يعرض 1 - 20 نتائج من 167 نتيجة بحث عن '"CASM"', وقت الاستعلام: 1.63s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    المصدر: Autophagy Reports, Vol 3, Iss 1 (2024)

    مصطلحات موضوعية: ATG8, autophagy, CASM, LC3, lysosome, microautophagy, Cytology, QH573-671

    وصف الملف: electronic resource

  4. 4
    Academic Journal
  5. 5
  6. 6
  7. 7
  8. 8
    Conference

    المساهمون: Universitat Politècnica de Catalunya. Doctorat en Enginyeria del Terreny, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. GGMM - Grup de Geotècnia i Mecànica de Materials

    وصف الملف: 6 p.; application/pdf

  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المصدر: Law, Economics and Management; ; Право, экономика и управление: теория и практика

    وصف الملف: text/html

    Relation: https://phsreda.com/e-articles/10397/Action10397-102842.pdf; Федеральный закон от 28.06.2021 №231-ФЗ Об информации, информационных технологиях и о защите информации.; ГОСТР РВ 0015-0.02-2020. Система разработки и постановки на производство военной техники. Системы менеджмента качества. Требования.; Санкционное давление: направления трансформации процессов управления инновационным развитием российской экономики. – Казань: Изд-во Казан. ун-та, 2018. – 240 с.; Можаев О.А. Современная модель модернизации ОПК – комплексная система автоматизированного мониторинга и менеджмента качества продукции и услуг предприятий и организаций – участников государственного оборонного заказа / О.А. Можаев // Информатизация и связь – 2021 – №3. – С. 63–67.; Можаев О.А. На повестке дня – менеджмент информационной безопасности в задаче повышения результативности процессов менеджмента полного жизненного цикла продукции предприятий и организаций ОПК – исполнителей и участников ГОЗ / О.А. Можаев // Информатизация и связь. – 2019. – №4. – С. 62–66.; Можаев О.А. Заявка в ФИПС №2012151388/08(082049) от 30.11.2019 на патент на «Комплексную Систему Автоматизированного Мониторинга и Менеджмента (КСАМиМ) процессов ПЖЦП организаций ОПК / О.А. Можаев [и др.].; Можаев О.А. Статистические методы, используемые при управлении качеством / О.А. Можаев // Менеджмент качества оборонных предприятий. – СПб.: ВАС, 2019. – С. 196–207.; Можаев О.А. Модель функционирования автоматизированных систем менеджмента качества предприятия оборонно-промышленного комплекса в условиях несанкционированного воздействия / О.А. Можаев // Исследование, разработка и применение высоких технологий в промышленности: сборник трудов шестой международной научно-практической конференции / под ред. А.П. Кудинова, Г.Г. Матвиенко. – СПб.: Изд-во Политехн. Ун-та, 2020. – С. 88–89.; Можаев О.А. Роль системы обеспечения информационной безопасности в повышении результативности менеджмента предприятий и организаций ОПК / О.А. Можаев, В.А. Липатников // Вестник качества. – 2020. – №2. – С. 31–36.; Можаев О.А. К вопросу сертификации систем менеджмента информационной безопасности предприятий и организаций ОПК / О.А. Можаев // Вестник качества. – 2020. – №3. – С. 50–53.; Еременко С.П. Мониторинг как инструмент безопасности сложных технических систем / С.П. Еременко, Е.С. Калинина // Сервис безопасности в России: опыт, проблемы, перспективы. Обеспечение комплексной безопасности жизнедеятельности населения. Материалы IX Всероссийской научно-практической конференции. Санкт-Петербургский университет Государственной противопожарной службы МЧС России. 2021. – СПб. Изд-во Санкт-Петербургского университета Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий. – С. 156–160.; Eremenko S.P. Roles and responsibilities matrix in the university’s system of quality management (укометрическая база Web of Science) // Far East Con-2018 – Международная мультидисциплинарная конференция по промышленному инжинирингу и современным технологиям (г. Владивосток, 2–4 октября 2021 года).; https://phsreda.com/files/Books/62cd10b618e34.jpg?req=102842; https://phsreda.com/article/102842/discussion_platform

  11. 11
    Academic Journal
  12. 12
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Dissertation/ Thesis
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Dissertation/ Thesis

    المساهمون: Colmenares Montañez, Julio Esteban, Geotechnical Engineering Knowledge and Innovation Genki

    وصف الملف: xvii, 126 páginas; application/pdf

    Relation: Allbrook, R. F. (1985). The effect of allophane on soil properties. Applied Clay Science, 1(1–2), 65–69. https://doi.org/10.1016/0169-1317(85)90562-9; ASTM International. (1998). Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants, ASTM D2217.; ASTM International. (2002). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method, ASTM D854.; ASTM International. (2011). Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, ASTM D4767-11.; ASTM International. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM D4318-17.; ASTM International. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM D2216-19 (ASTM D2216-19).; ASTM International. (2020). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils, ASTM D7181-20.; ASTM International. (2021). Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens, ASTM D7263-21.; Atkins, P., de Paula, J., & Smith, D. (2017). Elements of Physical Chemistry (7th ed.). Oxford University Press.; Atkinson, J. (2007). The Mechanics of Soils and Foundations (Taylor & Francis (ed.); 2th ed.).; Basto Urbina, D. F. (2022). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/82921; Becker, D. E., Crooks, J. H. A., Been, K., & Jefferies, M. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal, 24(4), 549–564. doi.org/10.1139/t87-070; Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Geotechnique, 35(2), 99–112.; Besoain, E. (1967). Imogolite in Volcanic Soils of Chile. Geoderma, 2, 151–169.; Besoain, E. (1985). Mineralogía de arcillas de suelos. Instituto Interamericano de Cooperación para la Agricultura (IICA).; Blight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In Environmental & Engineering Geoscience (Second Edi). Taylor & Francis Group. https://doi.org/10.2113/gseegeosci.v.2.255; Bradley, M. S. (2007). Curve Fitting in Raman and IR Spectroscopy: Basic Theory of Line Shapes and Applications. Thermo Fisher Scientific, Applicatio, 1–4.; Budhu, M. (2010). Soil mechanics and foundations (3th ed.). John Wiley & Sons, Inc.; Builes, M. A., Gomez, D. V., & Millan, Á. A. (2009). Inherent anisotropy in allophane clay in Colombia. In IOS Press (Ed.), 17th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 193–196). IOS Press.; Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378.; Burland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Geotechnique, 46(3), 491–514.; Cardona Lindo, C. M., & Roman, N. L. (2002). Caracterización parcial de suelos con fines forenses en la Comuna 4 de Armenia - Quindío [Tesis de Grado, Universidad del Quindío]. https://bdigital.uniquindio.edu.co/handle/001/5022; Clabel, J. L., Nicolodelli, G., Senesi, G. S., Montes, C. R., Perruci, F., Bezzon, V. D. N., Balogh, D. T., & Milori, D. M. B. P. (2020). Organo-mineral associations in a Spodosol from northern Brazil. Geoderma Regional, 22(e00303).; Craig, R. F. (2004). Craig’s Soil Mechanics (7th ed.). Spon Press.; Deere, D. V., & Patton, F. D. (1971). Slope stability in residual soils. 4th Panamerican Conf. Soil Mechanics and Foundation Engineering, 87–170.; Dev, K. L., Pillai, R. J., & Robinson, R. G. (2013). Estimation of Critical State Parameters from One-dimensional Consolidation and Triaxial Compression Tests. Indian Geotechnical Journal, 43(3), 229–237.; Dixon, J. B., Schulze, D. G., Harsh, J., Chorover, J., & Nizeyimana, E. (2002). Allophane and Imogolite. In Soil Mineralogy with Environmental Applications (pp. 291–322). Soil Science Society of America, Inc.; Domínguez Soto, J. M., Serrano Lopez, S. S., Acevedo Sandoval, O. A., & Román Gutiérrez, A. D. (2012). Estudio físico-químico y micromorfologíco de suelos de Denganthza, Valle del Mezquital, Hidalgo. MULTICIENCIAS, 12(2), 146–155.; FAO. (1998). Mineral Soils conditioned by Parent Material. The World Reference Base for Soil Resources. http://www.fao.org/3/y1899e/y1899e06.htm; Fiantis, D., Nelsonb, M., Shamshuddinc, J., Gohd, T. B., & Van Ranst, E. (2010). Determination of the geochemical Weathering Indices and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia. Eurasian Soil Science, 43(13), 1477–1485.; Fieldes, M., & Perrott, K. W. (1966). The nature of allophane in soils. New Zealand Journal of Science, 9, 623–629.; Galvis Castro, A. C. (2018). Estudio del comportamiento esfuerzo – deformación – tiempo de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69230; García-Leal, J. C. (2004). Efecto de los cambios de humedad en la resistencia de un suelo parcialmente saturado derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. Repositorio Institucional UN; García-Leal, J. C., & Colmenares, J. E. (2011). Predicción de la resistencia al corte en los suelos naturales derivados de ceniza volcánica. 2011 Pan-Am CGS Geotechnical Conference, 8.; Gobernación del Quindío. (2023). Montenegro. https://quindio.gov.co/montenegro/montenegro; González Molano, N. A. (2011). Development of a family of constitutive models for geotechnical applications [Tesis de Doctorado, Universitat Politècnica de Catalunya]. https://www.educacion.gob.es/teseo/mostrarRef.do?ref=339453; Griffiths, V. D., & Gioda, G. (2001). Advanced Numerical Applications and Plasticity in Geomechanics (Springer-Verlag Wien GmbH (ed.); CISM Cours). Springer-Verlag Wien GmbH.; Griffiths, V. D., & Smith, I. M. (2014). Programming the Finite Element Method (John Wiley & Sons Ltd (ed.); Fifth). John Wiley & Sons Ltd.; Handy, R. L. (2007). Geotechnical Engineering: Soil and Foundation Principles and Practice (McGraw-Hill (ed.); 5th ed.). McGraw-Hill.; Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia : Estudio fundamental e implicaciones en ingenieria [Tesis de Doctorado, Universidad de los Andes]. http://hdl.handle.net/1992/7812; Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences: Properties and Processes (P. M. Huang, Y. Li, & M. E. Sumner (eds.); second). CRC Press.; Huat, B. B. K., Toll, D. G., & Prasad, A. (2013). Handbook of Tropical Residual Soils Engineering. Taylor & Francis Group.; Humberto Caballero A., G. Z. G. et. al. (1984). Geología y Geoquímica de la plancha 224 Pereira escala 1:100.000.; NGEOMINAS, & FOREC. (2000). Zonificación de amenazas geológicas para los municipios del Eje Cafetero afectados por el sismo del 25 de enero de 1999 Volumen II - Zonificación Regional.; INVIAS. (2013). Normas de ensayo de materiales para carreteras, Sección 100 - Suelos (INVIAS (ed.)). INVIAS.; Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., & Yuan, G. (2012). Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. In Applied Clay Science (Vol. 56, pp. 77–83). https://doi.org/10.1016/j.clay.2011.11.025; Jacquet, D. (1990). Sensitivity to Remoulding of Some Volcanic Ash Soils in New Zealand. Engineering Geology, 28, 1–25.; Kauppinen, J. K., Moffatt, D. J., Mantsch, H. H., & Cameron, D. . (1981). Fourier Self-Deconvolution: A Method for Resolving Intrinsically Overlapped Bands. Applied Spectroscopy, 35(3), 271–276.; Kitagawa, Y. (1976). Determination of allophane and amorphous inorganic matter in clay fraction of soils. Soil Science and Plant Nutrition, 22(2), 137–147.; Lade, P. V. (2016). Triaxial Testing of Soils (John Wiley & Sons Ltd (ed.); 1st ed.). John Wiley & Sons, Ltd.; Lambe, W., & Robert, W. (1991). Soil Mechanics. John Wiley & Sons, Inc.; Latorre, A. M., Murillo, C. A., & Cruz, J. A. (2020). Comportamiento Volumétrico de un Suelo no Saturado Derivado de Cenizas Volcánicas del Departamento del Cauca, Colombia [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77532; Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488.; Levard, C., Doelsch, E., Basile-Doelsch, ⁎I., Abidin, Z., Miche, H., Masion, A., Rose, J., Borschneck, D., & Bottero, J.-Y. (2012). Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma, 183–184, 100–108.; Little, A. L. (1969). The engineering classification of residual tropical soils. Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, 1, 1–10.; Lizcano, A., & Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 6(2), 167–198.; Luna, C. (1969). Aspectos genéticos de “andosoles” en Colombia. In Suelos derivados de cenizas volcánicas de América Latina (pp. 55–67). Centro de Enseñanza e Investigación;Escuela para Graduados del IICA, Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO).; Maeda, T., Takenaka, H., & Warkentin, B. (1977). Physical Properties of Allophane Soils. Advances in Agronomy, 229–264.; Maeda, T., & Warkentin, B. (1974). Physical properties of allophone soils from the West Indies and Japan. Soil Science Society of American Proceedings, 38, 372.; Mc.Court, W. J. M., Mosquera T, D., Nivia G., A., & Nuñez, A. (1985). Reseña explicativa del mapa geológico preliminar plancha 243 Armenia escala 1:100.000. INGEOMINAS.; Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (I. John Wiley & Sons (ed.); 3rd ed.). John Wiley & Sons, Inc.; Moreno, M., Vergara, H., & Avila, G. (1993). Amenazas geológicas, zonificación geotécnica y aptitud para el desarrollo urbano de la ciudad de Armenia, Quindío, Colombia. VI Congreso Colombiano de Geologia.; Naranjo Henao, C. E. (2016). Comportamiento volumétrico de suelos compactados derivados de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56206; Nieto Leal, A., Camacho Tauta, J., & Ruiz Blanco, E. (2009). Determinación de parámetros para los modelos elastoplásticos mohr-coulomb y hardening soil en suelos arcillosos. Revista de Ingenierías: Universidad de Medellín, 8(15), 75–91.; Paineau, E. (2018). Imogolite nanotubes: A flexible nanoplatform with multipurpose applications. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101921; Parfitt, R. L., & Henmi, T. (1982). Comparison of an oxalate-extraction methon and an infrared spectroscopic method for determining allophane in soll clays. Soil Science and Plant Nutrition, 28(2), 183–190.; Parfitt, R. L., & Wilson, A. D. (1985). Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Volcanic Soils,Weathering and Landscape Relationships of Soils on Tephra and Basalt. E. Fernandez-Caldas and D.H. Yaalon (Eds.), Catena. Su, 1–8.; Parker, A. (1970). An Index of Weathering for Silicate Rock. Geological Magazine, 107(6), 501–504.; Pierce, J. A., Jackson, R. S., Van Every, K. W., Griffiths, P. R., & Gao, H. (1990). Combined Deconvolution and Curve Fitting for Quantitative Analysis of Unresolved Spectral Bands. Analytical Chemistry, 62(5), 477–484.; Ramsey, M. S., & Christensen, P. R. (1998). Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research: Solid Earth, 103(B1), 489–1005.; Rao, S. M. (1995). Mechanistic approach to the shear strength behaviour of allophanic soils. Engineering Geology, 40(3–4), 215–221. https://doi.org/10.1016/0013-7952(95)00036-4; Rao, S. M. (1996). Correlations between plasticity angle and engineering properties of volcanic ash soils. Soils and Foundation, 36(2), 123–127.; Realpe, I. B., Campo, E., & Arboleda, C. A. (2016). Alófanos causa de indisponibilidad de aniones en suelos del departamento del Cauca – Colombia. Suelos Ecuatoriales, 46(1 y2), 13–30.; Rendón, M. I., Viviescas, J. C., Osorio, J. P., & Hernández, M. S. (2020). Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils. Geotechnical and Geological Engineering, 38(3), 3231–3244. https://doi.org/10.1007/s10706-020-01219-3; Rocsience. (2013). Cam Clay and Modified Cam Clay Material Models. Overview of RS2 Theory.; Roscoe, K. H., & Burland, J. B. (1968). On the generalised stress-strain behaviour of ‘wet’ clay. Engineering Plasticity.; Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Geotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22; Rouse, W. C., Reading, A. J., & Walsh, R. P. D. (1986). Volcanic soil properties in Dominica, West Indies. Engineering Geology, 23, 1–28.; Sánchez, A. M. (2008). Evaluación del método de hilf para el control de compactación de mezclas con suelos volcánicos del Aeropuerto del Café, en Palestina, Caldas. Universidad Nacional de Colombia, Sede Manizales.; Schofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.; Schrader, B. (1995). Infrared and Raman Spectroscopy. VCH Verlagsgesellschaft mbH.; SGC. (2020). Mapa Geológico Colombiano 2020. https://srvags.sgc.gov.co/JSViewer/Mapa_Geologico_Colombiano_2020/; Shoji, S., Nanzyo, M., & Dahlgren, R. (1993). Volcanic Ash Soils Genesis, Properties and Utilization. Elsevier.; So, E.-K. (1998). Statistical correlation between allophane content and index properties for volcanic cohesive soil. Soils and Foundation, 38(4), 85–93.; Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Johnston, C. T., & Aochi, Y. O. (1996). Fourier Transform Infrared and Raman Spectroscopy. In Methods of Soil Analysis Part 3—Chemical Methods (pp. 269–321). Soil Science Society of America, Inc.; Strawn, D. G., Bohn, H. L., & O’Connor, G. A. (2020). Soil Chemistry (5 th Editi). John Wiley & Sons Ltd.; Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications (L. John Wiley & Sons (ed.)). John Wiley & Sons, Ltd.; Suarez, J. (2009). Suelos Residuales. In Universidad Industrial de Santander UIS (Ed.), Deslizamientos. Analisis geotecnico (p. 50). Ediciones UIS.; Sulastri, Y., & Rahardjo, P. P. (2021). Study of Anisotropy Characteristics of Bogor Volcanic Soil. UKaRsT, 5(1), 95–109.; Takahashi, T., & Shoji, S. (2002). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2), 83–97. http://ns.airies.or.jp/publication/ger/pdf/06-2-10.pdf; Theng, B. K. G., & Yuan, G. (2008). Nanoparticles in the soil environment. Elements, 4(6), 395–399. https://doi.org/10.2113/gselements.4.6.395; Thrall, F. (1981). Geotechnical Significance of Poorly Crystalline Soils Derived from Volcanic Ash [Tesis de Doctorado, Oregon State University]. https://ir.library.oregonstate.edu/downloads/rx913t33q; Ti, K. S., Huat, B. B., Noorzaei, S., Jaafar, S., & Sew, G. S. (2009). A review of Basic Soil Constitutive Models for Geotechnical Application. Electronic Journal of Geotechnical Engineering, 14.; Viveros, L. (2014). Influencia del proceso de compactación en la resistencia al corte de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60252; Wada, K. (1990). Minerals and mineral formation in soils derived from volcanic ash in the tropics. Sciences Geologiques - Memoire, 85, 69–78.; Wesley, L. D. (1973). Some basic engineering properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 23(4), 471–494.; Wesley, L. D. (1977). Shear strength properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 27(2), 125–136.; Wesley, L. D. (1988). Engineering classification of residual soils. In Proceedings of the 2nd international conference on geomechanics in tropical soils.; Wesley, L. D. (1990). Influence of Structure and Composition on Residual Soils. Journal of Geotechnical Engineering, 116(4), 589–603.; Wesley, L. D. (2001). Consolidation behaviour of allophane clays. Géotechnique, 51(10), 901–904.; Wesley, L. D. (2009). Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. In Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470549056; Wesley, L. D. (2010). Geotechnical Engineering in Residual Soils. In Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470943113; Wood, D. M. (1994). Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press (ed.)). Cambridge University Press.; Yu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(sici)1096-9853(199808)22:83.3.co;2-#; Yu, H. S. (2006). Plasticity and Geotechnics (D. Gao & R. Ogden (eds.); 13th ed.). Springer Science.; https://repositorio.unal.edu.co/handle/unal/86267; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  19. 19
    Academic Journal

    المساهمون: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. MSR - Mecànica del Sòls i de les Roques

    وصف الملف: application/pdf

    Relation: Fuente, M. D. L.; Vaunat, J.; Marín, H. A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments. "International journal for numerical and analytical methods in geomechanics", Abril 2020, vol. 44, núm. 6, p. 782-802.; http://hdl.handle.net/2117/180701

  20. 20