía, Leticia, Amazonas, 2019. Disponible: https://www.cancilleria.gov.co/siete-paises-suscriben-pacto-leticia-amazonia. Consultado Julio 2023; C. Berg y M. Celis, Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 2015. Disponible: http://catalogoplantasdecolombia.unal.edu.co/en/resultados/especie/Pourouma%20cecropiifolia/. Consultado Julio 2023; C. Escobar, J. Zuluaga, D. Criollo y L. Montealegre, Uva Caimarona (Pourouma cecropiifolia) Fruta exótica de la Amazonía, de Árboles de Uso Múltiple, Caquetá, Gráficas Florencia, 2001, pp. 1-5; T. K. Lim, Pourouma cecropiifolia, Edible Medicinal and Non-Medicinal Plants, vol. 6, pp. 446-449. DOI:10.1007/978-94-007-5628-1, 2013; D. Lopes-Lutz, J. Dettmann, C. Nimalaratne y A. Schieber, Characterization and quantification of polyphenols in Amazon grape (Pourouma cecropiifolia Martius), Molecules, vol. 15, no 12, pp. 8543-8552. DOI:10.3390/molecules15128543, 2010; J. M. Velasco-España, Evaluación de algunos parámetros mitocondriales en astrocitos T-98G frente al estímulo con extractos ricos en antocianinas derivados de Pourouma cecropiifolia (uva caimarona) y Bactris guineensis (Corozo), Tesis de pregrado en Nutrición, Bogotá D. C.: Pontificia Universidad Javeriana, 2017; J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor y F. Bray, Cancer statistics for the year 2020: An overview, Int. J. Cancer., vol 149, no 4, pp 778-789. DOI:10.1002/ijc.33588, 2021; WHO, Global Health Estimates: Life expectancy and leading causes of death and disability, Global Health Observatory, 2020. Disponible: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates. Consultado Julio 2023; Z. Bakouny, J. E. Hawley, T. K. Choueiri, S. Peters, B. I. Rini, J. L. Warner y C. A. Painter, COVID-19 and Cancer: Current Challenges and Perspectives, Cancer Cell., vol. 38, nº 5, pp. 629-646. DOI:10.1016/j.ccell.2020.09.018, 2020; L. Allahqoli, A. Mazidimoradi, H. Salehiniya y I. Alkatout, Impact of COVID-19 on cancer screening: a global perspective, Curr. Opin. Support Palliat. Care, vol. 16, nº 3, p. 102–109. DOI:10.1097/SPC.0000000000000602, 2022; T. Malagón, J. H. E. Yong, P. Tope, W. H. Miller-Jr y E. L. Franco, Predicted long-term impact of COVID-19 pandemic-related care delays on cancer mortality in Canada, Int. J. Cancer, vol. 150, nº 8, pp. 1244-1254. DOI:10.1002/ijc.33884, 2020; T. P. Hanna, W. D. King, S. Thibodeau, M. Jalink, G. A. Paulin, E. Harvey-Jones, D. E. O'Sullivan, C. M. Booth, R. Sullivan y A. Aggarwal, Mortality due to cancer treatment delay: systematic review and meta-analysis, BMJ, vol. 371, pp m4087. DOI:10.1136/bmj.m4087, 2020; MinSalud, Incidencia del cáncer se redujo en los últimos 3 años, 4 Febrero 2021. Disponible en: https://www.minsalud.gov.co/Paginas/Incidencia-del-cancer-se-redujo-en-los-ultimos-3-anos.aspx. Consultado Julio 2023; World Health Organization, Estimated number of new cases in 2021, Colombia, both sexes, all ages, International Agency for Research on Cancer. Disponible en: https:// gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets. Consultado Julio 2023; World Health Organization, GLOBOCAN 2020, Estimated age-standardized incidence rates (World) in 2020, World, both sexes, all ages (excl. NMSC). Disponible en: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10& Consultado Julio 2023; PanAmerican Health Organization y Institutional Repository fro Information Sharing. Américas, Informe de la evaluación rápida de la prestación de servicios para enfermedades no transmisibles durante la pandemia de COVID-19 en las Américas, 2020. Disponible en: https://iris.paho.org/handle/10665.2/52283. Consultado Julio 2023; F. Naja y R. Hamadeh, Nutrition amid the COVID-19 pandemic: a multi-level framework for action, Eur. J. Clin. Nutr., Vol. 74, pp 1117-1121. DOI:10.1038/s41430-020-0634-3, 2020; M. Narici, G. De Vito, M. Franchi, A. Paoli, T. Moro, G. Marcolin, B. Grassi, G. Baldassarre, L. Zuccarelli, G. Biolo, F. G. Di Girolamo, N. Fiotti, F. Dela, P. Greenhaff y C. Maganaris, Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures, Eur. J. Sport Sci., vol. 21, n. 4, pp 614-635. DOI:10.1080/17461391.2020.1761076, pp. 1-22, 2020; M. Demasi, COVID-19 and metabolic syndrome: could diet be the key?, BMJ Evid. Based Med., Vol. 26, n 1, pp 1-2. DOI:10.1136/bmjebm-2020-111451, 2020. http://dx.doi.org/10.1136/bmjebm-2020-111451; Ch. Sforza, COVID-19 Lockdown, sedentarism, metabolic alterations, obesity: Can we reverse the domino effect in children? Children, vol. 9, nº 6, p. 851. DOI:10.3390/children9060851, 2022; T. Stocks, M. Van Hemelrijck, J. Manjer, T. Bjorge, H. Ulmer, G. Hallmans, B. Lindkvist, R. Selmer, G. Nagel, S. Tretli, H. Concin, A. Engeland, H. Jonsson y P. Stattin, Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project, Hypertension, vol. 59, nº 4, pp. 802-810. DOI:10.1161/HYPERTENSIONAHA.111.189258, 2012; A. Russo, M. Autelitano y L. Bisanti, Metabolic syndrome and cancer risk, Eur. J. Cancer, vol. 44, nº 2, pp. 293-297. DOI:10.1016/j.ejca.2007.11.005, 2008; S. Braun, K. Bitton-Worms y D. LeRoith, The link between the metabolic syndrome and cancer, Int. J. Biol. Sci., vol. 7, nº 7, pp. 1003–1015. DOI:10.7150/ijbs.7.1003, 2011; M. F. Gregor y G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol., Vol. 29, pp. 415-445. DOI:10.1146/annurev-immunol-031210-101322, 2011; Z. M. Diaconeasa, A. D. Frond, I. Stirbu, D. Ruginda y C. Socaciu, Anthocyanins-smart molecules for cancer prevention, Br. J. Pharmacol., vol. 174, n° 11, pp. 75-94. DOI:10.1111/bph.13627, 2017; J. N. Lu, R. Panchanathan, W. S. Lee, H. J. Kim, D. H. Kim, Y. H. Choi, G. S. Kim, S. C. Shin y S. C. Hong, Anthocyanins from the fruit of Vitis coignetiae pulliat inhibit tnf-augmented cancer proliferation, migration, and invasion in A549 cells, Asian Pac. J. Cancer Prev., Vol. 18, n° 11, pp. 2919-2923. DOI:10.22034/APJCP.2017.18.11.2919, 2017; A. Farrukh, J. Jeyaprakash, K. Hina, M. Radha, S. Inderpal, y G. Ramesh. Lung cancer inhibitory activity of dietary berries and berry polyphenolics. J. Berry Res., vol. 6, n° 2, pp.105–114. DOI:10.3233/JBR-160120, 2016; P-N. Chen, S-Ch. Chu, H-L. Chiou, W-H. Kuo, Ch-L. Chiang, y Y-Sh. Hsieh. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett., vol. 235, n° 2, pp. 248–259. DOI:10.1016/j.canlet.2005.04.033, 2006; H. Kausar, J. Jeyabalan, F. Aqil, D. Chabba, J. Sidana, I. P. Singh, y R. C. Gupta. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., vol. 325, n° 1, pp. 54–62. DOI:10.1016/j.canlet.2012.05.029, 2012; L. G. Maciel, M. A. V. do Carmo, L. Azevedo, H. Daguer, L. Molognoni, M. M. de Almeida, D. Granato y N. D. Rosso. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol., vol. 113, n° 113, pp. 187–197. DOI:10.1016/j.fct.2018.01.053, 2018; B. Gauliard, D. Grieve, R. Wilson, A. Crozier, C. Jenkins, W. D. Mullen, y M. Lean. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells. J. Med. Food, vol. 11, n° 2, pp. 382–384. DOI:10.1089/jmf.2007.593, 2008; H. Eguchi, H. Matsunaga, S. Onuma, Y. Yoshino, T. Matsunaga, y A. Ikari. Down-regulation of claudin-2 expression by cyanidin-3-glucoside enhances sensitivity to anticancer drugs in the spheroid of human lung adenocarcinoma A549 cells. Int. J. Mol. Sci., vol. 22, n° 2, pp. 499-514. DOI:10.3390/ijms22020499, 2021; D. K. Sun, L. Wang, y P. Zhang. Antitumor effects of chrysanthemin in pc-3 human prostate cancer cells are mediated via apoptosis induction, caspase signalling pathway and loss of mitochondrial membrane potential. Afr. J. Tradit. Complement. Altern. Med., vol. 14, n° 4, pp. 54–61. DOI:10.21010/ajtcam.v14i4.7, 2017; K. Jongsomchai, V. Leardkamolkarn, y S. Mahatheeranont. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat. Cell Biol., vol. 53, n° 4, pp. 481-492. DOI:10.5115/acb.20.085, 2020; W. Yi, J. Fischer, y C. C. Akoh. Study of anticancer activities of Muscadine grape phenolics in vitro. J. Agric. Food Chem., vol. 53, n° 22, pp. 8804–8812. DOI:10.1021/jf0515328, 2005; J. W. Yun, W. S. Lee, M. J. Kim, J. N. Lu, M. H. Kang, H. G. Kim, D. C. Kim, E. J. Choi, J. Y. Choi, H. G. Kim, Y. K. Lee, C. H. Ryu, G. S. Kim, Y. H. Choi, O. J. Park, y S. C. Shin. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol., vol. 48, n° 3, pp. 903–909. DOI:10.1016/j.fct.2009.12.031, 2010; A. Akim, L. C. Ling, A. Rahmat, y Z. A. Zakaria. Antioxidant and anti-proliferative activities of Roselle juice on Caov-3, MCF-7, MDA-MB-231 and HeLa cancer cell lines. Afr. J. Pharm. Pharmacol., vol. 5, n° 7, pp. 957-965. DOI:10.5897/AJPP11.207, 2011; L. Li, L. S. Adams, S. Chen, C. Killian, A. Ahmed, y N. P. Seeram. Eugenia jambolana Lam. Berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem., vol. 57, n° 3, pp. 826–831. DOI:10.1021/jf803407q, 2009; J. M. Aswathy, L. Bosco, G. S. Manoj, y K. Murugan. Anti-proliferative potentiality of purified anthocyanin from in vitro culture of Clerodendron infortunatum L. against human cervical cancer cells (HeLa). Asian J. Pharm. Health Sci., vol. 8, n°1, pp. 1812-1819. 2018; Ch-P. Hsu, Y-H. Lin, Sh-P. Zhou, Y-Ch. Chung, C. C. Lin, y S. C. Wang. Longan flower extract inhibits the growth of colorectal carcinoma. Nutr. Cancer, vol. 62, n° 2, pp. 229–236. DOI:10.1080/01635580903305367, 2010; C. Neto, C. G. Krueger, T. L. Lamoureaux, M. Kondo, A. J. Vaisberg, R. A. R. Hurta, S. Curtis, M. D. Matchett, H. Yeung, M. Sweeney y J. D. Reed. MALDI-TOF MS characterization of proanthocyanidins from cranberry fruit (Vaccinium macrocarpon) that inhibit tumor cell growth and matrix metalloproteinase expression in vitro. J. Sci. Food Agric., vol. 86, n° 1, pp. 18–25. DOI:10.1002/jsfa.2347, 2005; S. F. Huang, Ch-T. Horng, Y-S. Hsieh, Y-H. Hsieh, S-C. Chu, P-N. Chen. Epicatechin-3-gallate reverses TGF-β1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem. Toxicol., vol. 94, pp. 1–10. DOI:10.1016/j.fct.2016.05.009, 2016; S. Akhtar, S. M. Meeran, N. Katiyar, y S. K. Katiyar. Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin. Cancer Res., vol. 15, n° 3, pp. 821–831. DOI:10.1158/1078-0432.ccr-08-1901, 2009; V. Kaplum, A. C. Ramos, M. E. L. Consolaro, M. A. Fernández, T. Ueda-Nakamura, B. P. Dias-Filho, S. de Oliveira Silva, J. C. P. De Mello y C. V. Nakamura. Proanthocyanidin polymer-rich fraction of Stryphnodendron adstringens promotes in vitro and in vivo cancer cell death via oxidative stress. Front. Pharmacol, vol. 9, pp. 694-712. DOI:10.3389/fphar.2018.00694, 2018; X. X. Chen, G. P-H. Leung, Z-J. Zhang, J-B. Xiao, L-X. Lao, F. Feng, J. Ch-W. Mak, Y. Wang, S. Cho-W. Sze y K. Y. B. Zhang. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem. Toxicol., vol. 107, Pt. A., pp. 248–260. DOI:10.1016/j.fct.2017.07.012, 2017; X. Shen, Y. Wang, y F. Wang. Characterisation and biological activities of proanthocyanidins from the barks of Pinus massonian and Acacia mearnsii. Nat. Prod. Res., vol. 24, n° 6, pp. 590–598. DOI:10.1080/14786410903194472, 2010; Y. Q. Tang, I. B. Jaganath, y S. D. Sekaran. Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis. PLoS ONE, vol. 5, n° 9, pp. e12644. DOI:10.1371/journal.pone.0012644, 2010; S-I. Kawahara, C. Ishihara, K. Matsumoto, S. Senga, K. Kawaguchi, A. Yamamoto, J. Suwannachot, Y. Hamauzu, H. Makabe, y H. Fujii. Identification and characterization of oligomeric proanthocyanidins with significant anti-cancer activity in adzuki beans (Vigna angularis). Heliyon, vol. 5, n° 10, pp. e02610. DOI:10.1016/j.heliyon.2019.e02610, 2019; D. Marko, N. Puppel, Z. Tjaden, S. Jakobs y G. Pahlke, The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation, Mol. Nutr. Food Res., vol. 48, n° 4, pp. 318-325. DOI:10.1002/mnfr.200400034, 2004; P. Jing, J. A. Bomser, S. J. Schwartz, J. He, B. A. Magnunson y M. M. Giusti, Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth, J. Agric. Food Chem., vol. 56, n° 20, pp. 9391-9398. DOI:10.1021/jf8005917, 2008; G. D. Stoner, L-S. Wang y T. Chen, Chemoprevention of esophageal squamous cell carcinoma, Toxicol. Appl. Pharmacol., vol. 224, n° 3, pp. 337-349. DOI:10.1016/j.taap.2007.01.030, 2007; S. Rajendran, S. Marappan, P. Suganyadevi, M. Rajalakshmi y M. F. Poffe, Antiproliferative properties of anthocyanin from Indian cassava (Manihot Esculenta, Crantz) on Hep-2 And Mcf-7 cell lines, Am. J. Pharm. Tech. Res., vol. 5, n° 3, pp. 467-479, 2015; W. Liu, J. Xu, Y. Liu, X. Yu, X. Tang, Z. Wang y X. Li, Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo, Mol. Med. Rep., vol. 10, n° 4, pp. 1921-1926. DOI:10.3892/mmr.2014.2414, 2014; A. Bunea, D. Rugina, Z. Sconta, R. M. Pop, A. Pintea, C. Socaciu, F. Tabaran, Ch. Grootaert, K. Struijs, y J. VanCamp, Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells, Phytochemistry, vol. 95, pp. 436-444. DOI:10.1016/j.phytochem.2013.06.018, 2013; P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon y D. Vistica, New colorimetric cytotoxicity assay for anticancer-drug screening, J Natl Cancer Inst, vol. 82, nº 13, pp. 1107-1112. DOI:10.1093/jnci/82.13.1107, 1990; Instituto Colombiano de Normas Técnicas, NTC 440:2015. Productos alimenticios. Métodos de ensayo,» 19 Octubre 2022. Disponible en: https://tienda.icontec.org/gp-productos-alimenticios-metodos-de-ensayo-ntc440-2015.html. Consultada Julio 2023; J. H. Isaza, H. Ito y T. Yoshida, Oligomeric hidrolizable tannins from Monochaetum multiflorum, Phytochemistry, vol. 65, nº 3, pp.359-367. DOI:10.1016/j.phytochem.2003.11.017, 2004; T. Mosmann, Rapid colorimetric assay for cellular growth and survival - Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol 65, nº 1-2, pp. 55-63. DOI:10.1016/0022-1759(83)90303-4, 1983; D. Caro, D. Rivera, Y. Ocampo, K. Müller y F. L. A., A promising naphthoquinone [8-hydroxy-2-(2-thienylcarbonyl)naphtho[2,3-b]thiophene-4,9-dione] exerts anti-colorectal cancer activity through ferroptosis and inhibition of MAPK signaling pathway based on RNA sequencing, Open Chem., vol. 18, nº 1, pp. 1242–1255. DOI:10.1515/chem-2020-0170, 2020; J. Manosroi, M. Sainakham, W. Manosroi y A. Manosroi, Anti-proliferative and apoptosis induction activities of extracts from Thai medicinal plant recipes selected from MANOSROI II database, J. Ethnopharmacol., vol. 141, nº 1, pp. 451-459. DOI:10.1016/j.jep.2012.03.010, 2012; J. López Montoya, Determinación de los requerimientos nutricionales de la Piña variedad MD-2 en suelos ácidos del municipio de Santander de Quilichao, Tesis Magister en Ciencias Agrarias, Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias. Sede Palmira, 2016; E. L. Acero Duarte, Principales plantas útiles de la Amazonía Colombiana. Unidad Forestal del Proyecto Radargravimétrico del Amazonas, 1979. IDEAM. Disponible: http://koha.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4653476&shelfbrowse_itemnumber=6058961#shelfbrowse. Consultado Julio 2023; ISO. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. Ed. 3, 2009, pp. 1-34. Disponible: https://www.iso.org/standard/36406.html. Consultado Julio 2022; A. Martínez M., Metabolitos Scundarios Aromáticos. Flavonoides, en: Química de Productos Naturales, Medellín, Universidad de Antioquia, pp. 116-118, 2020; J. James y I. Dubery, Identification and quantification of triterpenoid centelloids in Centella asiatica (L.) urban by densitometric TLC, JPC-J. Planar Chromat., vol. 24, nº 1, pp. 82-87, 2011; J.-R. Du, F.-Y. Long y C. Chen, Research progress on natural triterpenoid saponins in the chemoprevention and chemotherapy of cancer, Enzymes, vol. 36, pp. 95-30. Doi:10.1016/B978-0-12-802215-3.00006-9, 2014; J. A. Gomes de Brito, L. da Silva Pinto, C. F. Chaves, A. J. R. da Silva, M. F. das Gracas Fernandes da Silva y F. Cotinguiba, Chemophenetic ssignificance of Anomalocalyx uleanus metabolites are revealed by dereplication using molecular networking tools, Molecules, vol. 26, nº 4, pp. 925-947. https://doi.org/10.3390/molecules26040925, 2021; K. F. Amaral, M. M. Rogero, R. A. Fock, P. Borelli y G. Gavini, Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture, Int. Endod. J., vol. 40, nº 5, pp. 338-343. DOI:10.1111/j.1365-2591.2007.01220.x, 2007; J. Soares-Roter, L. Moura-Sassone, S. Rivera-Fidel y D. Araki-Ribeiro, In vitro genotoxicity and cytotoxicity in murine fibroblasts exposed to EDTA, NaOCl, MTAD and citric acid, Braz. Dent. J, vol. 23, nº 5, pp. 527-533. DOI:10.1590/s0103-64402012000500010, 2012; L. Luciano Giardino, L. Generali, P. Savadori, M. Cesar Barros, L. Lobo de Melo Sima, J. Pytko-Polonczyk, W. Wilkonsk, V. Ballal y F. Bombarda de Andrade, Can the concentration of citric acid affect its cytotoxicity and antimicrobial activity?, Dent. J. (Basel), vol. 10, nº 148, pp. 1-13. DOI:10.3390/dj10080148, 2022.; S. C. Forester y A. L. Waterhouse, Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells, J. Agric. Food Chem., vol. 58, nº 9, pp. 5320-5327. DOI:10.1021/jf9040172, 2010; K. W. Lee, H. J. Hur, H. J. Lee y C. Y. Lee, Antiproliferative effects of dietary phenolic substances and hydrogen peroxide,» J. Agric. Food Chem., vol. 53, p. 1990−1995. DOI:10.1021/jf0486040, 2005; C. L. Hsu, S. L. Huang y G. C. Yen, Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity, J. Agric. Food Chem., vol. 54, p. 4191−4197. DOI:10.1021/jf0609882, 2006; S. Klenow y M. Glei, New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters, Toxicol. In Vitro, vol. 23, nº 6 p. 1055–1061. DOI:10.1016/j.tiv.2009.06.006, 2009; Fadilah, A. Yanuar, A. Arsianti, R. Andrajati y R. I. Paramita, In silico study, synthesis, and cytotoxic activity of esterification of eugenol and gallic acidagainst HT-29 cell line, Orient. J. Chem., vol. 33, nº 6, pp. 3009-3014. DOI: http://dx.doi.org/10.13005/ojc/330638, 2017; Z. H. Liu, S. Y. Zhang, Y. Y. Yu y G. Q. Su, (-)-4-O-(4-O-b-D-Glucopyranosylcaffeoyl)quinic acid presents antitumor activity in HT-29 human colon cancer in vitro and in vivo, Mol. Cell Toxicol., vol. 11, pp. 457-463. DOI:10.1007/s11095-018-2459-5, 2015; M. D. Rush, E. A. Rue, A. Wong, P. Kowalski, J. A. Glinski y R. B. van Breemen, Rapid determination of procyanidins using MALDI-ToF/ToF mass spectrometry, J. Agric. Food Chem., vol. 66, nº 43, pp. 11355-11361. DOI:10.1021/acs.jafc.8b04258, 2018; D. Desdiani, I. Rengganis, S. Djauzi, A. Setiyono, M. Sadikin, S.-W. A. Jusman, N. C. Siregar, Suradi, P. C. Eyanoer y F. Fadilah, In Vitro assay and study interaction of Uncaria gambir (Hunter) Roxb. as anti-fibrotic activity against A549 cell line, Pharmacogn J., vol. 12, nº 6, pp. 1232-1240. DOI:10.5530/PJ.2020.12.172, 2020; J. T. Mao, B. Xue, J. Smoake, Q.-Y. Lu, H. Park, S. M. Henning, W. Burns, A. Bernabei, D. Elashoff, K. J. Serio y L. Massie. MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer. J. Nutr. Biochem., vol. 34, p. 118–125. DOI:10.1016/j.jnutbio.2016.05.003, 2016; M. Orabi, O. Alqahtani, B. Alyami, A. Al Awadh, E.-S. Abdel-Sattar, K. Matsunami, D. Hamdan y M. Abouelela. Human Lung Cancer (A549) Cell Line Cytotoxicity and Anti-Leishmania major Activity of Carissa macrocarpa Leaves: A Study Supported by UPLC-ESI-MS/MS Metabolites Profiling and Molecular Docking. Pharmaceuticals, vol. 15, pp. 1561-1576. DOI:10.3390/ph15121561, 2022; I. Hernández-Balmaseda, I. R. Guerra, K. Declerck, J. A. Herrera Isidrón, C. Pérez-Novo, G. Van Camp, O. De Wever, K. González, M. Labrada, A. Carr, G. Dantas-Cassali, D. C. dos Reis, L. Delgado-Roche, R. R. Núñez, Delgado y W. Vanden Berghe. Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar. Drugs, vol. 19, nº 2, p. 52. DOI:10.3390/md19020052, 2021; A. Faria, C. Calhau, V. de Freitas y N. Mateus. Procyanidins as Antioxidants and Tumor Cell Growth Modulators. J. Agric. Food Chem., vol. 54, nº 6, p. 2392–2397. DOI:10.1021/jf0526487, 2006; D. Esposito, A. Chen, M. H. Grace, S. Komarnytsky y M. A. Lila. Inhibitory Effects of Wild Blueberry Anthocyanins and Other Flavonoids on Biomarkers of Acute and Chronic Inflammation in Vitro. J. Agric. Food Chem., vol. 62, nº 29, pp. 7022-7028. DOI:10.1021/jf4051599, 2014; S. Wei, Y. Sun, L. Wang, ZhangT., W. Hu, W. Bao, L. Mao, J. Chen, H. Li, Y. Wen y Z. Chen. Hyperoside suppresses BMP-7-dependent PI3K/AKT pathway in human hepatocellular carcinoma cells. Ann. Transl. Med., vol. 9, nº 15, p. 1233. DOI:10.21037/atm-21-2980, 2021; T. Fu, L. Wang, X. Jin, H. Sui, Z. Liu y Y. Jin. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin., vol. 37, p. 505–518. DOI:10.1038/aps.2015.148, 2016; Y. Yang, J. Tantai, Y. Sun, C. Zhong y Z. Li. Effect of hyperoside on the apoptosis of A549 human non small cell lung cancer cells and the underlying mechanism. Mol. Med. Rep., vol. 16, nº 5, pp. 6483-6488. DOI:10.3892/mmr.2017.7453, 2017; S. Puangpraphant, M. A. Berhow y E. de Mejía. Yerba Mate (Ilex Paraguariensis St. Hilaire) Saponins Inhibit Human Colon Cancer Cell Proliferation. de Hispanic Foods: Chemistry and Bioactive Compounds, Washington, American Chemical Society, pp. 307-321. DOI:10.1021/bk-2012-1109.ch018, 2012; P. Ferreira-Santos, H. Badim, Â. Salvador, A. Silvestre, S. Santos, S. Rocha, A. Sousa, M. Pereira, C. Wilson, C. Rocha, J. A. Teixeira y C. M. Botelho. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules, vol. 11, n°8, pp. 1222-1244. DOI:10.3390/biom1108122, 2021; H.-J. Kim, S.-K. Kim, B.-S. Kim, S.-H. Lee, Y.-S. Park, B.-K. Park, S.-J. Kim, J. Kim, C. Choi, J.-S. Kim, S.-D. Cho, J.-W. Jung, K.-H. Roh, K.-S. Kang y J.-Y. Jung. Apoptotic Effect of Quercetin on HT-29 Colon Cancer Cells via the AMPK Signaling Pathway. J. Agric. Food Chem., vol. 58, nº 15, p. 8643–8650. DOI:10.1021/jf101510z, 2010; S. Lin, J. Heb, F. Wu, H. Wang, D. Wu, J. Sun, D. Zhang, H. Qu y B. Yang.Production of nigragillin and dihydrophaseic acid by biotransformation of litchi pericarp with Aspergillus awamori and their antioxidant activities. J. Funct. Foods, vol. 7, pp. 278-286. DOI:10.1016/j.jff.2014.02.001, 2014; Y. Zhou, H. Chen, B. Wang, H. Liang, Y. Zhao y Q. Zhang, Sesquiterpenoid and phenolic glucoside gallates from Lagerstroemia balansae. Planta Med., vol. 77, nº 17, pp. 1944-1946. DOI:10.1055/s-0031-1280093, 2017; H. J. Kim, C. B. Jin, M. J. Son, Y. S. Lee, C. S. Yook y J. Y. Lee. Aster Glehni extracts, fractions or compounds isolated therefrom for the treatment or prevention of hyperuricemia or gout. United States Patente US 2015/0337001 A1, 20 Mayo 2015; I. Jae-Kyung, K. Jin-Kyu, O. Joa-Sub y S. Dong-Wan. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int. J. Oncol., vol. 48, pp. 1907-1912. DOI:10.3892/ijo.2016.3436¸ 2016; K. L. Ooi, T. S. T. Muhammad, M. L. Tan y S. F. Sulaiman.Cytotoxic, apoptotic and anti--glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J. Ethnopharmacol., vol. 135, nº 3, p. 685–695. DOI:10.1016/j.jep.2011.04.001, 2011; A. Trendafilova, V. Ivanova, M. Rangelov, M. Todorova, O. G. S. Yur, T. Ozek, Aneva¸I., R. Veleva, V. Moskova-Doumanova, J. Doumanov y T. Topouzova-Hristova. Caffeoylquinic Acids, Cytotoxic, Antioxidant, Acetylcholinesterase and Tyrosinase Enzyme Inhibitory Activities of Six Inula Species from Bulgaria. Chem. Biodiversity, vol. 17, 1-12, e200051. DOI:10.1002/cbdv.202000051, 2020; Y. J. Yang, X. Liu, H. R. Wu, X. F. He, Y. R. Bi, Y. Zhu y Z. L. Liu. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chem., vol. 138, nº 2, pp. 2057-2063. DOI:10.1016/j.foodchem.2012.10.122, 2013; H. Villota, M. Moreno-Ceballos, G. A. Santa-González, D. Uribe, I. C. Henao Castañeda, L. M. Preciado y J. Pedroza-Díaz. Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. Pharmaceuticals, vol. 14, nº 8, p. 761. DOI:10.3390/ph14080761, 2021; M. Bunse, P. Lorenz, F. C. Stintzing y D. R. Kammerer. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants, vol. 10, pp. 1219-1236. DOI:10.3390/plants10061219, 2021; T. Akiyama, O. Takana y S. Shibata. Chemical Studies on the Oriental Plant Drugs. Sapogenins of the Roots of Platycodon grandiflorum A. de Candolle. Structure of Platycodigenin. Chem. Pharm. Bull., vol. 20, nº 9, pp. 1952-1956. DOI:10.1248/cpb.14.1150, 1972; Q. Wei, B. Zhang, P. Li, X. Wen y J. Yang. Maslinic acid inhibits colon tumorigenesis by AMPK-mTOR signaling pathway. J. Agric. Food Chem., vol. 67, pp. 4259-4272. DOI:10.1021/acs.jafc.9b00170, 2019; A. Parra, S. Martin-Fonseca, F. Rivas, F. J. Reyes-Zurita, M. Medina-O’Donnell, E. E. Rufino-Palomares, A. Martínez, A. García-Granados, J. A. Lupiañez y F. Albericio. Solid-Phase Library Synthesis of Bi-Functional Derivatives of Oleanolic and Maslinic Acids and Their Cytotoxicity on Three Cancer Cell Lines. ACS Comb. Sci., vol. 16, nº 8, pp. 428-447. DOI:10.1021/co500051z, 2014; S. Zhang, D. Ding, X. Zhang, L. Shan y Z. Liu, Maslinic acid induced apoptosis in bladder cancer cells through activating p38 MAPK signaling pathway. Mol. Cell. Biochem., vol. 392, nº 1, p. 281–287. DOI:10.1007/s11010-014-2038-y, 2014; X. Bai, Y. Zhang, H. Jiang, P. Yang, H. Li, Y. Zhang y P. He. Effects of maslinic acid on the proliferation and apoptosis of A549 lung cancer cells. Mol. Med. Rep., vol. 13, nº 1, pp. 117-122. DOI:10.3892/mmr.2015.4552, 2016; P. K. K. A. H. Bunpo, H. Nakayama, T. Kuwahara, U. Vinitketkumnuen y Y. Ohnishi. Inhibitory effects of asiatic acid and CPT-11 on growth of HT-29 cells. J. Med. Invest., vol. 52, nº 1, pp. 65-73. DOI:10.2152/jmi.52.65, 2005; T. Wua, J. Geng, W. Guo y J. Z. Z. Gao. Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B., vol. 7, nº 1, pp. 65-72. DOI:10.1016/j.apsb.2016.04.003, 2017; C. W. Cho, D. S. Choi, M. H. Cardone, C. W. Kim, A. J. Sinskey y C. Rha, Glioblastoma cell death induced by asiatic acid. Cell Biol. Toxicol., vol. 22, pp. 393-408. DOI:10.1007/s10565-006-0104-2, 2006; X. Tian, S. Guo, S. Zhang, P. Li, T. Wang, C. Ho, M. H. Pna y N. Bai. Chemical characterization of main bioactive constituents in Paeonia ostii seed meal and GC‐MS analysis of seed oil. J. Food Biochem., vol. 44, n°1, e13088. DOI:10.1111/jfbc.13088, 2019; Z. Chen, K.-Y. Huang, Y. Ling, M. Goto, H.-Q. Duan, X.-H. Tong, Y.-L. Liu, Y.-Y. Cheng, S. Morris-Natschke, P.-C. Yang, S.-L. Yang y K.-H. Lee. Discovery of an Oleanolic Acid/Hederagenin–Nitric Oxide Donor Hybrid as an EGFR Tyrosine Kinase Inhibitor for Non-Small-Cell Lung Cancer. J. Nat. Prod., vol. 82, nº 11, p. 3065–3073. DOI:10.1021/acs.jnatprod.9b00659, 2019; C. Gauthier, J. Legault, K. Girard-Lalancette, V. Mshvildadze y A. Pichette. Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg. Med. Chem., vol. 17, nº 5, p. 2002–2008. DOI:10.1016/j.bmc.2009.01.022, 2009; W. Cong, E. Tello, C. T. Simons y D. G. Peterson. Identification of Non-Volatile Compounds That Impact Flavor Disliking of Whole Wheat Bread Made with Aged Flours. Molecules, vol. 27, pp. 1331-1346. DOI:10.3390/molecules27041331, 2022; M. Yuce, C. Gumuskaptan, A. H. Con y F. Yazici. Conjugated linoleic acid strengthens the apoptotic effect of cisplatin in A549 cells. Prostaglandins Other Lipid Mediat., vol. 166, p. 106731. DOI:10.1016/j.prostaglandins.2023.106731, 2023; H. Li, Q. Yao, L. Min, S. Huang, H. Wu, H. Yang, L. Fan, J. Wang y N. Zheng. The combination of two bioactive constituents, lactoferrin and linolenic acid, inhibits mouse xenograft esophageal tumor growth by downregulating lithocholyltaurine and inhibiting the JAK2/STAT3-related pathway. ACS Omega, vol. 5, nº 33, pp. 20755-20764. DOI:10.1021/acsomega.0c01132, 2020; M. B. Bahadori, S. Vandghanooni, L. Dinparast, M. Eskandani, S. A. Ayatollahi, A. Ata y H. Nazemiyeh. Triterpenoid corosolic acid attenuates HIF-1 stabilization upon cobalt (II) chloride-induced hypoxia in A549 human lung epithelial cancer cells. Fitoter., vol. 134, pp. 493-500. DOI:10.1016/j.fitote.2019.03.013, 2019; K. H. Yoo, J.-H. Park, D. Y. Lee, J. Hwang-Bo, N. I. Baek y I. S. Chung. Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects onIn Vitro Endothelial Cells and on anIn Vivo CT-26 Colon Carcinoma Animal Model. Phytother. Res., vol. 29, nº 5, pp. 714-723. DOI:10.1002/ptr.5306, 2015; K. Okuno, R. Garg, Y.-C. Yuan, M. Tokunaga, Y. Kinugasa y A. Goel. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front. Oncol., vol. 12, nº DOI:10.3389/fonc.2022.952180, p. PMC9278059. DOI:10.3389/fonc.2022.952180, 2022; Z.-H. Shao, T.-L. Vanden Hoek, C. Q. Li, P. T. Schumacker, L. B. Becker, K. C. Chan, Y. Qin, J. J. Yin y C. S. Yuan. Synergistic Effect of Scutellaria baicalensis and Grape Seed Proanthocyanidins on Scavenging Reactive Oxygen Species in Vitro. Am. J. Chinese Med., vol. 32, nº 1, pp. 89-95. DOI:10.3389/fonc.2022.952180, 2004; J. Wang, W. Zhang, C. Tang, J. Xiao, B. Xie y Z. Sun. Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J. Funct. Foods, vol. 48, pp. 134-143. DOI:10.1016/j.jff.2018.07.015, 2018; A. T. C. C. ATCC,. HTB-38. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/htb-38#detailed-product-information. Consultado Junio 2023; A. T. C. C. ATCC, CRL-2577. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/crl-2577#detailed-product-information. Consultado Junio 2023; https://repositorio.unal.edu.co/handle/unal/84865; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  10. 10
  11. 11
    Academic Journal
  12. 12
  13. 13

    المصدر: Scientific Reports, Vol 10, Iss 1, Pp 1-14 (2020)
    Scientific Reports
    Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
    Universidade de São Paulo (USP)
    instacron:USP

  14. 14
  15. 15
    Academic Journal
  16. 16
    Dissertation/ Thesis
  17. 17
  18. 18

    المصدر: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
    Universidade de São Paulo (USP)
    instacron:USP

  19. 19
    Academic Journal
  20. 20