-
1Book
المؤلفون: CANO CUADRO, HEIDIS PATRICIA, Olaya Coronado, Nadia, Suárez Agudelo, Erika Alejandra, Ariza Colpas, Paola Patricia, Avendaño Morales, Natalia, Morales Ortega, Roberto, Piñeres Melo, Marlon Alberto, Sandoval Barraza, Fernando, Romero Muestre, Maribel, Rodríguez Bonilla, Andrés Felipe, Romero Samper, Natalia Paola, Vacca Ascanio, Ronald Alexander, Escalante Moreno, Gabriela, Mejía Rico, Cristian, Villarreal Aragón, Sidney, Iglesias Almanza, Rafael, Villanueva Otero, Yerson, Daza Rodríguez, Ivanna, Navarro Núñez, Daniel, Fontalvo Pérez, Juan, Mercado Gutiérrez, Mariana, Arrieta Guerrero, Estefany, Cantillo Barrera, Daniela, Sandoval Barraza, Steven, Hernández Álvarez, Ricardo, Contreras Chinchilla, Leidys del Carmen, Mejía Trillo, Alex, Cárdenas Consuegra, Guillermo, Macias Corro, Angie, Maury, Henry, Salas Viloria, Karen Elena
وصف الملف: application/pdf
Relation: Guttentag, D.A. Virtual reality: Applications and implications for tourism. Tour. Manag. 2010, 31, 637–651.; Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2021, 59, 102168.; Kim, M.J.; Lee, C.K.; Jung, T. Exploring consumer behavior in virtual reality tourism using an extended stimu-lus-organism-response model. J. Travel Res. 2020, 59, 69–89.; Yung, R.; Khoo-Lattimore, C. New realities: A systematic literature review on virtual reality and augmented reality in tour-ism research. Curr. Issues Tour. 2019, 22, 2056–2081.; Beck, J.; Rainoldi, M.; Egger, R. Virtual reality in tourism: A state-ofthe-art review. Tour. Rev. 2019, 74, 586–612.; Loureiro, S.M.C.; Guerreiro, J.; Eloy, S.; Langaro, D.; Panchapakesan, P. Understanding the use of Virtual Reality in Marketing: A text mining-based review. J. Bus. Res. 2019, 100, 514–530.; Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software Tools for Conducting Bibliometric Anal-ysis in Science: An up-to-Date Review. epi 2020, 29, 3.; Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321– 335.; Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring topics in bibliometric research through citation networks and semantic analysis. Front. Res. Metr. Anal. 2021, 6, 742311.; Pessin, V.Z.; Yamane, L.H.; Siman, R.R. Smart bibliometrics: An integrated method of science mapping and bibliometric analy-sis. Sciento; https://hdl.handle.net/11323/13269; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
2Academic Journal
المؤلفون: Eljaiek Martinez, Salma Nayeth, Badillo Romero, Daniel Andrés, Abudinen Ordoñez, Daniel Enrique, Cano Cuadro, Heidis Patricia
مصطلحات موضوعية: Resistencia a la compresión, Sostenibilidad, agua subterranea, agua de lluvia, agua de grifo, construcciones, resistencia a la compresion
وصف الملف: application/pdf; text/html; text/xml
Relation: Módulo arquitectura - CUC; Aldabagh, I., Abed, J., Khaleel, B. & Hamah Sor, N. (2022). Influence of water quality and slag on the development of mechanical properties of self compacting mortar. Materials Today: Proceedings, 57(2), 892–897. https://doi.org/10.1016/j.matpr.2022.02.575 ASTM. (2022). ASTM C1602/C1602M-12, Standard Specifi cation for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM. https://doi.org/10.1520/C1602_C1602M-12 ASTM. (2020). ASTM C109/C109M-02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM. https://doi.org/10.1520/C0109_C0109M-02 ASTM. (2019). ASTM-C270-19ae1, Standard Specification for Mortar for Unit Masonry. ASTM. https://doi.org/10.1520/C0270-19AE01 ASTM. (2018). ASTM D7315-17, Standard Test Method for Determination of Turbidity Above 1 Turbidity Unit (TU) in Static Mode. ASTM. https://doi.org/10.1520/D7315-17 ASTM. (2003). ASTM C94/C94M-03a, Standard Specification for Ready-Mixed Concrete. ASTM. https://doi.org/10.1520/C0094_C0094M-03 Bellmann, F., Erfurt, W. & Ludwig, H-M. (2012). Field performance of concrete exposed to sulphate and low pH conditions from natural and industrial sources. Cement and Concrete Composites, 34(1), 86–93. https://doi.org/10.1016/j.cemconcomp.2011.07.009 Blanco de la Paz, E., Brown, O. & García, F. (2021). Relationship between rain and groundwater in the hydrogeological sectors of the South Basin of Ciego de Ávila. Inge CUC, 17(2), 125–132. https://repositorio.cuc.edu.co/handle/11323/10267 Burek, P., Satoh, Y., Fischer, G., Kahil, M., Scherzer, A., Tramberend, S., Nava, L., Wada, Y., Eisner, S., Flörke, M., Hanasaki, N., Magnuszewski, P., Cosgrove, B. & Wiberg, D. (2016). Water Futures and Solution. Fast Track Initiative. Final Report, WP-16-006. IIASA. http://pure.iiasa.ac.at/id/eprint/13008/1/WP-16-006.pdf Cagua, B. y Nates, J. (2017). Influencia del Potencial Hidrógeno (pH) y la Concentración de Nitratos presentes en el Agua de Mezclado sobre el comportamiento fisico-mecánico del Hormigón: Estudio en Laboratorio [Tesis de grado, Escuela Politecnica Nacional]. BIB Digital. https://bibdigital.epn.edu.ec/handle/15000/17062 Chung, K., Wang, L., Ghannam, M., Guan, M. & Luo, J. (2020). Prediction of concrete compressive strength based on early-age effective conductivity measurement. Journal of Building Engineering, 35, 1–19. https://doi.org/10.1016/J.JOBE.2020.101998 Fernández-Jiménez, A. & Palomo, A. (2009). Properties and uses of alkali cements. Revista Ingenieria de Construccion, 24(3), 213–232. http://dx.doi.org/10.4067/S0718-50732009000300001 Gramsch, J. (2018, mayo 15). Análisis de Confiabilidad y Estimación de Probabilidad de Colapso en una Planta Industrial. Linkedin. https://www.linkedin.com/pulse/an%C3%A1lisis-de-confiabilidad-y-estimaci%C3%B3n-probabilidad-en-gramsch-labra/?originalSubdomain=es Granados, J. (2017). Grado de Presencia del Sulfato con la Resistencia a la Compresión del Concreto, en la Ciudad de Huaraz, 2016-2017 [Tesis de grado, Universidad Nacional de Ancash]. Repositorio UNASAM. http://repositorio.unasam.edu.pe/handle/UNASAM/1959 Icontec. (2001). NTC-3459: 2001, Concretos. Agua para la elaboracion de concreto. Icontec. https://metroblock.com.co/norma-tecnica-colombiana-ntc-3459/#:~:text=El%20agua%20debe%20ser%20clara,el%20concreto%20o%20el%20refuerzo Kim, J., Honda, D., Choi, H. & Hama, Y. (2019). Investigation of the Relationship between Compressive Strength and Hydrate Formation Behavior of Low-Temperature Cured Cement upon Addition of a Nitrite-Based Accelerator. Materials, 12(23), 1–11. https://doi.org/10.3390/ma12233936 Mekonnen, M. & Hoekstra, A. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), 1–6. https://doi.org/10.1126/sciadv.1500323 Quilla, H. y Quiroz, E. (2021). Uso del agua subterránea y agua potable para determinar la resistencia a compresión del concreto estructural, Juliaca 2021 [Tesis grado, Universidad Cesar Vallejo]. Repositorio Digital Institucional. https://repositorio.ucv.edu.pe/handle/20.500.12692/66017 República de Colombia. Ministerio de la Protección Social y Ministerio de Medio Ambiente Vivienda y Desarrollo Territorial. (2007). Resolución 2115, por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano. DO 46.679. http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/normativa/Res_2115_de_2007.pdf Saba, M., Quiñones-Bolaños, E. & Martínez Batista, H. (2019). Impact of environmental factors on the deterioration of the Wall of Cartagena de Indias. Journal of Cultural Heritage, 39, 305–313. https://doi.org/10.1016/J.CULHER.2019.03.001 Sánchez, D. (2001). Tecnología del Concreto y del Mortero (5 Ed.). Bhandar Editores. Sheikh, M., Asadollahfardi, G. & Saghravani, S. (2020). Durability and morphological assessment of concrete manufactured with sewage. Construction and Building Materials, 264, 1-101–1-110. https://doi.org/10.1016/j.conbuildmat.2020.120202 Unión Europea. Consejo de la Unión Europea. (1998). Directiva 98/83/CE, relativa a la calidad de las aguas destinadas al consumo humano. Diario Oficial de las Comunidades Europeas, L 330/32. http://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex:31998L0083; 48; 25; 32; https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/download/5425/5268; https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/download/5425/5269; https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/download/5425/5270; Año 2024 : Módulo Arquitectura CUC; https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/view/5425
-
3Academic Journal
مصطلحات موضوعية: Valoration, Synthetic antioxidant, Irgafos P-168, Industrial wastewater, Polypropylene, Thermal degradation
وصف الملف: 21 páginas; application/pdf
Relation: Molecules; 1. Hazarika, M.; Dixit, U.S.; Davim, J.P. History of Production and Industrial Engineering through Contributions of Stalwarts. Manuf. Eng. Educ. 2019, 1–29. [CrossRef]; 2. Cao, L.; Lin, C.; Gao, Y.; Sun, C.; Xu, L.; Zheng, L.; Zhang, Z. Health risk assessment of trace elements exposure through the soil-plant (maize)-human contamination pathway near a petrochemical industry complex, Northeast China. Environ. Pollut. 2020, 263, 114414. [CrossRef] [PubMed]; 3. Gebbink, W.A.; van Leeuwen, S.P. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environ. Int. 2020, 137, 105583. [CrossRef] [PubMed]; 4. Nie, M.; Nie, H.; He, M.; Lin, Y.; Wang, L.; Jin, P.; Zhang, S. Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale. J. Environ. Manag. 2016, 173, 34–40. [CrossRef]; 5. Kumar, L.; Chugh, M.; Kumar, S.; Kumar, K.; Sharma, J.; Bharadvaja, N. Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process Saf. Environ. Prot. 2022, 159, 362–375. [CrossRef]; 6. van Oosterhout, L.; Dijkstra, H.; Borst, D.; Duijndam, S.; Rehdanz, K.; van Beukering, P. Triggering sustainable plastics consumption behavior: Identifying consumer profiles across Europe and designing strategies to engage them. Sustain. Prod. Consum. 2023, 36, 148–160. [CrossRef]; 7. Pivato, A.F.; Miranda, G.M.; Prichula, J.; Lima, J.E.; Ligabue, R.A.; Seixas, A.; Trentin, D.S. Hydrocarbon-based plastics: Progress and perspectives on consumption and biodegradation by insect larvae. Chemosphere 2022, 293, 133600. [CrossRef]; 8. Sridharan, S.; Kumar, M.; Saha, M.; Kirkham, M.; Singh, L.; Bolan, N.S. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna? Sci. Total Environ. 2022, 824, 153828. [CrossRef]; 9. Marcato, B.; Guerra, S.; Vianello, M.; Scalia, S. Migration of antioxidant additives from various polyolefinic plastics into oleaginous vehicles. Int. J. Pharm. 2003, 257, 217–225. [CrossRef]; 11. Goswami, L.; Manikandan, N.A.; Dolman, B.; Pakshirajan, K.; Pugazhenthi, G. Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. J. Clean. Prod. 2018, 196, 1282–1291. [CrossRef]; 12. Fernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [CrossRef]; 13. Chaudhry, A.; Bashir, F.; Adil, S.F.; Saif, S.; Shaik, M.R.; Hatshan, M.R.; Shaik, B. Ascorbic acid-mediated Fe/Cu nanoparticles and their application for removal of COD and phenols from industrial wastewater. J. King Saud Univ.-Sci. 2022, 34, 101927. [CrossRef]; 14. Lwanga, E.H.; van Roshum, I.; Munhoz, D.R.; Meng, K.; Rezaei, M.; Goossens, D.; Bijsterbosch, J.; Alexandre, N.; Oosterwijk, J.; Krol, M.; et al. Microplastic appraisal of soil, water, ditch sediment and airborne dust: The case of agricultural systems. Environ. Pollut. 2023, 316, 120513. [CrossRef] [PubMed]; 15. Franco, A.; Arellano, J.; Albendín, G.; Rodríguez-Barroso, R.; Quiroga, J.; Coello, M. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795. [CrossRef]; 16. Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef]; 17. Allen, N.S.; Edge, M.; Hussain, S. Perspectives on yellowing in the degradation of polymer materials: Inter-relationship of structure, mechanisms and modes of stabilisation. Polym. Degrad. Stab. 2022, 201, 109977. [CrossRef]; 18. Cifuentes-Cabezas, M.; Mendoza-Roca, J.A.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Management of reject streams from hybrid membrane processes applied to phenolic compounds removal from olive mill wastewater by adsorption/desorption and biological processes. J. Water Process Eng. 2022, 50, 103208. [CrossRef]; 19. Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2021, 56, 2245–2251. [CrossRef]; 20. Irshidat, M.R.; Al-Nuaimi, N.; Rabie, M. Hybrid effect of carbon nanotubes and polypropylene microfibers on fire resistance, thermal characteristics and microstructure of cementitious composites. Constr. Build. Mater. 2021, 266, 121154. [CrossRef]; 21. Nascimento, E.M.D.; Eiras, D.; Pessan, L.A. Effect of thermal treatment on impact resistance and mechanical properties of polypropylene/calcium carbonate nanocomposites. Compos. Part B Eng. 2016, 91, 228–234. [CrossRef]; 22. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [CrossRef]; 23. Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]; 24. Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef]; 25. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027. [CrossRef] [PubMed]; 26. Hernández-Fernandez, J.; Lopez-Martinez, J.; Puello-Polo, E. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability 2023, 15, 1247. [CrossRef]; 27. Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef] [PubMed]; 28. Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919. [CrossRef]; 29. Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [CrossRef]; 30. Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [CrossRef]; 31. Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [CrossRef] [PubMed]; 32. Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148. [CrossRef] [PubMed]; 33. Lavrenov, A.V.; Saifulina, L.F.; Buluchevskii, E.A.; Bogdanets, E.N. Propylene production technology: Today and tomorrow. Catal. Ind. 2015, 7, 175–187. [CrossRef]; 34. Tähkämö, L.; Ojanperä, A.; Kemppi, J.; Deviatkin, I. Life cycle assessment of renewable liquid hydrocarbons, propylene, and polypropylene derived from bio-based waste and residues: Evaluation of climate change impacts and abiotic resource depletion potential. J. Clean. Prod. 2022, 379, 134645. [CrossRef]; 35. Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [CrossRef]; 36. Petrovics, N.; Kirchkeszner, C.; Tábi, T.; Magyar, N.; Székely, I.K.; Szabó, B.S.; Nyiri, Z.; Eke, Z. Effect of temperature and plasticizer content of polypropylene and polylactic acid on migration kinetics into isooctane and 95 v/v% ethanol as alternative fatty food simulants. Food Packag. Shelf Life 2022, 33, 100916. [CrossRef]; 37. Hermabessiere, L.; Receveur, J.; Himber, C.; Mazurais, D.; Huvet, A.; Lagarde, F.; Lambert, C.; Paul-Pont, I.; Dehaut, A.; Jezequel, R.; et al. An Irgafos® 168 story: When the ubiquity of an additive prevents studying its leaching from plastics. Sci. Total Environ. 2020, 749, 141651. [CrossRef]; 38. Vera, P.; Canellas, E.; Su, Q.-Z.; Mercado, D.; Nerín, C. Migration of volatile substances from recycled high density polyethylene to milk products. Food Packag. Shelf Life 2023, 35, 101020. [CrossRef]; 39. Kung, H.-C.; Hsieh, Y.-K.; Huang, B.-W.; Cheruiyot, N.K.; Chang-Chien, G.-P. An Overview: Organophosphate Flame Retardants in the Atmosphere. Aerosol Air Qual. Res. 2022, 22, 220148. [CrossRef]; 40. Onoja, S.; Nel, H.A.; Abdallah, M.A.-E.; Harrad, S. Microplastics in freshwater sediments: Analytical methods, temporal trends, and risk of associated organophosphate esters as exemplar plastics additives. Environ. Res. 2022, 203, 111830. [CrossRef]; 41. Xiao, L.; Zheng, Z.; Irgum, K.; Andersson, P.L. Studies of Emission Processes of Polymer Additives into Water Using Quartz Crystal Microbalance—A Case Study on Organophosphate Esters. Environ. Sci. Technol. 2020, 54, 4876–4885. [CrossRef]; 42. Li, A.; Zheng, G.; Chen, N.; Xu, W.; Li, Y.; Shen, F.; Wang, S.; Cao, G.; Li, J. Occurrence Characteristics and Ecological Risk Assessment of Organophosphorus Compounds in a Wastewater Treatment Plant and Upstream Enterprises. Water 2022, 14, 3942. [CrossRef]; 43. Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. [CrossRef]; 44. Dương, T.-B.; Dwivedi, R.; Bain, L.J. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol. Appl. Pharmacol. 2023, 461, 116386. [CrossRef]; 45. Chen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22. [CrossRef]; 46. Simoneau, C.; Van Den Eede, L.; Valzacchi, S. Identification and quantification of the migration of chemicals from plastic baby bottles used as substitutes for polycarbonate. Food Addit. Contam. Part A 2012, 29, 469–480. [CrossRef] [PubMed]; 47. Fouyer, K.; Lavastre, O.; Rondeau, D. Direct Monitoring of the Role Played by a Stabilizer in a Solid Sample of Polymer Using Direct Analysis in Real Time Mass Spectrometry: The Case of Irgafos 168 in Polyethylene. Anal. Chem. 2012, 84, 8642–8649. [CrossRef] [PubMed]; 48. Sommers, C.H.; Sheen, S. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing. Food Microbiol. 2015, 50, 1–4. [CrossRef] [PubMed]; 49. FDA. Irradiation in the Production, Processing and Handling of Food. Final Rule, November 2012. Available online: https://www. researchgate.net/publication/284923753_Irradiation_in_the_production_processing_and_handling_of_food_Final_rule (accessed on 3 March 2022).; 50. Yang, Y.P.; Hu, C.; Zhong, H.; Wang, Z.Y.; Zeng, G.F. Degradation of Irgafos 168 and determination of its degra-dation products. Mod. Food Sci. Technol. 2016, 32, 304–309. [CrossRef]; 51. James, B.D.; De Vos, A.; Aluwihare, L.I.; Youngs, S.; Ward, C.P.; Nelson, R.K.; Michel, A.P.M.; Hahn, M.E.; Reddy, C.M. Divergent Forms of Pyroplastic: Lessons Learned from the M/V X-Press Pearl Ship Fire. ACS Environ. Au 2022, 2, 467–479. [CrossRef]; 52. Zhao, F.; Wang, P.; Lucardi, R.; Su, Z.; Li, S. Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs. Toxins 2020, 12, 35. [CrossRef]; 53. Shi, J.; Xu, C.; Xiang, L.; Chen, J.; Cai, Z. Tris(2,4-di-tert-butylphenyl)phosphate: An Unexpected Abundant Toxic Pollutant Found in PM2.5. Environ. Sci. Technol. 2020, 54, 10570–10576. [CrossRef] [PubMed]; 54. Luque-García, J.; de Castro, M.L. Ultrasound: A powerful tool for leaching. TrAC Trends Anal. Chem. 2003, 22, 41–47. [CrossRef]; 55. Lama-Muñoz, A.; Contreras, M.D.M. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022, 11, 3671. [CrossRef] [PubMed]; 56. Sachon, E.; Matheron, L.; Clodic, G.; Blasco, T.; Bolbach, G. MALDI TOF-TOF characterization of a light stabilizer polymer contaminant from polypropylene or polyethylene plastic test tubes. J. Mass Spectrom. 2010, 45, 43–50. [CrossRef] [PubMed]; 57. Feng, G.; Wang, X.; Zhang, D.; Xiao, X.; Qian, K. Fabrication of bilayer antioxidant microcapsule and evaluation of its efficiency in stabilization of polypropylene. Mater. Res. Express 2019, 6, 125327. [CrossRef]; 58. Farajzadeh, M.A.; Goushjuii, L.; Ranji, A.; Feyz, E. Spectrophotometric determination of Irgafos 168 in polymers after different sample preparation procedures. Microchim. Acta 2007, 159, 263–268. [CrossRef]; 59. Fiorio, R.; D’Hooge, D.R.; Ragaert, K.; Cardon, L. A Statistical Analysis on the Effect of Antioxidants on the Thermal-Oxidative Stability of Commercial Mass- and Emulsion-Polymerized ABS. Polymers 2018, 11, 25. [CrossRef]; 60. Li, B.; Wang, Z.-W.; Lin, Q.-B.; Hu, C.-Y.; Su, Q.-Z.; Wu, Y.-M. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with HighPerformance Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 1026–1035. [CrossRef]; 61. Rodil, R.; Quintana, J.B.; Basaglia, G.; Pietrogrande, M.C.; Cela, R. Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 6428–6435. [CrossRef]; 62. Hernández-Fernández, J.; Ortega-Toro, R.; López-Martinez, J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2023, 28, 2003. [CrossRef] [PubMed]; 63. Badri, K.; Redwan, A. Molecular Characterization of Synthetic Polymers by Means of Liquid Chromatography. In Physical Chemistry of Macromolecules: Macro to Nanoscales; Apple Academic Press: Bratislava, Slovakia, 2014; pp. 237–348. [CrossRef]; 21; 28; Hernández-Fernández, J.; Cano, H.; Reyes, A.F. Valoration of the Synthetic Antioxidant Tris-(Diterbutyl-Phenol)-Phosphite (Irgafos P-168) from Industrial Wastewater and Application in Polypropylene Matrices to Minimize Its Thermal Degradation. Molecules 2023, 28, 3163. https://doi.org/10.3390/molecules28073163; https://hdl.handle.net/11323/10495; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
4Academic Journal
المؤلفون: Eljaiek Martinez, Salma Nayeth, Badillo Romero, Daniel Andrés, Abudinen Ordoñez, Daniel Enrique, Cano Cuadro, Heidis Patricia
المصدر: MÓDULO ARQUITECTURA CUC; Vol. 32 (2024): Módulo Arquitectura CUC; 25-48 ; Módulo arquitectura - CUC; Vol. 32 (2024): Módulo Arquitectura CUC; 25-48 ; 2389-7732 ; 0124-6542
مصطلحات موضوعية: Resistencia a la compresión, Sostenibilidad, agua subterranea, agua de lluvia, agua de grifo, construcciones, resistencia a la compresion
وصف الملف: application/pdf; text/html; text/xml
Relation: https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/view/5425/5268; https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/view/5425/5269; https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/view/5425/5270; https://revistascientificas.cuc.edu.co/moduloarquitecturacuc/article/view/5425
-
5Academic Journal
المؤلفون: Chacon, Hernan, CANO CUADRO, HEIDIS PATRICIA, Hernández Fernández, Joaquin, Guerra, Yoleima, Puello, Esneyder, Ríos-Rojas, John Fredy, Ruiz, Yolima
مصطلحات موضوعية: Mortar, Polyurea, Characterization, Construction
وصف الملف: 15 páginas; application/pdf
Relation: Polymers; 1. Wu, G.; Ji, C.; Wang, X.; Gao, F.; Zhao, C.; Liu, Y.; Yang, G. Blast response of clay brick masonry unit walls unreinforced and reinforced with polyurea elastomer. Def. Technol. 2021, 18, 643–662. [CrossRef]; 2. Sivan, P.P.; Gajendran, C.; Praveen, A.; Mahendran, C. Earthquake preparedness of new masonry constructions at seismically exposed regions a data driven approach. Mater. Today Proc. 2021. [CrossRef]; 3. NSR-10 Titulo de Mampostería Structural. Available online: https://www.idrd.gov.co/sites/default/files/documentos/Construcciones/4titulo-d-nsr-100.pdf (accessed on 15 December 2021).; 4. Rodríguez Sierra, F.A. Uso de Polímeros en la Reducción de Patologías de Origen Químico en Estructuras de Concreto. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2014.; 5. Zhang, X.; Du, M.; Fang, H.; Shi, M.; Zhang, C.; Wang, F. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges. Constr. Build. Mater. 2021, 299, 124290. [CrossRef]; 6. Agavriloaie, L.; Oprea, S.; Barbuta, M.; Luca, F. Characterization of polymer concrete with epoxy polyurethane acryl matrix. Constr. Build. Mater. 2012, 37, 190–196. [CrossRef]; 7. Huang, H.; Pang, H.; Huang, J.; Zhao, H.; Liao, B. Synthesis and characterization of ground glass fiber reinforced polyurethanebased polymer concrete as a cementitious runway repair material. Constr. Build. Mater. 2020, 242, 117221. [CrossRef]; 8. Wang, R.; Yao, L.; Wang, P. Mechanism analysis and effect of styrene-acrylate copolymer powder on cement hydrates. Constr. Build. Mater. 2013, 41, 538–544. [CrossRef]; 9. Hussain, H.K.; Liu, G.W.; Yong, Y.W. Experimental study to investigate mechanical properties of new material polyurethanecement composite (PUC). Constr. Build. Mater. 2014, 50, 200–208. [CrossRef]; 11. Maherzi, W.; Ennahal, I.; Benzerzour, M.; Mammindy-Pajany, Y.; Abriak, N.E. Study of the polymer mortar based on dredgedsediments and epoxy resin: Effect of the sediments on the behavior of the polymer mortar. Powder Technol. 2020, 361, 968–982. [CrossRef]; 12. Mahdi, F.; Khan, A.A.; Abbas, H. Physiochemical properties of polymer mortar composites using resins derived from postconsumer PET bottles. Cem. Concr. Compos. 2007, 29, 241–248. [CrossRef]; 13. Valero Luna, J.C.; NarváezYepes, L.F. Análisis de Construcción y Sistemas de Impermeabilización de Cubiertas en el Laboratorio Nacional de la Dirección de Impuestos y Aduanas Nacionales. Bachelor’s Thesis, Universidad Catolica de Colombia, Bogotá, Colombia, 2018.; 14. Vásquez Suarez, L.I.; Villadiego Cárcamo, N.C. Caracterización Mecánica y Química del Sistema Mortero-Poliurea. Bachelor’s Thesis, Universidad de la Costa, Barranquilla, Colombia, 2018.; 15. Osuská, L.; Hela, R. The Impact of Different Aggregate Types and Its Composition on Resulting Concrete Properties Representing the Water Impermeability Level of Concrete for the Construction of White Boxes. Civ. Eng. Archt. 2020, 8, 39–45. [CrossRef]; 16. Cho, B.H.; Nam, B.H.; Seo, S.; Kim, J.; An, J.; Youn, H. Waterproofing performance of waterstop with adhesive bonding used at joints of underground concrete structures. Constr. Build. Mater. 2019, 221, 491–500. [CrossRef]; 17. Hoja de Datos de Seguridad de EUCO QWIKJOINT 200. Available online: https://www.toxement.com.co/media/2966/hs-eucoqwikjoint-200.pdf (accessed on 21 July 2021).; 18. Euco-Qwikjoint-200. Available online: https://www.toxement.com.co/media/2880/euco-qwikjoint-200.pdf (accessed on 19 August 2021).; 19. Standard Test Method for Particle-Size Analysis of Soils (Withdrawn 2016). Available online: https://www.astm.org/DATABASE. CART/WITHDRAWN/D422.htm (accessed on 28 September 2021).; 20. NTC121—Especificación de Desempeño Para Cemento Hidráulico. Available online: https://tienda.icontec.org/ (accessed on 18 August 2021).; 21. ASTM C1157/C1157M-17 Standard Performance Specification for Hydraulic Cement. Available online: www.astm.org (accessed on 23 August 2021).; 22. Ficha Técnica Cemento Tipo I. Available online: https://mnisaccp01.blob.core.windows.net/honduras/AF%20-%20Argos%20 Ficha%20teicnica%20Cemento%20Tipo%20I%20ultima%20version.pdf (accessed on 28 September 2021).; 23. ASTM C109/C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Available online: http://www.astm.org/cgi-bin/resolver.cgi?C109C109M-21 (accessed on 28 September 2021).; 24. Ávila, Y.; Restrepo, S.; Jiménez, J.; Castillo, M.; Parody, A. Análisis comparativo de la concentración de óxidos presentes en el cemento portland y lodos de plantas de tratamiento de agua potable. Afinidad 2017, 75, 68–73.; 25. Giraldo, M.A. Evolución mineralógica del cemento Portland durante el proceso de hidratación. Dyna 2021, 73, 69–81.; 26. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]; 27. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Patricia Arrieta, M. Films based on thermoplastic starch blended with pine resin derivatives for food packaging. Foods 2021, 10, 117. [CrossRef] [PubMed]; 28. Trochez, J.J.; Torres Agredo, J.; Mejía de Gutiérrez, R. Study of hydration of cement pastes added with used catalytic cracking catalyst (FCC) from a colombian refinery. Rev. Fac. Ing. Univ. Antioq. 2010, 55, 26–34.; 29. Giraldo, M.A.; Tobón, J.I. Mineralogical evolution of Portland cement during hydration process. Dyna. 2006, 73, 69–81.; 30. Garcia-Lodeiro, I.; Goracci, G.; Dolado, J.S.; Blanco-Varela, M.T. Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process. Cem. Concr. Compos. 2021, 140, 106312. [CrossRef]; 31. Norma Técnica Colombiana NTC 321. Available online: https://tienda.icontec.org/gp-especificacion-de-desempeno-paracemento-hidraulico-ntc121-2021.html (accessed on 5 September 2021).; 32. Alberto, E.; Gómez, C.; Enrique, J.; Sastoque, P. Estudio Comparativo de las Características Físico-Mecánicas de Cuatro Cementos Comerciales Portland Tipo I. Bachelor’s Thesis, Universidad Militar Nueva Granada, Bogotá, Colombia, 2014.; 33. Clemente, O.J.G.; Díaz, M.B.; Boadas, Z.D.V.M.; Carrera, J.M. Caracterización de las arenas y arcillas minerales de los depósitos de canal y planicie de inundación del río portuguesa, Venezuela. Investig. Geográficas Boletín Inst. Geogr. 2014, 2014, 18–32.; 34. Angelin, A.F.; Miranda, E.J.P., Jr.; dos Santos, J.M.C.; Lintz, R.C.C.; Gachet-Barbosa, L.A. Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior. Constr. Build. Mater. 2019, 200, 248–254. [CrossRef]; 35. Li, G.; Wang, Z.; Leung, C.K.; Tang, S.; Pan, J.; Huang, W.; Chen, E. Properties of rubberized concrete modified by using silane coupling agent and carboxylated SBR. J. Clean. Prod. 2016, 112, 797–807. [CrossRef]; 36. Traversa, L.P.; Iloro, F.; Benito, D.E. Determination by thermal test of CO2 absorbed by cement mortars. Cienc. Tecnol. 2013, 3, 333–341.; 37. Barbadillo Jove, F. Estudio Cinético de Degradación Térmica de Poliuretanos Mediante Análisis Termogravimétrico (TGA). Ph.D. Thesis, Universidad da Coruña, Galicia, Spain, 2015.; 38. Won-In, K.; Boonruang, C.; Dararutana, P. Characterization of polyurea elastomer used for blast mitigation. AIP Conf. Proc. 2020, 2279, 070003.; 39. Ate¸s, E. Optimization of Compression Strength by Granulometry and Change of Binder Rates in Epoxy and Polyester Resin Concrete. J. Reinf. Plast. Compos. 2009, 28, 235–246. [CrossRef]; 40. Carrión, F.; Montalbán, L.; Real, J.I.; Real, T. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers. Sci. World J. 2014, 2014, 526346. [CrossRef] [PubMed]; 15; 14; Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. https://doi.org/10.3390/polym14091753; https://hdl.handle.net/11323/9469; https://doi.org/10.3390/polym14091753; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
6Academic Journal
مصطلحات موضوعية: Bisphenol A, Bisphenol analogues, Emissions, Polypropylene
جغرافية الموضوع: South America
وصف الملف: 9 páginas; application/pdf
Relation: Molecules; 1. Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [CrossRef]; 2. Moon, M.K. Concern about the Safety of Bisphenol A Substitutes. Diabetes Metab. J. 2019, 43, 46–48. [CrossRef] [PubMed]; 3. Morin, N.; Arp, H.P.H.; Hale, S.E. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior. Environ. Sci. Technol. 2015, 49, 7675–7683. [CrossRef]; 4. Mihaich, E.M.; Friederich, U.; Caspers, N.; Hall, A.T.; Klecka, G.M.; Dimond, S.S.; Staples, C.A.; Ortego, L.S.; Hentges, S.G. Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicol. Environ. Saf. 2009, 72, 1392–1399. [CrossRef] [PubMed]; 5. Belfroid, A.; van Velzen, M.; van der Horst, B.; Vethaak, D. Occurrence of bisphenol A in surface water and uptake in fish: Evaluation of field measurements. Chemosphere 2002, 49, 97–103. [CrossRef]; 6. Gao, H.; Yang, B.-J.; Li, N.; Feng, L.-M.; Shi, X.-Y.; Zhao, W.-H.; Liu, S.-J. Bisphenol A and hormone-associated cancers: Current progress and perspectives. Medicine 2015, 94, e211. [CrossRef] [PubMed]; 7. Catenza, C.J.; Farooq, A.; Shubear, N.S.; Donkor, K.K. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere 2021, 268, 129273. [CrossRef]; 8. Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int. J. Mol. Sci. 2020, 21, 5761. [CrossRef]; 9. Gao, X.; Wang, H.-S. Impact of bisphenol a on the cardiovascular system-epidemiological and experimental evidence and molecular mechanisms. Int. J. Environ. Res. Public Health 2014, 11, 8399–8413. [CrossRef] [PubMed]; 11. Qiu, W.; Zhan, H.; Hu, J.; Zhang, T.; Xu, H.; Wong, M.; Xu, B.; Zheng, C. The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. Ecotoxicol. Environ. Saf. 2019, 173, 192–202. [CrossRef] [PubMed]; 12. Han, Y.; Fei, Y.; Wang, M.; Xue, Y.; Chen, H.; Liu, Y. Study on the Joint Toxicity of BPZ, BPS, BPC and BPF to Zebrafish. Molecules 2021, 26, 4180. [CrossRef]; 13. Gao, C.; He, H.; Qiu, W.; Zheng, Y.; Chen, Y.; Hu, S.; Zhao, X. Oxidative Stress, Endocrine Disturbance, and Immune Interference in Humans Showed Relationships to Serum Bisphenol Concentrations in a Dense Industrial Area. Environ. Sci. Technol. 2021, 55, 1953–1963. [CrossRef] [PubMed]; 14. Zhang, H.; Quan, Q.; Zhang, M.; Zhang, N.; Zhang, W.; Zhan, M.; Xu, W.; Lu, L.; Fan, J.; Wang, Q. Occurrence of bisphenol A and its alternatives in paired urine and indoor dust from Chinese university students: Implications for human exposure. Chemosphere 2020, 247, 125987. [CrossRef]; 15. Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a New Bisphenol Analogue, in Paper Products and Currency Bills and Its Association with Bisphenol A Residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [CrossRef]; 16. Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response Publ. Int. Hormesis Soc. 2015, 13, 15593258–15598308. [CrossRef]; 17. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027. [CrossRef] [PubMed]; 18. Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmospheric Pollut. Res. 2021, 12, 167–176. [CrossRef]; 19. Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461–478. [CrossRef] [PubMed]; 20. Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef]; 21. Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]; 22. Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef]; 23. Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]; 24. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833. [CrossRef]; 25. Lee, S.; Liao, C.; Song, G.-J.; Ra, K.; Kannan, K.; Moon, H.-B. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere 2015, 119, 1000–1006. [CrossRef]; 26. Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; BinhMinh, T.; Moon, H.-B.; et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015, 83, 183–191. [CrossRef] [PubMed]; 27. Barroso, P.J.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Evaluation of the airborne pollution by emerging contaminants using bitter orange (Citrus aurantium) tree leaves as biosamplers. Sci. Total Environ. 2019, 677, 484–492. [CrossRef]; 28. Geens, T.; Roosens, L.; Neels, H.; Covaci, A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 2009, 76, 755–760. [CrossRef]; 15; 27; Fernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. https://doi.org/10.3390/molecules27154832; https://hdl.handle.net/11323/9439; https://doi.org/10.3390/molecules27154832; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
7Academic Journal
مصطلحات موضوعية: Hydrogen sulfide, Ligands, Polypropylene, Catalyst, Degradation
وصف الملف: 11 páginas; application/pdf
Relation: Biopolymers; 1. Kurahashi, E.; Wada, T.; Nagai, T.; Chammingkwan, P.; Terano, M.; Taniike, T. Synthesis of Polypropylene Functionalized with a Trace Amount of Reactive Functional Groups and Its Utilization in Graft-Type Nanocomposites. Polymer 2018, 158, 46–52. [CrossRef]; 2. Karol, F.J.; Jacobson, F.I. Catalysis and the Unipol Process. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1986; Volume 25.; 3. Mier, J.; Artiaga, R.; García Soto, L. Síntesis de Polímeros. Pesos Moleculares. Conformación y Configuración. In Elementos Estructurales con Materiales Polímeros: Ferrol; Universidade, Servicio de Publicacións: A Coruña, Spain, 1997; pp. 11–48.; 4. Bailar, J.C.; Emeléus, H.J.; Nyholm, R.; Trotman-Dickenson, A.F. Comprehensive Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1973; Volume 3, ISBN 9781483283135.; 5. Nikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–1395. [CrossRef]; 6. Nikolaevna Panchenko, V.; Viktorovna Vorontsova, L.; Aleksandrovich Zakharov, V. Ziegler-Natta Catalysts for Propylene Polymerization—Interaction of an External Donor with the Catalyst. Polyolefins J. 2017, 4, 87–97. [CrossRef]; 7. Vizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of Hydrogen Effect in Propylene Polymerization on (with) the MgCl2 -Supported Ziegler-Natta Catalyst-Part 2. Effect of CS2 on Polymerization Centres. Eur. Polym. J. 1994, 30, 1315–1318. [CrossRef]; 8. Kallio, K.; Wartmann, A.; Reichert, K.-H. Reactivation of a Poisoned Metallocene Catalyst by Irradiation with Visible Light; Wiley: Hoboken, NJ, USA, 2002; Volume 23.; 9. Bahri-Laleh, N. Interaction of Different Poisons with MgCl2/TiCl4 Based Ziegler-Natta Catalysts. Appl. Surf. Sci. 2016, 379, 395–401. [CrossRef]; 11. Hernández-Fernández, J. Quantification of Oxygenates, Sulphides, Thiols and Permanent Gases in Propylene. A Multiple Linear Regression Model to Predict the Loss of Efficiency in Polypropylene Production on an Industrial Scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef]; 12. Li, Z.; Yin, Y.; Wang, X.; Tu, D.M.; Kao, K.C. Formation and Inhibition of Free Radicals in Electrically Stressed and Aged Insulating Polymers. J. Appl. Polym. Sci. 2003, 89, 3416–3425. [CrossRef]; 13. Biswal, H.S. Hydrogen Bonds Involving Sulfur: New Insights from Ab Initio Calculations and Gas Phase Laser Spectroscopy. In Challenges and Advances in Computational Chemistry and Physics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 19, pp. 15–45, ISBN 9783319141633.; 14. Kaushik, R.; Ghosh, A.; Amilan Jose, D. Recent Progress in Hydrogen Sulphide (H2S) Sensors by Metal Displacement Approach. Coord. Chem. Rev. 2017, 347, 141–157. [CrossRef]; 15. Zhang, J.; Li, X. Hydrogen Bonding in the Complexes Formed by Arsine and H-X Molecules: A Theoretical Study. Chem. Phys. Lett. 2019, 735, 136767. [CrossRef]; 16. Barnabas, F.A. Solution Reactions of HX Molecules (X = SH, CI, Br) With Dinuclear Palladium(I) Complexes Containing Bis(Diphenylphosphino)Methane; University of British Columbia: Vancouver, BC, Canada, 1989.; 17. Pluth, M.D.; Tonzetich, Z.J. Hydrosulfide Complexes of the Transition Elements: Diverse Roles in Bioinorganic, Cluster, Coordination, and Organometallic Chemistry. Chem. Soc. Rev. 2020, 49, 4070–4134. [CrossRef]; 18. Livingstone, S.E. Metal Complexes of Ligands Containing Sulphur, Selenium, or Tellurium as Donor Atoms. Q. Rev. Chem. Soc. 1965, 19, 386. [CrossRef]; 19. Lindoy, L.F. Reactions Involving Metal Complexes of Sulphur Ligands. Coord. Chem. Rev. 1969, 4, 41–71. [CrossRef]; 20. Enríquez Rodríguez, M. Funcionalización de Ligandos Coordinados; Universidad de Coruña: A Coruña, Spain, 2017.; 21. Hernández-Fernández, J. Quantification of Arsine and Phosphine in Industrial Atmospheric Emissions in Spain and Colombia. Implementation of Modified Zeolites to Reduce the Environmental Impact of Emissions. Atmos. Pollut. Res. 2021, 12, 167–176. [CrossRef]; 22. Mensforth, E.J.; Hill, M.R.; Batten, S.R. Coordination Polymers of Sulphur-Donor Ligands. Inorganica. Chim. Acta 2013, 403, 9–24. [CrossRef]; 23. Jafarinejad, S. Control and Treatment of Sulfur Compounds Specially Sulfur Oxides (SOx) Emissions from the Petroleum Industry: A Review. Chem. Int. 2016, 2, 242–253.; 24. Shi, Q.; Wu, J. Review on Sulfur Compounds in Petroleum and Its Products: State-of-the-Art and Perspectives. Energy Fuels 2021, 35, 14445–14461. [CrossRef]; 25. Zhang, L.L.; Wang, C.L.; Zhao, Y.S.; Yang, G.H.; Su, M.; Yang, C.H. Speciation and Quantification of Sulfur Compounds in Petroleum Asphaltenes by Derivative XANES Spectra. J. Fuel Chem. Technol. 2013, 41, 1328–1335. [CrossRef]; 26. Han, Y.; Zhang, Y.; Xu, C.; Hsu, C.S. Molecular Characterization of Sulfur-Containing Compounds in Petroleum. Fuel 2018, 221, 144–158. [CrossRef]; 27. Joaquin, H.-F.; Juan, L. Quantification of Poisons for Ziegler Natta Catalysts and Effects on the Production of Polypropylene by Gas Chromatographic with Simultaneous Detection: Pulsed Discharge Helium Ionization, Mass Spectrometry and Flame Ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef]; 28. van Krevelen, D.W.; te Nijenhuis, K. Typology of Properties. In Properties of Polymers; Elsevier: Amsterdam, The Netherlands, 2009; pp. 49–67. [CrossRef]; 29. Halasa, A.F.; Massie, J.M.; Ceresa, R.J. The Chemical Modification of Polymers. In The Science and Technology of Rubber; Academic Press: Cambridge, MA, USA, 2013; pp. 517–546. [CrossRef]; 30. Soroush, M.; Grady, M.C. Polymers, Polymerization Reactions, and Computational Quantum Chemistry. In Computational Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–16. [CrossRef]; 31. Chong, B.Y.K.; Krstina, J.; Le, T.P.T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S.H. Thiocarbonylthio Compounds [S=C(Ph)S-R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 2003, 36, 2256–2272. [CrossRef]; 32. Shen, X.R.; Fu, Z.S.; Hu, J.; Wang, Q.; Fan, Z.Q. Mechanism of Propylene Polymerization with MgCl2 -Supported Ziegler-Natta Catalysts Based on Counting of Active Centers: The Role of External Electron Donor. J. Phys. Chem. C 2013, 117, 15174–15182. [CrossRef]; 33. Otsu, T.; Matsumoto, A. Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization. In Microencapsulation Microgels Iniferters; Springer: Berlin/Heidelberg, Germany, 1998; pp. 75–137.; 34. Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef]; 35. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027. [CrossRef]; 36. Hernández-Fernández, J.; López-Martínez, J. Experimental Study of the Auto-Catalytic Effect of Triethylaluminum and TiCl4 Residuals at the Onset of Non-Additive Polypropylene Degradation and Their Impact on Thermo-Oxidative Degradation and Pyrolysis. J. Anal. Appl. Pyrolysis. 2021, 155, 105052. [CrossRef]; 37. Zhang, S.; Li, B.; Lin, M.; Li, Q.; Gao, S.; Yi, W. Effect of a Novel Phosphorus-Containing Compound on the Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene. J. Appl. Polym. Sci. 2011, 122, 3430–3439. [CrossRef]; 38. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]; 39. Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. Available online: https://www.astm.org/ d1238-10.html (accessed on 28 August 2022).; 40. Bremner, T.; Rudin, A.; Cook, D.G. Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627. [CrossRef]; 41. Ivin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.H.; Mahtab, R. Mechanism for the Stereospecific Polymerization of Olefins by Ziegler–Natta Catalysts. J. Chem. Soc. Chem. Commun. 1978, 14, 604–606. [CrossRef]; 42. Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [CrossRef] [PubMed]; 43. Padilla Paz, R.M. Síntesis y Estudio de Cpmplejos Organometálicos de Iridio Con N-Aril-4,5-Dimetilen-1,3-Oxazolidin-2-Onas y Complejos de Cobre Con Furoiltioureas; Universidad Autónoma del estado de Hidalgo: Hidalgo, Mexico, 2006.; 44. Eguren, L.; Korswagen, R. Catalizadores Ziegler-Natta Utilizados Para Polimerizar Propileno y Etileno. Revista de Química 1987, 1, 5–13.; 45. NATTA, G.; PASQUON, I.; GIACHETTI, E. Kinetics of the Stereospecific Polymerization of Polypropylene to Isotactic Polymers. In Stereoregular Polymers and Stereospecific Polymerizations; Elsevier: Amsterdam, The Netherlands, 1967.; 46. Zakharov, I.I.; Zakharov, V.A.; Zhidomirov, G.M. Quantum Chemical Studies of Propene, Ethylene, Acetylene and Dihydrogen Reactivity in the Insertion Reaction into the Titanium-Alkyl Bond; Wiley: Hoboken, NJ, USA, 1996; Volume 5.; 47. Cheremisinoff, N.P. Handbook of Polymer Science and Technology: Synthesis and Properties; Dekker, M., Ed.; Routledge: London, UK, 1989.; 48. Chien, J.C.W.; Bres, P. Magnesium Chloride Supported High Mileage Catalysts for Olefin Polymerization. XIII. Effect of External Lewis Base on Ethylene Polymerization. J. Polym. Sci. A Polym. Chem. 1986, 24, 1967–1988. [CrossRef]; 49. Bhaduri, S.; Mukhopadhyay, S.; Kulkarni, S.A. Role of Titanium Oxidation States in Polymerization Activity of Ziegler-Natta Catalyst: A Density Functional Study. J. Organomet. Chem. 2006, 691, 2810–2820. [CrossRef]; 50. Clough, R.L. Isotopic Exchange in Gamma-irradiated Mixtures of C24H50 and C24D50: Evidence of Free Radical Migration in the Solid State. J. Chem. Phys. 1987, 87, 1588. [CrossRef]; 51. Bahlouli, N.; Pessey, D.; Raveyre, C.; Guillet, J.; Ahzi, S.; Dahoun, A.; Hiver, J.M. Recycling Effects on the Rheological and Thermomechanical Properties of Polypropylene-Based Composites. Mater. Des. 2012, 33, 451–458. [CrossRef]; 52. Aurrekoetxea, J.; Sarrionandia, M.A.; Urrutibeascoa, I.; Maspoch, M.L. Effects of Recycling on the Microstructure and the Mechanical Properties of Isotactic Polypropylene. J. Mater. Sci. 2001, 36, 2607–2613. [CrossRef]; 53. Alvarado Chacon, F.; Brouwer, M.T.; Thoden van Velzen, E.U.; Smeding, I.W. A First Assessment of the Impact of Impurities in PP and PE Recycled Plastics; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2020.; 54. Sheng, B.-R.; Li, B.; Xie, B.-H.; Yang, W.; Feng, J.-M.; Yang, M.-B. Influences of Molecular Weight and Crystalline Structure on Fracture Behavior of Controlled-Rheology-Polypropylene Prepared by Reactive Extrusion. Polym. Degrad. Stab. 2008, 93, 225–232. [CrossRef]; 55. Dusseault, J.J.A.; Hsu, C.C. MgCI2 -Supported Ziegler-Natta Catalysts for Olefin Polymerization: Basic Structure, Mechanism, and Kinetic Behavior. J. Macromol. Sci. Part C 2006, 33, 103–145. [CrossRef]; 56. Kissin, Y.V.; Marin, V.P.; Nelson, P.J. Propylene Polymerization Reactions with Supported Ziegler–Natta Catalysts: Observing Polymer Material Produced by a Single Active Center. J. Polym. Sci. A Polym. Chem. 2017, 55, 3832–3841. [CrossRef]; 57. Noristi, L.; Marchetti, E.; Baruzzi, G.; Sgarzi, P. Investigation on the Particle Growth Mechanism in Propylene Polymerization with MgCl2 -Supported Ziegler–Natta Catalysts. J. Polym. Sci. A Polym. Chem. 1994, 32, 3047–3059. [CrossRef]; 58. Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ula ´nski, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [CrossRef]; 59. Bhanu, V.A.; Kishore, K. Role of Oxygen in Polymerization Reactions. Chem. Rev. 1991, 91, 99–117. [CrossRef]; 60. Newby, T.E. Study of Spontaneous Polymerisation Inhibition. Ph.D. Thesis, University of York, York, UK, 2014.; 61. George, A.; Harper, P. Melt Flow Index Determination in Polymer Process Control. GB9803894.6, 25 February 1998.; 62. Richaud, E.; Fayolle, B.; Davies, P. Tensile Properties of Polypropylene Fibers. In Handbook of Properties of Textile and Technical Fibres; Elsevier: Amsterdam, The Netherlands, 2018; pp. 515–543. [CrossRef]; 63. Litvinov, V.M.; Ries, M.E.; Baughman, T.W.; Henke, A.; Matloka, P.P. Chain Entanglements in Polyethylene Melts. Why Is It Studied Again? Macromolecules 2013, 46, 541–547. [CrossRef]; 64. Montaudo, G.; Puglisi, C. Thermal Degradation Mechanisms in Condensation Polymers. In Developments in Polymer Degradation— 7; Springer: Dordrecht, The Netherlands, 1987; pp. 35–80.; 65. Commereuc, S.; Vaillant, D.; Philippart, J.L.; Lacoste, J.; Lemaire, J.; Carlsson, D.J. Photo and Thermal Decomposition of IPP Hydroperoxides. Polym. Degrad. Stab. 1997, 57, 175–182. [CrossRef]; 66. Joaquin, H.-F.; Juan, L.-M. Autocatalytic Influence of Different Levels of Arsine on the Thermal Stability and Pyrolysis of Polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]; 11; 18; 14; Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. https:// doi.org/10.3390/polym14183910; https://hdl.handle.net/11323/9557; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
8Academic Journal
مصطلحات موضوعية: Bisphenol A, Bisphenol analogs, Wastewater treatment plants, Pollutions, Polypropylene manufacturing
جغرافية الموضوع: South America
وصف الملف: 10 páginas; application/pdf
Relation: Sustainability; 1. Owczarek, K.; Kudłak, B.; Simeonov, V.; Mazerska, Z.; Namie´snik, J. Binary Mixtures of Selected Bisphenols in the Environment: Their Toxicity in Relationship to Individual Constituents. Molecules 2018, 23, 3226. [CrossRef] [PubMed]; 2. Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int. J. Mol. Sci. 2020, 21, 5761. [CrossRef] [PubMed]; 3. Gao, H.; Yang, B.-J.; Li, N.; Feng, L.-M.; Shi, X.-Y.; Zhao, W.-H.; Liu, S.-J. Bisphenol A and Hormone-Associated Cancers: Current Progress and Perspectives. Medicine 2015, 94, e211. [CrossRef] [PubMed]; 4. Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response Publ. Int. Hormesis Soc. 2015, 13, 1–29. [CrossRef] [PubMed]; 5. Kadasala, N.R.; Narayanan, B.; Liu, Y. International Trade Regulations on BPA: Global Health and Economic Implications. Asian Dev. Policy Rev. 2016, 4, 134–142. [CrossRef]; 6. Frankowski, R.; Zgoła-Grze´skowiak, A.; Grze´skowiak, T.; Sójka, K. The Presence of Bisphenol A in the Thermal Paper in the Face of Changing European Regulations—A Comparative Global Research. Environ. Pollut. 2020, 265, 114879. [CrossRef] [PubMed]; 7. Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a New Bisphenol Analogue, in Paper Products and Currency Bills and Its Association with Bisphenol A Residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [CrossRef] [PubMed]; 8. Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P.K.S.; Moon, H.-B.; Jeong, Y.; Kannan, P.; Achyuthan, H.; Munuswamy, N.; et al. Bisphenol A and Other Bisphenol Analogues Including BPS and BPF in Surface Water Samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 2015, 122, 565–572. [CrossRef] [PubMed]; 9. Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [CrossRef] [PubMed]; 11. Xue, J.; Kannan, P.; Kumosani, T.A.; Al-Malki, A.L.; Kannan, K. Resin-Based Dental Sealants as a Source of Human Exposure to Bisphenol Analogues, Bisphenol A Diglycidyl Ether, and Its Derivatives. Environ. Res. 2018, 162, 35–40. [CrossRef]; 12. Goldinger, D.M.; Demierre, A.-L.; Zoller, O.; Rupp, H.; Reinhard, H.; Magnin, R.; Becker, T.W.; Bourqui-Pittet, M. Endocrine Activity of Alternatives to BPA Found in Thermal Paper in Switzerland. Regul. Toxicol. Pharmacol. 2015, 71, 453–462. [CrossRef]; 13. Lee, S.; Liao, C.; Song, G.-J.; Ra, K.; Kannan, K.; Moon, H.-B. Emission of Bisphenol Analogues Including Bisphenol A and Bisphenol F from Wastewater Treatment Plants in Korea. Chemosphere 2015, 119, 1000–1006. [CrossRef]; 14. Ziv-Gal, A.; Flaws, J.A. Evidence for Bisphenol A-Induced Female Infertility: A Review (2007–2016). Fertil. Steril. 2016, 106, 827–856. [CrossRef] [PubMed]; 15. Yan, Z.; Liu, Y.; Yan, K.; Wu, S.; Han, Z.; Guo, R.; Chen, M.; Yang, Q.; Zhang, S.; Chen, J. Bisphenol Analogues in Surface Water and Sediment from the Shallow Chinese Freshwater Lakes: Occurrence, Distribution, Source Apportionment, and Ecological and Human Health Risk. Chemosphere 2017, 184, 318–328. [CrossRef] [PubMed]; 16. Zhang, H.; Zhang, Y.; Li, J.; Yang, M. Occurrence and Exposure Assessment of Bisphenol Analogues in Source Water and Drinking Water in China. Sci. Total Environ. 2019, 655, 607–613. [CrossRef] [PubMed]; 17. Ruan, T.; Liang, D.; Song, S.; Song, M.; Wang, H.; Jiang, G. Evaluation of the in Vitro Estrogenicity of Emerging Bisphenol Analogs and Their Respective Estrogenic Contributions in Municipal Sewage Sludge in China. Chemosphere 2015, 124, 150–155. [CrossRef]; 18. Xue, J.; Kannan, K. Mass Flows and Removal of Eight Bisphenol Analogs, Bisphenol A Diglycidyl Ether and Its Derivatives in Two Wastewater Treatment Plants in New York State, USA. Sci. Total Environ. 2019, 648, 442–449. [CrossRef]; 19. Jin, H.; Zhu, L. Occurrence and Partitioning of Bisphenol Analogues in Water and Sediment from Liaohe River Basin and Taihu Lake, China. Water Res. 2016, 103, 343–351. [CrossRef]; 20. Karthikraj, R.; Kannan, K. Mass Loading and Removal of Benzotriazoles, Benzothiazoles, Benzophenones, and Bisphenols in Indian Sewage Treatment Plants. Chemosphere 2017, 181, 216–223. [CrossRef]; 21. Sun, Q.; Wang, Y.; Li, Y.; Ashfaq, M.; Dai, L.; Xie, X.; Yu, C.-P. Fate and Mass Balance of Bisphenol Analogues in Wastewater Treatment Plants in Xiamen City, China. Environ. Pollut. 2017, 225, 542–549. [CrossRef] [PubMed]; 22. Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging Pollutants in the Urban Water Cycle in Latin America: A Review of the Current Literature. J. Environ. Manag. 2019, 237, 408–423. [CrossRef] [PubMed]; 23. Jardim, W.F.; Montagner, C.C.; Pescara, I.C.; Umbuzeiro, G.A.; Di Dea Bergamasco, A.M.; Eldridge, M.L.; Sodré, F.F. An Integrated Approach to Evaluate Emerging Contaminants in Drinking Water. Sep. Purif. Technol. 2012, 84, 3–8. [CrossRef]; 24. Fang, Y.-X.; Ying, G.-G.; Zhao, J.-L.; Chen, F.; Liu, S.; Zhang, L.-J.; Yang, B. Assessment of Hormonal Activities and Genotoxicity of Industrial Effluents Using in Vitro Bioassays Combined with Chemical Analysis. Environ. Toxicol. Chem. 2012, 31, 1273–1282. [CrossRef]; 25. Balabaniˇc, D.; Filipiˇc, M.; Krivograd Klemenˇciˇc, A.; Žegura, B. Raw and Biologically Treated Paper Mill Wastewater Effluents and the Recipient Surface Waters: Cytotoxic and Genotoxic Activity and the Presence of Endocrine Disrupting Compounds. Sci. Total Environ. 2017, 574, 78–89. [CrossRef]; 26. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027. [CrossRef]; 27. Hernández-Fernández, J. Quantification of Arsine and Phosphine in Industrial Atmospheric Emissions in Spain and Colombia. Implementation of Modified Zeolites to Reduce the Environmental Impact of Emissions. Atmos. Pollut. Res. 2021, 12, 167–176. [CrossRef]; 28. Hernández-Fernández, J. Quantification of Oxygenates, Sulphides, Thiols and Permanent Gases in Propylene. A Multiple Linear Regression Model to Predict the Loss of Efficiency in Polypropylene Production on an Industrial Scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef]; 29. Joaquin, H.-F.; Juan, L. Quantification of Poisons for Ziegler Natta Catalysts and Effects on the Production of Polypropylene by Gas Chromatographic with Simultaneous Detection: Pulsed Discharge Helium Ionization, Mass Spectrometry and Flame Ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef]; 30. Joaquin, H.-F.; Juan, L.-M. Autocatalytic Influence of Different Levels of Arsine on the Thermal Stability and Pyrolysis of Polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [CrossRef]; 31. Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 460442. [CrossRef] [PubMed]; 32. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and Validation of a Methodology for Quantifying Partsper-Billion Levels of Arsine and Phosphine in Nitrogen, Hydrogen and Liquefied Petroleum Gas Using a Variable Pressure Sampler Coupled to Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2021, 1637, 461833. [CrossRef]; 33. Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [CrossRef]; 34. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef]; 35. Hernández-Fernández, J.; López-Martínez, J. Experimental Study of the Auto-Catalytic Effect of Triethylaluminum and TiCl4 Residuals at the Onset of Non-Additive Polypropylene Degradation and Their Impact on Thermo-Oxidative Degradation and Pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]; 36. Huang, Z.; Zhao, J.-L.; Zhang, C.-Y.; Rao, W.-L.; Liang, G.-H.; Zhang, H.; Liu, Y.-H.; Guan, Y.-F.; Zhang, H.-Y.; Ying, G.-G. Profile and Removal of Bisphenol Analogues in Hospital Wastewater, Landfill Leachate, and Municipal Wastewater in South China. Sci. Total Environ. 2021, 790, 148269. [CrossRef] [PubMed]; 37. Huang, Z.; Zhao, J.-L.; Yang, Y.-Y.; Jia, Y.-W.; Zhang, Q.-Q.; Chen, C.-E.; Liu, Y.-S.; Yang, B.; Xie, L.; Ying, G.-G. Occurrence, Mass Loads and Risks of Bisphenol Analogues in the Pearl River Delta Region, South China: Urban Rainfall Runoff as a Potential Source for Receiving Rivers. Environ. Pollut. 2020, 263, 114361. [CrossRef] [PubMed]; 38. Yan, Q.; Gao, X.; Huang, L.; Gan, X.-M.; Zhang, Y.-X.; Chen, Y.-P.; Peng, X.-Y.; Guo, J.-S. Occurrence and Fate of Pharmaceutically Active Compounds in the Largest Municipal Wastewater Treatment Plant in Southwest China: Mass Balance Analysis and Consumption Back-Calculated Model. Chemosphere 2014, 99, 160–170. [CrossRef]; 39. Hu, Y.; Zhu, Q.; Yan, X.; Liao, C.; Jiang, G. Occurrence, Fate and Risk Assessment of BPA and Its Substituents in Wastewater Treatment Plant: A Review. Environ. Res. 2019, 178, 108732. [CrossRef] [PubMed]; 40. Wang, H.; Liu, Z.; Zhang, J.; Huang, R.; Yin, H.; Dang, Z.; Wu, P.; Liu, Y. Insights into Removal Mechanisms of Bisphenol A and Its Analogues in Municipal Wastewater Treatment Plants. Sci. Total Environ. 2019, 692, 107–116. [CrossRef]; 41. Melcer, H.; Kleˇcka, G. Treatment of Wastewaters Containing Bisphenol A: State of the Science Review. Water Environ. Res. 2011, 83, 650–666. [CrossRef] [PubMed]; 10; 17; 14; Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919. https://doi.org/10.3390/ su141710919; https://hdl.handle.net/11323/9558; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
9Academic Journal
مصطلحات موضوعية: Industrial emissions, Liquefied petroleum gas purification, Zeolite, Sulfide, Thiols, GC-MS
وصف الملف: 18 páginas; application/pdf
Relation: Sustainability; 1. Kailasa, S.K.; Koduru, J.R.; Vikrant, K.; Tsang, Y.F.; Singhal, R.K.; Hussain, C.M.; Kim, K.-H. Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. J. Mol. Liq. 2020, 297, 111886. [CrossRef]; 2. An, T.; Wan, S.; Li, G.; Sun, L.; Guo, B. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. J. Hazard. Mater. 2010, 183, 372–380. [CrossRef] [PubMed]; 3. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [CrossRef] [PubMed]; 4. Chen, Y.-M.; Lin, W.-Y.; Chan, C.-C. The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: An 11-year longitudinal study. BMC Public Health 2014, 14, 247. [CrossRef]; 5. Broitman, D.; Portnov, B.A. Forecasting health effects potentially associated with the relocation of a major air pollution source. Environ. Res. 2020, 182, 109088. [CrossRef]; 6. Allison, E.; Mandler, B. Air Quality Impacts of Oil and Gas: Emissions from production, processing, refining, and use. In Petroleum and the Environment; American Geosciences Institute: Alexandria, VA, USA, 2018; Volume 18, pp. 1–18.; 7. Adebiyi, F.M. Air quality and management in petroleum refining industry: A review. Environ. Chem. Ecotoxicol. 2022, 4, 89–96. [CrossRef]; 8. Vellingiri, K.; Kim, K.-H.; Kwon, E.E.; Deep, A.; Jo, S.-H.; Szulejko, J.E. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels. J. Environ. Manag. 2016, 166, 484–492. [CrossRef]; 9. Nagata, E.; Yoshio, Y. Measurement of odor threshold by triangle odor bag method. Odor Meas. Minist. Environ. Sci. 2003, 118, 118–127.; 11. Bergmann, S.; Li, B.; Pilot, E.; Chen, R.; Wang, B.; Yang, J. Effect modification of the short-term effects of air pollution on morbidity by season: A systematic review and meta-analysis. Sci. Total Environ. 2020, 716, 136985. [CrossRef]; 12. Chen, G.; Koros, W.J.; Jones, C.W. Hybrid Polymer/UiO-66(Zr) and Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas. ACS Appl. Mater. Interfaces 2016, 8, 9700–9709. [CrossRef]; 13. Xu, X.; Cho, S.I.; Sammel, M.; You, L.; Cui, S.; Huang, Y.; Ma, G.; Padungtod, C.; Pothier, L.; Niu, T.; et al. Association of petrochemical exposure with spontaneous abortion. Occup. Environ. Med. 1998, 55, 31–36. [CrossRef]; 14. Camargo, R.Y.A.; Tomimori, E.K.; Neves, S.C.; Knobel, M.; Medeiros-Neto, G. Prevalence of chronic autoimmune thyroiditis in the urban area neighboring a petrochemical complex and a control area in Sao Paulo, Brazil. Clinics 2006, 61, 307–312. [CrossRef]; 15. White, N.; teWaterNaude, J.; Van Der Walt, A.; Ravenscroft, G.; Roberts, W.; Ehrlich, R. Meteorologically estimated exposure but not distance predicts asthma symptoms in schoolchildren in the environs of a petrochemical refinery: A cross-sectional study. Environ. Health 2009, 8, 45. [CrossRef]; 16. De Moraes, A.C.L.; Ignotti, E.; Netto, P.A.; Jacobson, L.D.S.V.; Castro, H.; Hacon, S.D.S. Wheezing in children and adolescents living next to a petrochemical plant in Rio Grande do Norte, Brazil. J. Pediatr. 2010, 86, 337–344. [CrossRef]; 17. Rusconi, F.; Catelan, D.; Accetta, G.; Peluso, M.; Pistelli, R.; Barbone, F.; Di Felice, E.; Munnia, A.; Murgia, P.; Paladini, L.; et al. Asthma Symptoms, Lung Function, and Markers of Oxidative Stress and Inflammation in Children Exposed to Oil Refinery Pollution. J. Asthma 2011, 48, 84–90. [CrossRef]; 18. Rovira, E.; Cuadras, A.; Aguilar, X.; Esteban, L.; Borràs-Santos, A.; Zock, J.-P.; Sunyer, J. Asthma, respiratory symptoms and lung function in children living near a petrochemical site. Environ. Res. 2014, 133, 156–163. [CrossRef]; 19. Barbone, F.; Catelan, D.; Pistelli, R.; Accetta, G.; Grechi, D.; Rusconi, F.; Biggeri, A. A Panel Study on Lung Function and Bronchial Inflammation among Children Exposed to Ambient SO2 from an Oil Refinery. Int. J. Environ. Res. Public Health 2019, 16, 1057. [CrossRef]; 20. Chung, H.; Youn, K.; Kim, K.; Park, K. Carbon disulfide exposure estimate and prevalence of chronic diseases after carbon disulfide poisoning-related occupational diseases. Ann. Occup. Environ. Med. 2017, 29, 52. [CrossRef]; 21. Liu, S.; Ni, J.-Q.; Radcliffe, J.S.; Vonderohe, C. Hydrogen sulfide emissions from a swine building affected by dietary crude protein. J. Environ. Manag. 2017, 204, 136–143. [CrossRef]; 22. Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [CrossRef]; 23. Sedighi, M.; Vahabzadeh, F.; Zamir, S.M.; Naderifar, A. Ethanethiol degradation by Ralstonia eutropha. Biotechnol. Bioprocess Eng. 2013, 18, 827–833. [CrossRef]; 24. Gholampour, F.; Yeganegi, S. Molecular simulation study on the adsorption and separation of acidic gases in a model nanoporous carbon. Chem. Eng. Sci. 2014, 117, 426–435. [CrossRef]; 25. Fellah, M.F. Adsorption of hydrogen sulfide as initial step of H2S removal: A DFT study on metal exchanged ZSM-12 clusters. Fuel Process. Technol. 2016, 144, 191–196. [CrossRef]; 26. Feng, Z.; Song, X.; Yu, Z. Seasonal and spatial distribution of matrix-bound phosphine and its relationship with the environment in the Changjiang River Estuary, China. Mar. Pollut. Bull. 2008, 56, 1630–1636. [CrossRef]; 27. Berrouk, A.S.; Ochieng, R. Improved performance of the natural-gas-sweetening Benfield-HiPure process using process simulation. Fuel Process. Technol. 2014, 127, 20–25. [CrossRef]; 28. Liu, X.; Li, J.; Wang, R. Study on the desulfurization performance of hydramine/ionic liquid solutions at room temperature and atmospheric pressure. Fuel Process. Technol. 2017, 167, 382–387. [CrossRef]; 29. Rufford, T.; Smart, S.; Watson, G.; Graham, B.; Boxall, J.; da Costa, J.D.; May, E. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Eng. 2012, 94–95, 123–154. [CrossRef]; 30. Satokawa, S.; Kobayashi, Y.; Fujiki, H. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Appl. Catal. B Environ. 2005, 56, 51–56. [CrossRef]; 31. Wakita, H.; Tachibana, Y.; Hosaka, M. Removal of dimethyl sulfide and t-butylmercaptan from city gas by adsorption on zeolites. Microporous Mesoporous Mater. 2001, 46, 237–247. [CrossRef]; 32. Zhu, L.; Lv, X.; Tong, S.; Zhang, T.; Song, Y.; Wang, Y.; Hao, Z.; Huang, C.; Xia, D. Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas. J. Nat. Gas Sci. Eng. 2019, 69, 102941. [CrossRef]; 33. Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmospheric Pollut. Res. 2021, 12, 167–176. [CrossRef]; 34. Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [CrossRef] [PubMed]; 35. Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef]; 36. Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [CrossRef] [PubMed]; 37. Alladio, E.; Amante, E.; Bozzolino, C.; Seganti, F.; Salomone, A.; Vincenti, M.; Desharnais, B. Effective validation of chromatographic analytical methods: The illustrative case of androgenic steroids. Talanta 2020, 215, 120867. [CrossRef]; 38. Sedighi, M.; Zamir, S.M.; Vahabzadeh, F. Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. J. Environ. Manag. 2016, 165, 53–61. [CrossRef]; 39. Rubright, S.L.M.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017, 71, 1–13. [CrossRef]; 40. ATSDR. Toxicological Profile for Hydrogen Sulfide and Carbonyl Sulfide; ATSDR: Atlanta, GA, USA, 2016.; 41. Malone, S. Cyanide and Hydrogen Sulfide: A Review of Two Blood Gases, Their Environmental Sources, and Potential Risks; University of Pittsburgh: Pittsburgh, PA, USA, 2016.; 42. Yang, D.; Chen, G.; Zhang, R. Estimated Public Health Exposure to H2S Emissions from a Sour Gas Well Blowout in Kaixian County, China. Aerosol Air Qual. Res. 2006, 6, 430–443. [CrossRef]; 43. Montzka, S.A.; Calvert, P.; Hall, B.D.; Elkins, J.W.; Conway, T.J.; Tans, P.P.; Sweeney, C. On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2 . J. Geophys. Res. Earth Surf. 2007, 112. [CrossRef]; 44. Sciare, J.; Mihalopoulos, N.; Nguyen, B. Spatial and temporal variability of dissolved sulfur compounds in European estuaries. Biogeochemistry 2002, 59, 121–141. [CrossRef]; 45. Mallik, C.; Chandra, N.; Venkataramani, S.; Lal, S. Variability of atmospheric carbonyl sulfide at a semi-arid urban site in western India. Sci. Total Environ. 2016, 551–552, 725–737. [CrossRef]; 46. Göen, T.; Schramm, A.; Baumeister, T.; Uter, W.; Drexler, H. Current and historical individual data about exposure of workers in the rayon industry to carbon disulfide and their validity in calculating the cumulative dose. Int. Arch. Occup. Environ. Health 2014, 87, 675–683. [CrossRef]; 47. Vanhoorne, M.H.; Ceulemans, L.; De Bacquer, D.A.; De Smet, F.P. An Epidemiologic Study of the Effects of Carbon Disulfide on the Peripheral Nerves. Int. J. Occup. Environ. Health 1995, 1, 295–302. [CrossRef]; 48. Beauchamp, R.O.; Bus, J.S.; Popp, J.A.; Boreiko, C.J.; Goldberg, L.; McKenna, M.J. A Critical Review of the Literature on Carbon Disulfide Toxicity. CRC Crit. Rev. Toxicol. 1983, 11, 169–278. [CrossRef]; 49. Newhook, R.; Meek, M.E. Carbon Disulfide; WHO: Geneva, Switzerland, 2002.; 50. Llorens, J. Toxic neurofilamentous axonopathies—Accumulation of neurofilaments and axonal degeneration. J. Intern. Med. 2013, 273, 478–489. [CrossRef]; 51. Takebayashi, T.; Omae, K.; Ishizuka, C.; Nomiyama, T.; Sakurai, H. Cross sectional observation of the effects of carbon disulphide on the nervous system, endocrine system, and subjective symptoms in rayon manufacturing workers. Occup. Environ. Med. 1998,55, 473–479. [CrossRef]; 52. Johnson, B.L.; Boyd, J.; Burg, J.R.; Lee, S.T.; Xintaras, C.; Albright, B.E. Effects on the peripheral nervous system of workers’ exposure to carbon disulfide. Neurotoxicology 1983, 4, 53–65.; 53. Hirata, M.; Ogawa, Y.; Goto, S. A cross-sectional study on nerve conduction velocities among workers exposed to carbon disulphide. La Medicina del Lavoro 1996, 87, 29–34.; 54. Kotseva, K.; Braeckman, L.; De Bacquer, D.; Bulat, P.; Vanhoorne, M. Cardiovascular Effects in Viscose Rayon Workers Exposed to Carbon Disulfide. Int. J. Occup. Environ. Health 2001, 7, 7–13. [CrossRef]; 55. Hernberg, S.; Partanen, T.; Nordman, C.-H.; Sumari, P. Coronary heart disease among workers exposed to carbon disulphide. Occup. Environ. Med. 1970, 27, 313–325. [CrossRef]; 56. Sulsky, S.I.; Hooven, F.H.; Burch, M.T.; Mundt, K.A. Critical review of the epidemiological literature on the potential cardiovascular effects of occupational carbon disulfide exposure. Int. Arch. Occup. Environ. Health 2002, 75, 365–380. [CrossRef]; 57. Leonardos, G.; Kendall, D.; Barnard, N. Odor Threshold Determinations of 53 Odorant Chemicals. J. Air Pollut. Control Assoc. 1969, 19, 91–95. [CrossRef]; 58. Wilby, F.V. Variation in Recognition Odor Threshold of a Panel. J. Air Pollut. Control Assoc. 1969, 19, 96–100. [CrossRef]; 59. ACGIH. TLVs and BEIs: Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2015; p. 42. Available online: http://www.acgih.org/forms/store/ ProductFormPublic/2015-tlvs-and-beis (accessed on 28 February 2022).; 60. Fang, J.-J.; Yang, N.; Cen, D.-Y.; Shao, L.-M.; He, P.-J. Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag. 2012, 32, 1401–1410. [CrossRef]; 61. Fang, J.; Xu, X.; Jiang, L.; Qiao, J.; Zhou, H.; Li, K. Preliminary results of toxicity studies in rats following low-dose and short-term exposure to methyl mercaptan. Toxicol. Rep. 2019, 6, 431–438. [CrossRef]; 62. Shults, W.T.; Fountain, E.N.; Lynch, E.C. Methanethiol Poisoning. JAMA 1970, 211, 2153–2154. [CrossRef]; 63. Zieve, L.; Doizaki, W.M.; Zieve, J. Synergism between mercaptans and ammonia or fatty acids in the production of coma: A possible role for mercaptans in the pathogenesis of hepatic coma. J. Lab. Clin. Med. 1974, 83, 16–28.; 18; 14; Hernández-Fernández, J.; Cano, H.; Rodríguez-Couto, S. Quantification and Removal of Volatile Sulfur Compounds (VSCs) in Atmospheric Emissions in Large (Petro) Chemical Complexes in Different Countries of America and Europe. Sustainability 2022, 14, 11402. https://doi.org/10.3390/su141811402; https://hdl.handle.net/11323/9556; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
10Dissertation/ Thesis
المؤلفون: Cano Cuadro, Heidis Patricia
Thesis Advisors: Morcillo Linares, Manuel, Fuente García, Daniel de la, Amo Ortega, José María
مصطلحات موضوعية: Materiales
URL الوصول: http://eprints.ucm.es/25934/
-
11Academic Journal
المؤلفون: CANO CUADRO, HEIDIS PATRICIA, Ríos-Rojas, John Fredy, Hernández-Fernández, Joaquin, Bernal Herrera, Wilson, Bautista Betancur, Mayka, De La Hoz Vélez, Lorcy, Agámez González, Lidy
المصدر: Sustainability ; https://www.mdpi.com/2071-1050/14/1/189
مصطلحات موضوعية: Environmental pollution, Architectural heritage, Sustainability, Economic aspects
وصف الملف: application/pdf
Relation: 1. Yuan, M.; Yin, C.; Sun, Y.; Chen, W. Examining the associations between urban built environment and noise pollution in high-density high-rise urban areas: A case study in Wuhan, China. Sustain. Cities Soc. 2019, 50, 101678. [CrossRef]; 2. Morano, P.; Guarnaccia, C.; Tajani, F.; Di Liddo, F.; Anelli, D. An analysis of the noise pollution influence on the housing prices in the central area of the city of Bari. J. Phys. Conf. Ser. 2020, 1603, 12027. [CrossRef]; 3. Mabee, W.; Blair, J.; Carlson, J.; Deloyde, C. Sustainability. In International Encyclopedia of Human Geography, 2nd ed.; Kobayashi, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 157–163. Available online: https://www.sciencedirect.com/referencework/ 9780081022962/international-encyclopedia-of-human-geography (accessed on 8 November 2021).; 4. Ko, T.G. Development of a tourism sustainability assessment procedure: A conceptual approach. Tour. Manag. 2005, 26, 431–445. [CrossRef]; 5. Hosseini, K.; Stefaniec, A.; Hosseini, S.P. World Heritage Sites in developing countries: Assessing impacts and handling complexities toward sustainable tourism. J. Destin. Mark. Manag. 2021, 20, 100616. [CrossRef]; 6. Wang, S.-X.; Lu, W.-M.; Hung, S.-W. You gain when you give: Constructing a sustainable development model for world heritage sites. J. Clean. Prod. 2021, 328, 129547. [CrossRef]; 7. European Commission. Sustainability and Cultural Heritage. Available online: https://ec.europa.eu/culture/cultural-heritage/ cultural-heritage-in-eu-policies/sustainability-and-cultural-heritage (accessed on 20 October 2021).; 8. Leygraf, C.; Wallinder, I.O.; Tidblad, J.; Graedel, T. Atmospheric Corrosion; John Wiley & Sons: Hoboken, NJ, USA, 2016.; 9. Oliveira, M.L.S.; Neckel, A.; Silva, L.F.O.; Dotto, G.L.; Maculan, L.S. Environmental aspects of the depreciation of the culturally significant Wall of Cartagena de Indias—Colombia. Chemosphere 2021, 265, 129119. [CrossRef]; 11. García-Florentino, C.; Maguregui, M.; Carrero, J.A.; Morillas, H.; Arana, G.; Madariaga, J.M. Development of a cost effective passive sampler to quantify the particulate matter depositions on building materials over time. J. Clean. Prod. 2020, 268, 122134. [CrossRef]; 12. Camuffo, D. Weathering of building materials. In Urban Pollution and Changes to Materials and Building Surfaces; Brimblecombe, P., Ed.; World Scientific: Singapore, 2016; pp. 19–64.; 13. Bolaño-Truyol, J.; Schneider, I.L.; Cuadro, H.C.; Bolaño-Truyol, J.D.; Oliveira, M.L.S. Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. Geosci. Front. 2021, 13, 101152. [CrossRef]; 14. Chen, X.; Zhang, S.; Ruan, S. Polycentric structure and carbon dioxide emissions: Empirical analysis from provincial data in China. J. Clean. Prod. 2021, 278, 123411. [CrossRef]; 15. Silva, L.F.O.; Milanes, C.; Pinto, D.; Ramirez, O.; Lima, B.D. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 2020, 239, 124776. [CrossRef] [PubMed]; 16. Morillas, H.; Marcaida, I.; Maguregui, M.; Upasen, S.; Gallego-Cartagena, E.; Madariaga, J.M. Identification of metals and metalloids as hazardous elements in PM2.5 and PM10 collected in a coastal environment affected by diffuse contamination. J. Clean. Prod. 2019, 226, 369–378. [CrossRef]; 17. Morcillo, M.; de la Fuente, D.; Díaz, I.; Cano, H. Atmospheric corrosion of mild steel. Rev. Metal. 2011, 47, 426–444. [CrossRef]; 18. Morillas, H.; Maguregui, M.; Gallego-Cartagena, E.; Marcaida, I.; Carral, N.; Madariaga, J.M. The influence of marine environment on the conservation state of Built Heritage: An overview study. Sci. Total Environ. 2020, 745, 140899. [CrossRef] [PubMed]; 19. Screpanti, A.; de Marco, A. Corrosion on cultural heritage buildings in Italy: A role for ozone? Environ. Pollut. 2009, 157, 1513–1520. [CrossRef] [PubMed]; 20. Sabbioni, C.; Cassar, M.; Brimblecombe, P.; Tidblad, J.; Kozlowski, R.; Drdácký, M.; Saiz-Jimenez, C.; Grøntoft, T.; Wainwright, I.; Ariño, X. Global climate change impact on built heritage and cultural landscapes. In Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC 2006, Madrid, Spain, 21–24 June 2006; pp. 395–401.; 21. Brimblecombe, P.; Grossi, C.M.; Harris, I. Climate change critical to cultural heritage. In Survival and Sustainability; Gökçekus, H., Türker, U., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 195–205.; 22. Grossi, C.M.; Brimblecombe, P.; Harris, I. Predicting long term freeze—Thaw risks on Europe built heritage and archaeological sites in a changing climate. Sci. Total Environ. 2007, 377, 273–281. [CrossRef]; 23. Brimblecombe, P. Heritage climatology. In Climate Change and Cultural Heritage; Lefevre, R.-A., Sabbioni, C., Eds.; Edipuglia: Bari, Italy, 2010.; 24. de la Fuente, D.; Vega, J.M.; Viejo, F.; Díaz, I.; Morcillo, M. City scale assessment model for air pollution effects on the cultural heritage. Atmos. Environ. 2011, 45, 1242–1250. [CrossRef]; 25. Tidblad, J.; Kucera, V.; Mikhailov, A.A.; Henriksen, J.; Kreislova, K.; Yates, T.; Stöckle, B.; Schreiner, M. UN ECE ICP materials: Dose-response functions on dry and wet acid deposition effects after 8 years of exposure. In Acid Rain 2000; Satake, K., Shindo, J., Takamatsu, T., Nakano, T., Aoki, S., Fukuyama, T., Hatakeyama, S., Ikuta, K., Kawashima, M., Kohno, Y., et al., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 1457–1462.; 26. Mikhailov, A.A.; Tidblad, J.; Kucera, V. The classification system of ISO 9223 standard and the dose—Response functions assessing the corrosivity of outdoor atmospheres. Prot. Met. 2004, 40, 541–550. [CrossRef]; 27. Ríos-Rojas, J.F.; Aperador-Rodríguez, D.; Hernández-Garcia, E.A.; Arroyave, C.E. Annual atmospheric corrosion rate and dose-response function for carbon steel in Bogotá. Atmósfera 2017, 30, 53–61. [CrossRef]; 28. Tidblad, J.; Kucera, V.; Samie, F.; Schreiner, M.; Melcher, M.; Kreislova, K.; Knotkova, D.; Lefèvre, R.A.; Ionescu, A.; Snethlage, R.; et al. MULTI-AS-SESS, Publishable Final Report, 2005, Model for Multi-Pollutant Impact and Assessment of Threshold Levels for Cultural Heritage. Available online: https://www.ri.se/sites/default/files/2021-04/ICP-MULTI-ASSESS-Publishable-finalreport.pdf (accessed on 8 November 2021).; 29. Broomandi, P.; Tleuken, A.; Zhaxylykov, S.; Nikfal, A.; Kim, J.R.; Karaca, F. Assessment of potential benefits of traffic and urban mobility reductions during COVID-19 lockdowns: Dose-response calculations for material corrosions on built cultural heritage. Environ. Sci. Pollut. Res. 2021, 1–20. [CrossRef]; 30. Watt, J.; Jarrett, D.; Hamilton, R. Dose—response functions for the soiling of heritage materials due to air pollution exposure. Sci. Total Environ. 2008, 400, 415–424. [CrossRef] [PubMed]; 31. Watt, J.; Tidblad, J.; Kucera, V.; Hamilton, R. (Eds.) The Effects of Air Pollution on Cultural Heritage; Springer: Boston, MA, USA, 2009; Volume 6.; 32. de la Fuente, D.; Vega, J.M.; Viejo, F.; Díaz, I.; Morcillo, M. Mapping air pollution effects on atmospheric degradation of cultural heritage. J. Cult. Herit. 2013, 14, 138–145. [CrossRef]; 33. Spezzano, P. Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Sci. Total Environ. 2021, 754, 142345. [CrossRef] [PubMed]; 34. Zhang, X.; Zhou, L.; Wu, Y.; Skitmore, M.; Deng, Z. Resolving the conflicts of sustainable world heritage landscapes in cities: Fully open or limited access for visitors? Habitat Int. 2015, 46, 91–100. [CrossRef]; 35. Srijuntrapun, P. A Sustainable Livelihood Approach in a World Heritage Area. Ph.D. Thesis, Lincoln University, Ayutthaya, Thailand, 2012.; 36. Pearce, D.W.; Mourato, S. The Economic of Cultural Heritage, World Bank Support to Cultural Heritage Preservation in the MNA Region; Centre for Social and Economic Research on the Global Environment (CSERGE), University College London: London, UK, 1998.; 37. Artal-Tur, A. Culture and cultures in tourism. Anatolia 2018, 29, 179–182. [CrossRef]; 38. Richards, G. Cultural tourism: A review of recent research and trends. J. Hosp. Tour. Manag. 2018, 36, 12–21. [CrossRef]; 39. Frey, B.S.; Briviba, A. A policy proposal to deal with excessive cultural tourism. Eur. Plan. Stud. 2021, 29, 601–618. [CrossRef]; 40. Artal-Tur, A.; Villena-Navarro, M.; Alamá-Sabater, L. The relationship between cultural tourist behaviour and destination sustainability. Anatolia 2018, 29, 237–251. [CrossRef]; 41. Du Cros, H.; McKercher, B. Cultural Tourism; Routledge: London, UK, 2020. [CrossRef]; 42. Lee, H. Cultural Tourism. Ann. Tour. Res. 2016, 57, 286–288. [CrossRef]; 43. Tunbridge, J.E.; Ashworth, G.J.; Graham, B.J. Decennial reflections on A Geography of Heritage (2000). Int. J. Herit. Stud. 2013, 19, 365–372. [CrossRef]; 44. Page, S. A Geography of Heritage: Power, Culture and Economy: By Brian Graham, G.J. Ashworth and J.E. Tunbridge. N. Z. Geogr. 2000, 56, 61–62. [CrossRef]; 46. Silva, H.E.; Henriques, F.M.A. The impact of tourism on the conservation and IAQ of cultural heritage: The case of the Monastery of Jerónimos (Portugal). Build. Environ. 2021, 190, 107536. [CrossRef]; 47. World Travel & Tourism Council. Economic Impact Reports. Travel & Tourism—Global Economic Impact & Trends 2020. Available online: https://wttc.org/Research/Economic-Impact (accessed on 8 November 2020).; 48. Mazzanti, M. Cultural heritage as multi-dimensional, multi-value and multi-attribute economic good: Toward a new framework for economic analysis and valuation. J. Socio. Econ. 2002, 31, 529–558. [CrossRef]; 49. Dümcke, C.; Gnedovsky, M. The Social and Economic Value of Cultural Heritage: Literature Review; EENC Paper; European Expert Network on Culture (EENC), 2013; pp. 1–114. Available online: https://www.interarts.net/descargas/interarts2557.pdf. (accessed on 8 November 2020).; 50. Nuryanti, W. Heritage and postmodern tourism. Ann. Tour. Res. 1996, 23, 249–260. [CrossRef]; 51. Pindyck, R.S.; Rubinfeld, D.L. Microeconomics, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998.; 52. Rojas, E.; de Moura Castro, C. Lending for Urban Heritage Conservation: Issues and Opportunities; No. 3839; Inter-American Development Bank: Washington, DC, USA, 1999. Available online: https://publications.iadb.org/en/publication/lendingurban-heritage-conservation-issues-and-opportunities (accessed on 7 November 2021).; 53. Bowitz, E.; Ibenholt, K. Economic impacts of cultural heritage—Research and perspectives. J. Cult. Herit. 2009, 10, 1–8. [CrossRef]; 54. Corpoturismo. El Turismo, el Empleo que Crece 3 Veces Más Rapido que Otros Sectores. Available online: http: //www.cartagenadeindias.travel/corporacion-institucional_sitcar-5?la=es&/noticia-ampliada_en-turismo-el-empleo-crece-3- veces-ms-rpido-que-otros-sectores-784 (accessed on 10 March 2020). (In Spanish).; 55. Zuleta, L.A.; Jaramillo, L. Cartagena de Indias, Impacto Económico de la Zona Histórica; Convenio Andrés Bello: Bogotá, Colombia, 2006; Volume 13. (In Spanish); 56. Galvis-Aponte, L.A.; Aguilera-Díaz, M.M. Determinantes de la Demanda por Turismo Hacia Cartagena, 1987–1998; Documentos de Trabajo Sobre Economía Regional y Urbana; No. 9; 1999. Available online: https://dialnet.unirioja.es/descarga/articulo/483384 0.pdf (accessed on 6 November 2021). (In Spanish) [CrossRef]; 57. Baéz, J. Impacto Economico de la Realización de los XX Juegos Centroamericanos y del Caribe en la Ciudad de Cartagena; Universidad de Cartagena. Planeación Distrital: Cartagena, Colombia, 2002. Available online: https://biblio.flacsoandes.edu.ec/libros/digital/ 54978.pdf (accessed on 6 November 2021). (In Spanish); 58. Vaughan, D.R. The cultural heritage: An approach to analyzing income and employment effects. J. Cult. Econ. 1984, 8, 1–36. [CrossRef]; 59. Murzyn-Kupisz, M. The socio-economic impact of built heritage projects conducted by private investors. J. Cult. Herit. 2013, 14, 156–162. [CrossRef]; 60. Mules, T. Regional economic impacts of tourism in heritage mining towns. In Heritage Economics. Challenges for Heritage Conservation and Sustainable Development in the 21st Century; Australian Heritage Commission: Canberra, Australia, 2000.; 61. Mourato, S.; Mazzanti, M. Economic valuation of cultural heritage: Evidence and prospects. In Assessing the Values of Cultural Heritage; de la Torre, M., Ed.; Getty Conservation Institute: Los Angeles, CA, USA, 2002. Available online: https://www.getty. edu/conservation/publications_resources/pdf_publications/pdf/assessing.pdf (accessed on 8 November 2021).; 62. ICOMOS. International Seminar of Ibero-American Historical Cities (CIHIB). Available online: www.esicomos.org/Nueva_ carpeta/libroTOLEDO/49_conclusiones.htm (accessed on 7 November 2021).; 63. Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH). Climatología de los principales puertos del Caribe Colombiano –Cartagena de Indias, D.T. y C. Available online: https://www.cioh.org.co/meteorologia/Climatologia/Climatologia/Cartagena. pdf (accessed on 15 May 2021). (In Spanish).; 64. Padaui, F.B. (Ed.) Valoración de los Niveles de Riesgos Ambientales en el Distrito de Cartagena; Instituto de Hidráulica de Saneamiento Ambiental de la Universidad de Cartagena. 2014. Available online: https://www.researchgate.net/profile/EdgarQuinones-Bolanos/publication/284284893_Valoracion_de_los_niveles_de_riesgos_ambientales_en_el_Distrito_de_Cartagena_ de_Indias/links/5651087f08ae4988a7abc4cf/Valoracion-de-los-niveles-de-riesgos-ambientales-en-el-Distrito-de-Cartagenade-Indias.pdf (accessed on 7 November 2021).; 65. ISO. ISO 9225:2012Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres, ISO: Geneve, Switzerland, 2012.; 66. National Ocean Service. What are El Niño and La Niña? Available online: https://oceanservice.noaa.gov/facts/ninonina.html (accessed on 22 April 2021).; 67. Euscátegui, C.; Hurtado, G. Análisis del Impacto del Fenómeno La Niña 2010-2011 en la Hidroclimatología del País; IDEAM; (In Spanish). Available online: http://www.ideam.gov.co/documents/21021/418818/Analisis+Impacto+La+Ni~na.pdf/640a4a18-4a2a-4a2 5-b7d5-b3768e0a768a (accessed on 10 October 2021).; 68. Ministro de Ambiente y Desarrollo Sostenible. Resolución 2254 de 2017 Ministerio del Medio Ambiente. 2017. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&url=https://www.minambiente.gov.co/wp-content/uploads/20 21/08/resolucion-2267-de-2018.pdf&ved=2ahUKEwiMqPivwfz0AhXTIDQIHS9nAwwQFnoECDIQAQ&usg=AOvVaw3Vjw6 NSU4P9Di6c7Ii6f5L (accessed on 10 October 2021).; 69. Beydoun, M.A.; Popkin, B.M. The impact of socio-economic factors on functional status decline among community-dwelling older adults in China. Soc. Sci. Med. 2005, 60, 2045–2057. [CrossRef]; 70. Mazzanti, M. Valuing cultural heritage in a multi-attribute framework microeconomic perspectives and policy implications. J. Socio. Econ. 2003, 32, 549–569. [CrossRef]; 71. Tupenaite, L.; Naimaviˇcien ˙ e, J.; Bagdonaviˇcius, A.; Sabaliauskas, K. ˙ Management of Construction and Real Estate Under Conditions of Market Instability; VGTU Press TECHNIKA: Vilnius, Lithuania, 2015.; 72. Kucera, V. Model for Multi-Pollutant Impact and Assessment of Threshold Levels for Cultural Heritage; Swedish Corrosion Institute: Stockholm, Sweden, 2005.; 73. Vega, C.A.B. Evaluación de la Corrosividad de Atmósferas Colombianas y su Impacto Sobre el Deterioro de Algunos Materiales Empleados en el Sector Eléctrico; Universidad de Antioquia: Medellin, Colombia, 2008; p. 166. (In Spanish); 74. Restrepo Carvajal, A.H. Impacto de la Corrosión Atmosférica del Aluminio y el Cobre en la Infraestructura del Sector Eléctrico Colombiano; Universidad de Antioquia: Medellin, Colombia, 2008; p. 170.; 75. Ministerio. de Ambiente y Desarrollo Sostenible. con apoyo de Ministerio de Minas Y Energía, Norma Nacional de Calidad de Combustible Diesel y Biodiesel. 2019; p. 15. Available online: https://www.minenergia.gov.co/documents/10192/24104363 /Ana%EClisis+de+Impacto+Normativo+06062019_MinAmbiente+%2528GMR%2529_GAU2+%25281%2529.pdf/f9c3b013-ba0 c-48cb-b617-a8b6561bc3a7 (accessed on 4 October 2021).; 76. Vidal, F.; Vicente, R.; Silva, J.M. Review of environmental and air pollution impacts on built heritage: 10 questions on corrosion and soiling effects for urban intervention. J. Cult. Herit. 2019, 37, 273–295. [CrossRef]; 77. Salas, E. Informe Calidad de Vida 2020. Available online: http://www.cartagenacomovamos.org/nuevo/wp-content/uploads/ 2020/09/Informe-Calidad-de-Vida-2020-Cartagena-Como-Vamos.pdf (accessed on 7 November 2021).; 78. Rosales, B.M.; Almeida, M.E.M.; Morcillo, M.; Uruchurtu, J.; Marrocos, M. Corrosión y Protección de Metales en las Atmosferas de Iberoamérica; CYTED, Gráficas Salué: Madrid, Spain, 1999.; 79. Ambler, H.R.; Bain, A.A.J. Corrosion of metals in the tropics. J. Appl. Chem. 1955, 5, 437–467. [CrossRef]; 80. Morcillo, M.; Chico, B.; Mariaca, L.; Otero, E. Salinity in marine atmospheric corrosion: Its dependence on the wind regime existing in the site. Corros. Sci. 2000, 42, 91–104. [CrossRef]; 81. Saba, M.; Quiñones-Bolaños, E.E.; Batista, H.F.M. Impact of environmental factors on the deterioration of the Wall of Cartagena de Indias. J. Cult. Herit. 2019, 39, 305–313. [CrossRef]; 82. Fernández, M.C.; Herrera, A.B.C. La preservación de centros históricos: Análisis situacional de Cartagena de Indias. Amauta 2017, 15, 85–101. (In Spanish) [CrossRef]; 83. UNESCO. List of Factors Affecting the Properties. Available online: https://whc.unesco.org/en/factors/ (accessed on 2 November 2021).; 84. Coccossis, H. Sustainable development and tourism: Opportunities and threats to cultural heritage from tourism. In Cultural Tourism and Sustainable Local Development; Routledge: London, UK, 2016; pp. 65–74.; 85. McLoughlin, J.; Sodagar, B.; Kaminski, J. Dynamic socioeconomic impact: A holistic analytical framework for cultural heritage sites. In Heritage Impact 2005, Proceedings of the First International Symposium on the Socio-economic Impact of Cultural Heritage; Archaeolingua: Budapest, Hungary, 2005; pp. 43–57. Available online: http://public-repository.epoch-net.org/publications/ heritageimpact/heritageimpact.pdf (accessed on 8 November 2020).; 86. Ashworth, G. The commodification of the past as an instrument of local development: Do not count on it. In Heritage Impact 2005, Proceedings of the First International Symposium on the Socio-economic Impact of Cultural Heritage; Archaeolingua: Budapest, Hungary, 2005; pp. 81–88.; 87. Sirisrisak, T. Conservation of Bangkok old town. Habitat Int. 2009, 33, 405–411. [CrossRef]; 88. Yung, E.H.K.; Zhang, Q.; Chan, E.H.W. Underlying social factors for evaluating heritage conservation in urban renewal districts. Habitat Int. 2017, 66, 135–148. [CrossRef]; 89. Grazuleviciute-Vileniske, I.; Urbonas, V. Architectural heritage as a socioeconomic opportunity for revitalization of historic urban centres: A global perspective. Archit. Urban Plan. 2011, 5, 27–37.; 90. Zadel, Z.; Bogdan, S. Economic impact of cultural tourism. UTMS J. Econ. 2013, 4, 355–366.; https://hdl.handle.net/11323/9010; https://doi.org/10.3390/su14010189; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
12Academic Journal
المؤلفون: Bolaño-Truyol, Jehison, Schneider, Ismael, CANO CUADRO, HEIDIS PATRICIA, Bolaño Truyol, Jorge Daniel, L.S. Oliveira, Marcos
المصدر: Geoscience Frontiers ; https://www.sciencedirect.com/science/article/pii/S1674987121000165
مصطلحات موضوعية: Biomass burning, Particulate matter, HYSPLIT, Dispersion model, Remote sensing
وصف الملف: application/pdf
Relation: Amegah, A.K., 2018. Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa? Environ. Pollut. 241, 1132–1137.; Barranquilla, 2016. Plan de Ordenamiento Territorial. https://www.barranquilla.gov.co/ transparencia/planeacion/politicas-lineamientos-y-manuales/planes-estrategicos/ plan-de-ordenamiento-territorial; DANE – Departamento Administrativo Nacional de Estadística, 2018. Censo Nacional de Población y Vivienda. https://www.dane.gov.co/files/censo2018/informaciontecnica/CNPV-2018-VIHOPE-v2.xls.; Guo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., Li, Y., 2018. Improving PM2.5 forecasting and emission estimation based on the Bayesian Optimization Method and the coupled FLEXPART-WRF model. Atmosphere 9 (11), 428.; Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M.A., Espinosa, J.M., Restrepo, J.C., Escobar, J., 2017. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 84, 42–54; Huang, X.H.H., Bian, Q., Ng, W.M., Louie, P.K.K., Yu, J.Z., 2014. Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study. Aerosol Air Qual. Res. 14 (1), 237–250.; Islam, M.R., Jayarathne, T., Simpson, I.J., Werden, B., Maben, J., Gilbert, A., Praveen, P.S., Adhikari, S., Panday, A.K., Rupakheti, M., Blake, D.R., Yokelson, R.J., DeCarlo, P.F., Keene, W.C., Stone, E.A., 2019. Ambient air quality in the Kathmandu Valley, Nepal during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmos. Chem. Phys. 20 (5), 2927–2951.; IUFRO – International Union of Forest Research Organizations, 2018. Global Fire Challenges in a Warming World. In: Robinne, F.-N., Burns, J., Kant, P., de Groot, B., Flannigan, M.D., Kleine, M., Wotton, D.M. (Eds.), Occasional Paper No. 32. 2018. IUFRO, Vienna.; Kota, S.H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S.K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., Zhang, H., 2018. Year-long simulation of gaseous and particulate air pollutants in India. Atmos. Environ. 180, 244–255.; Lai, H.-C., Ma, H.-W., Chen, C.-R., Hsiao, M.-C., Pan, B.-H., 2019. Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmos. Environ. 212, 116–127.; Li, F., Zhang, X., Kondragunta, S., Roy, D.P., 2018. Investigation of the fire radiative energy biomass combustion coefficient: A comparison of polar and geostationary satellite retrievals over the conterminous United States. J. Geophys. Res.–Biogeo 123 (2), 722–739.; Li, F., Val Martin, M., Andreae, M.O., Arneth, A., Hantson, S., Kaiser, J.W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J.R., Ward, D.S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B.I., Sitch, S., van der Werf, G.R., Wiedinmyer, C., Rabin, S.S., 2019. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567.; Malamakal, T., Chen, L.-W.A., Wang, X., Green, M.C., Gronstal, S., Chow, J.C., Watson, J.G., 2013. Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation and field verification. Int. J. Environ. Pollut. 52 (3/4), 225–243.; Masiol, M., Squizzato, S., Rich, D.Q., Hopke, P.K., 2019. Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmos. Environ. 201, 110–120; Noda, J., Bergström, R., Kong, X., Gustafsson, T.L., Kovacevik, B., Svane, M., Pettersson, J.B.C., 2019. Aerosol from biomass combustion in Northern Europe: Influence of meteorological conditions and air mass history. Atmosphere 10 (12), 789.; Oliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248, 119250.; Pereira, A.A., Pereira, J.M.C., Libonati, R., Oom, D., Setzer, A.W., Morelli, F., Machado-Silva, F., de Carvalho, L.M.T., 2017. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 9 (11), 1161.; Prato, D.F., Huertas, J.I., 2019. Determination of the area affected by agricultural burning. Atmosphere 10 (6), 312.; Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García dos Santos, S., FernándezPatier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Gil, J.I., Zabalza, J., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 41 (34), 7219–7231.; Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Moreno, T., Silva, L.F., de la Rosa, J.D., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446.; Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655.; Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.; Rönkkö, T.J., Hirvonen, M.R., Happo, M.S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., Jalava, P.I., 2020. Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environ. Res. 185, 109360.; Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollution Res. 6 (5), 877–885; She, H., Cheng, P.-H., Yuan, C.-S., Yang, Z.-M., Hung, C.-M., Ie, I.-R., 2020. Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol Air Qual. Res. 20 (3), 557–575; Silva, P.S., Bastos, A., Libonati, R., Rodrigues, J.A., DaCamara, C.C., 2019. Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecol. Manag. 446, 193–203.; Silva, L.F.O., Pinto, D., Lima, B.D., 2020a. Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables. Chemosphere 254, 126814.; Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020b. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.; Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020c. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.; Turap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., Nuerla, A., 2019. Chemical characteristics and source apportionment of PM2.5 during winter in the southern part of Urumqi, China. Aerosol Air Qual. Res. 19 (6), 1325–1337; Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res. 114, D18205; Wang, S.-C., Wang, Y., Estes, M., Lei, R., Talbot, R., Zhu, L., Hou, P., 2018. Transport of central American fire emissions to the U.S. Gulf Coast: climatological pathways and impacts on Ozone and PM2.5. J. Geophys. Res.-Atmos. 123 (15), 8344–8361; Wooster, M.J., 2002. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 29 (21), 2027.; J. Bolaño-Truyol, I.L. Schneider, H.C. Cuadro et al; Wooster, M.J., Roberts, G., Perry, G.L.W., Kaufman, Y.J., 2005. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res.-Atmos. 110 D24311; Wu, Y., Arapi, A., Huang, J., Gross, B., Moshary, F., 2018. Intra-continental wildfire smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. Atmos. Environ. 187, 266–281.; Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., Song, Y., 2019. Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences 16 (7), 1629–1640; Zhang, X., Kondragunta, S., Quayle, B., 2011. Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Trans. Geosci. Remote Sensing 49 (11), 4469–4482.; Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., Huang, H.-C., 2012. Near-real-time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res.-Atmos. 117 (D14).; Zhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., Zhang, R., 2018. A modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event. Aerosol Air Qual. Res. 18 (7), 1558–1572; https://hdl.handle.net/11323/8302; https://doi.org/10.1016/j.gsf.2021.101152; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
13Academic Journal
المؤلفون: Díaz, Iván, Cano Cuadro, Heidis Patricia, Lopesino, Patricia, De La Fuente García, Daniel, Chico, Belén, Jiménez, José A, Medina, S. F, Morcillo, Manuel
مصطلحات موضوعية: A. Low Alloy Steel, B. SEM, B. XRD, C. Atmospheric Corrosion
وصف الملف: application/pdf
Relation: http://hdl.handle.net/11323/1088; https://doi.org/10.1016/j.corsci.2018.06.039; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
14Academic Journal
المؤلفون: Díaz, Iván, Cano Cuadro, Heidis Patricia, Crespo, David, Chico, Belén, De La Fuente García, Daniel, Morcillo, Manuel
مصطلحات موضوعية: ASTM A-242, ASTM A-588, Atmospheric corrosion, Industrial, Marine, Rural, Urban, Weathering stee, Corrosión atmosférica, Marina, Urbano, Stee intemperie
وصف الملف: application/pdf
Relation: http://hdl.handle.net/11323/4620; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
15Report
مصطلحات موضوعية: Weathering steel, Atmospheric corrosion, Engineering
وصف الملف: application/pdf
Relation: [1] G. Smith, Steels fit for the countryside, New Scientist (1971) 211–213. [2] A-242/A-242M-04Standard Specification for High-Strength Low-alloy Structural Steel, American Society for Testing and Materials, Philadelphia, 2007. [3] A-588/A-588MStandard Specification for High-strength Low Alloy Structural Steel with 50 ksi [345 MPa] Minimum Yield Point to 4-in. [100 mm] Thick, American Society for Testing and Materials, Philadelphia, 2005. [4] A709/A709MStandard Specification for Structural Steel for Bridges, American Society for Testing and Materials, Philadelphia, 2009. [5] A.D. Wilson, Properties of recent production of A709 HPS 70W bridge steels, in: International Symposium on Steel for Fabricated Structures, ASM International, Cincinnati, 1999, pp. 41–49. [6] A. Azizinamini, High-Performance Steel: New Horizon in Steel Bridge Construction, Transportation Research Board, Washington, D.C., 1998. [7] BS EN 10155Structural Steels with Improved Atmospheric Corrosion Resistance – Technical Delivery Conditions, British Standards Institution, 1993. [8] ASTM G 101-04Standard Guide for Estimating The Atmospheric Corrosion Resistance of Low-alloy Steels, American Society for Testing and Materials, Philadelphia, 2004. [9] M. Morcillo, B. Chico, I. Díaz, H. Cano, D. De la Fuente, Atmospheric corrosion data of weathering steels. A review, Corros. Sci. 77 (2013) 6–24. [10] M. Morcillo, I. Díaz, B. Chico, H. Cano, D. de la Fuente, Weathering steels: from empirical development to scientific design. A review, Corros. Sci. 83 (2014) 6– 31. [11] J.B. Horton, The Composition, Structure and Growth of The Atmospheric Rust on Various Steels (Doctoral Thesis), Lehigh University, 1964. [12] T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, Mechanism of atmospheric rusting and protective amorphous rust on low-alloy steel, Corros. Sci. 14 (1974) 279–289. [13] T. Misawa, Y. Kyuno, W. Suëtaka, S. Shimodaira, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of lowalloy steels, Corros. Sci. 11 (1971) 35–48. [14] M. Stratmann, K. Bohnenkamp, H.J. Engell, An electrochemical study of phasetransitions in rust layers, Corros. Sci. 23 (1983) 969–985. [15] U.R. Evans, C.A.J. Taylor, Mechanism of atmospheric rusting, Corros. Sci. 12 (1972) 227–246. [16] M. Stratmann, J. Müller, The mechanism of the oxygen reduction on rustcovered metal substrates, Corros. Sci. 36 (1994) 327–359. [17] M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci. 36 (1994) 283–299. [18] X. Zhang, C. Leygraf, I. Odnevall, Atmospheric corrosion of galfan coatings on steel in chloride-rich environments, Corros. Sci. 73 (2013) 62–71. [19] T. Nishimura, H. Katayama, K. Noda, T. Kodama, Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions, Corrosion 56 (2000) 935–941. [20] T. Nishimura, K. Tanaka, Y. Shimizu, Effect of NaCl on rusting of steel in wet and dry corrosion cycle, J. Iron Steel Inst. Jpn. 81 (1995) 1079–1084. [21] J. Alcántara, D. de la Fuente, B. Chico, J. Simancas, I. Díaz, M. Morcillo, Marine atmospheric corrosion of carbon steel: a review, Materials 10 (2017) 406. [22] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley-VCH Verlag GmbH, Weinheim, 2003. [23] I. Díaz, H. Cano, P. Lopesino, D. de la Fuente, B. Chico, J.A. Jiménez, S.F. Medina, M. Morcillo, Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments, Corros. Sci. 141 (2018) 146–157. [24] UN/ECEInternational Cooperative Programme on Effects on Materials including Historic and Cultural Monuments, Report N. 12: Corrosion attack on weathering steel, zinc and aluminium, Evaluation After 4 Years of Exposure, SVUOM, Prague, 1993. [25] EN ISO 9223Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Classification, Determination and Estimation, European Committee for Standardization, Brussels, 2012. [26] I. Díaz, Corrosión atmosférica de aceros patinables de nueva generación (Doctoral Thesis), Universidad Complutense de Madrid, 2012. [27] J. Calero, J. Alcántara, B. Chico, I. Díaz, J. Simancas, D. De la Fuente, M. Morcillo, Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres, Corros, Eng. Sci. Technol. 52 (2017) 178–187. [28] B. Chico, J. Alcántara, E. Pino, I. Díaz, J. Simancas, A. Torres-Pardo, D. De la Fuente, J.A. Jiménez, J.F. Marco, J.M. González-Calbet, M. Morcillo, Rust exfoliation on carbon steels in chloride-rich atmospheres, Corros. Rev. 33 (2015) 263–282. [29] M. Morcillo, B. Chico, D. De la Fuente, J. Alcántara, I. Odnevall Wallinder, C. Leygraf, On the mechanism of rust exfoliation in marine environments, J. Electrochem. Soc. 164 (2017) C8–C16. [30] D.C. Cook, Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments, Corros. Sci. 47 (2005) 2550–2570. [31] S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge, Corros. Sci. 49 (2007) 1131–1142. [32] H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Díaz, D. De la Fuente, Characterization of corrosion products formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% weathering steel exposed in marine atmospheres, Corros. Sci. 87 (2014) 438–451. [33] K. Asami, M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal–industrial atmosphere for 17 years, Corros. Sci. 45 (2003) 2671–2688. [34] K. Asami, Characterization of rust layers on a plain-carbon steel and weathering steels exposed to industrial and coastal atmosphere for years, in: Y. Waseda, S. Suzuki (Eds.), Characterization of Corrosion Products on Steel Surfaces, Advances in Materials Research, Springer, Heidelberg, 2006, pp. 159– 197. [35] J. Alcántara, B. Chico, I. Díaz, D. de la Fuente, M. Morcillo, Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel, Corros. Sci. 97 (2015) 74–88. [36] J. Honzák, Schutz von Stahlkonstruktion gegen Atmospharische Korrosion (Protection of Steel Structures against Atmospheric Corrosion), 57 Veranstaltung EFK, Prague, 1971. [37] I. Díaz, H. Cano, D. Crespo, B. Chico, D. de la Fuente, M. Morcillo, Atmospheric corrosion of ASTM A-242 and ASTM A-588 weathering steels in different type of atmospheres, Corros. Eng. Sci. Tech 53 (2018) 449–459. [38] T. Ishikawa, R. Katoh, A. Yasukawa, K. Kandori, T. Nakayama, F. Yuse, Influences of metal ions on the formation of b-FeOOH particles, Corros. Sci. 43 (2001) 1727–1738. [39] D. de la Fuente, I. Diaz, J. Simancas, B. Chico, M. Morcillo, Long-term atmospheric corrosion of mild steel, Corros. Sci. 53 (2011) 604–617. [40] M. Morcillo, D. De la Fuente, I. Díaz, H. Cano, Atmospheric corrosion of mild steel. A review, Rev. Metal. Madrid 47 (2011) 426–444. [41] T. Ishikawa, M. Kumagai, A. Yasukawa, K. Kandori, Characterization of rust on weathering steel by gas adsorption, Corrosion 57 (2001) 346–352. [42] T. Ishikawa, Assessment of rust layers formed on WS in saline environment by gas adsorption, Mater. Corros. 66 (2015) 1460–1466. [43] T. Ishikawa, T. Yoshida, K. Kandori, T. Nakayama, S. Hara, Assessment of protective function of steel rust layers by N2 adsorption, Corros. Sci. 49 (2007) 1468–1477. [44] C. Leygraf, I. Odnevall Wallinder, J. Tidblad, T. Graedel, Atmospheric Corrosion, The Electrochemical Society Series, 2nd ed., John Wiley and Sons, Hoboken, New Jersey, 2016. [45] C.P. Larrabee, S.K. Coburn, The atmospheric corrosion of steels as influenced by changes in chemical composition, in: Proceedings of the 1st International Congress on Metallic Corrosion, 1961, London. pp. 279–285. [46] Guideline for designing and construction of bridges by weathering steel, Kozai Club, Tokyo, Technical Report, 1993. [47] Specification for highway bridges, I y II (Steel Bridge), Japan Road Association, Tokio, 2002-3. [48] D.C. Cook, The corrosion of high performance steel in adverse environments, in: M. Gracia, J.F. Marco, F. Plazaola (Eds.), Industrial Applications of the Mössbauer Effects, American Institute of Physics, 2005, pp. 63–72. [49] UN/ECEInternational Cooperative Programme on Effects on Materials including Historic and Cultural Monuments, Report N. 22: Corrosion attack on weathering steel, zinc and aluminium, Evaluation After 8 Years of Exposure, SVUOM, Prague, 1998. [50] J. Zoccola, Eight Year Corrosion Test Report – Eight Mile Road Interchange, Bethlehem Steel, Bethlehem, 1976. [51] The highway agency: design manual for roads and bridges, BD 7/01, weathering steel for highway structures, the Stationery Office, London, 1981. [52] The highway agency: design manual for roads and bridges, Vol. 2 Sec. 3 BD 7/ 01, weathering steel for highway structures, the Stationery Office, London, 2001. [53] M. Takebe, M. Ohya, S. Ajiki, T. Furukawa, R. Adachi, R. Gan-ei, N. Kitagawa, J. Ota, Y. Matsuzaki, T. Aso, Estimation of quantity of Cl from deicing salts on weathering steel used for bridges, Int. J. Steel Struct. 8 (2008) 73–81. [54] S.S. Kim, Appropriate environmental sphere of application for unpainted WS, J. Ind. Eng. Chem. 9 (2003) 212–218. [55] U.S. Department of Transportation, Federal Highway Administration: Technical Advisory, T5140.22, 1989. [56] D. Knotkova, J. Vlckova, J. Honzak, Atmospheric corrosion of weathering steels, in: S.W. Dean, E.C. Rhea (Eds.), Atmospheric Corrosion of Metals, ASTM STP 767, American Society for Testing and Materials, Philadelphia, 1982, pp. 7–44. [57] National Academy of SciencesAn analysis of atmospheric corrosion tests in low-alloy steels – Applicability of test results to highway bridges No. 204, Highway Research Record, Nat. Acad. Sci., Washington DC, 1967. [58] M. Mackenzie (Ed.), Proc. of The Conference ‘‘The Performance of In-situ Weathering Steel in Bridges”, Bridge Management Forum at University of Surrey, Thomas Telford, London, 2000. [59] C.P. Larrabee, Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment, Corrosion 9 (1953) 259–271. [60] K. Park, Corrosion Resistance of Weathering Steels (Doctoral Thesis), University of Maryland, Department of Civil and Environmental Engineering, 2004. [61] I. Matsushima, T. Ueno, On the protective nature of atmospheric rust on lowalloy steel, Corros. Sci. 11 (1971) 129–140. [62] S.K. Coburn, M.E. Komp, S.C. Lore, Atmospheric corrosion rates of weathering steels at test sites in the eastern United States. Effect of environment and test panel orientation, in: W.W. Kirk, H.H. Lawson (Eds.), Atmospheric Corrosion, ASTM STP 1239, American Society for Testing and Materials, Philadelphia, 1995, pp. 101–113. [63] C.P. Larrabee, The effect of specimen position on atmospheric corrosion testing of steel, Trans. Electrochem. Soc. 85 (1944) 297–306. [64] T. Moroishi, J. Satake, The influence of the inclination and direction of specimen surface on atmospheric corrosion of steels, Tetsu - to - Hagane 59 (1973) 125–130. [65] J. Satake, T. Moroishi, Y. Nishida, S. Tanaka, Sumitomo Metals 22 (1970) 516– 520 (in Japanese). [66] I. Matsushima, Y. Ishizu, T. Ueno, M. Kanasashi, K. Horikawa, Effect of structural and environmental factors on the practical use of low-alloy weathering steel, Corros. Eng. 23 (1974) 177–182. [67] D.M. Buck, Recent progress in corrosion resistance, Iron Age (1915) 1231– 1239. [68] H. Schwitter, H. Bohni, Influence of accelerated weathering on the corrosion of low-alloy steels, J. Electrochem. Soc. 127 (1980) 15–20. [69] M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays, Corros. Sci. 45 (2003) 381–394. [70] H.R. Copson, Long-time atmospheric corrosion tests on low-alloy steels, Proc. ASTM 60 (1960) 1–16. [71] P.F. Weiser, Atmospheric corrosion of carbon and low alloy cast steels, in: W.H. Ailor (Ed.), Atmospheric Corrosion, John Wiley and Sons, New York, 1982, pp. 453–473. [72] C.W. Briggs, Atmospheric corrosion of carbon and low alloy cast steels, in: Metal Corrosion in the Atmosphere, ASTM STP 435, American Society for Testing and Materials, Philadelphia, 1968, pp. 271–284. [73] G.B. Mannweiler, Corrosion test results of fifteen ferrous metals after sevenyears atmospheric exposure, in: Metal Corrosion in the Atmosphere, ASTM STP 435, American Society for Testing and Materials, Philadelphia, 1968, pp. 211– 222. [74] H.E. Townsend, Atmospheric corrosion performance of quenched-andtempered, high-strength weathering steel, Corrosion 56 (2000) 883–886. [75] A. Kondo, Fatigue of 10-year weathered welded joints of weathering and structural steel, in: Proceedings of the Japan Society of Civil Engineers, 1994, pp. 121–127 (in Japanese). [76] C. Miki, K. Homma, T. Tominaga, High strength and high performance steels and their use in bridge structures, J. Constr. Steel Res. 58 (2002) 3–20. [77] J.W. Stewart, J.A. Charles, E.R. Wallach, Iron-phosphorus-carbon system: Part I – Mechanical properties of low carbon iron-phosphorus alloys, Mater. Sci. Technol. 16 (2000) 275–282. [78] V. Raghavan, C-Fe-P (Carbon-Iron-Phosphorus), J. Phase Equilib. Diffus. 25 (2004) 541–542. [79] H. Cano, Aceros patinables (Cu, Cr, Ni): Resistencia a la corrosión atmosférica y soldabilidad (Doctoral Thesis), Universidad Complutense de Madrid, 2013. [80] The Use of Weathering Steel in Bridges, European Convention for Constructional Steelwork. ECCS CECM EKS, n 81, Brussels. [81] ASTM F3125/F3125-15aStandard specification for high strength structural bolts, steel and alloy steel, heat treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) minimum tensile strength, inch and metric dimensions, ASTM International, West Conshohocken, PA, 2015. [82] R.H. McCuen, P. Albrecht, J.G. Cheng, A new approach to power-model regression of corrosion penetration data, in: V. Chaker (Ed.), Corrosion Forms and Control for Infrastructure, ASTM STP 1137, American Society for Testing and Materials, Philadelphia, 1992, pp. 46–76. [83] M. Pourbaix, The linear bilogarithmic law for atmospheric corrosion, in: W.H. Ailor (Ed.), Atmospheric Corrosion, John Wiley and Sons, New York, 1982, pp. 107–121. [84] P. Albrecht, T.T. Hall, Atmospheric corrosion resistance of structural steels, J. Mater. Civ. Eng. 15 (2003) 2–24. [85] EN ISO 9224Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Guiding Values for The Corrosivity Categories, European Committee for Standardization, Brussels, 2012. [86] V. Kucera, Mapping Effects on Materials in Manual Mapping Critical Load, ICP Materials, Coordination Centre, Stockholm, 2004. Vol. http://icpmapping.org. [87] D.E. Klinesmith, R.H. McCuen, P. Albrecht, Effect of environmental conditions on corrosion rates, J. Mater. Civ. Eng. 19 (2007) 121–129. [88] R. Landolfo, L. Cascini, F. Portioli, Modeling of metal structure corrosion damage: a state of the art report, Sustainability 2 (2010) 2163–2175. [89] EN 12500Corrosion Likelihood in Atmospheric Environment, European Committee for Standardization (CEN), Brussels, 2000. [90] H.E. Townsend, The effects of alloying elements on the corrosion of steel in industrial atmospheres, Proceedings of 14th International Corrosion Congress, Corrosion Institute of Southern Africa, Cape Town, 1999. [91] S.W. Dean, D. Knotkova, J.K. Kreislova, ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, ASTM International, West Conshohocken, 2011.; http://hdl.handle.net/11323/4846; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
-
16
المؤلفون: Cano Cuadro, Heidis Patricia
المساهمون: Morcillo Linares, Manuel, De la Fuente García, Daniel, Amo Ortega, José María, Fuente García, Daniel de la
المصدر: Digital.CSIC. Repositorio Institucional del CSIC
instname
E-Prints Complutense. Archivo Institucional de la UCM
E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madridمصطلحات موضوعية: Aceros de baja aleación, Pátina, Materiales, Límite elástico, Aceros, Corrosión atmosférica, Soldabilidad
وصف الملف: application/pdf
-
17Dissertation/ Thesis
المؤلفون: Cano Cuadro, Heidis Patricia
المساهمون: Morcillo Linares, Manuel, Fuente García, Daniel de la, Amo Ortega, José María
مصطلحات موضوعية: 669.14:620.193(043.2), Acero, corrosión, Materiales, 3312 Tecnología de Materiales
وصف الملف: application/pdf
-
18Electronic Resource
المؤلفون: Morcillo Linares, Manuel, Fuente García, Daniel de la, Amo Ortega, José María, Cano Cuadro, Heidis Patricia
مصطلحات الفهرس: doctoral thesis
-
19Electronic Resource
-
20Dissertation/ Thesis
المؤلفون: Trujillo Báez, Leidy Carolina
المساهمون: Portantiolo Manzolli, Rogerio, Cano Cuadro, Heidis Patricia, De Paoli Fabricio, Garzón Barrero Nubia Mireya, Portz Luana
مصطلحات موضوعية: Sediments, Dredging, Ports, Bathymetry, Ecosystem, Port management, Sedimentos, Dragados, Puertos, Batimetría, Ecosistema, Gestión portuaria
جغرافية الموضوع: Barranquilla
وصف الملف: 136 páginas; application/pdf
Relation: ASOCIACIÓN NACIONAL DE COMERCIO EXTERIOR-ANALDEX. (2021). Informe Tráfico Portuario en Colombia - 2021. www.analdex.org ASOPORTUARIA. (2014).; Ávila, B., & Gallo, M. N. (2021). Morphological behavior of the Magdalena River delta (Colombia) due to intra and interannual variations in river discharge. Journal of South American Earth Sciences, 108. https://doi.org/10.1016/j.jsames.2021.103215; Beatriz Pernía, Mariuxi Mero, Xavier Cornejo, Nelson Ramírez, Lissette Ramírez, Kenya Bravo, David López, Jorge Muñoz, & Josué Zambrano. (2018). DETERMINACIÓN DE CADMIO Y PLOMO EN AGUA, SEDIMENTO Y ORGANISMOS BIOINDICADORES EN EL ESTERO SALADO ECUADOR. SciELO. https://doi.org/https://doi.org/10.29019/enfoqueute.v9n2.246; Betancourt, J., Ramirez, G., & Garay, J. (2003). INSTITUTO DE INVESTIGACIONES MARINAS Y COSTERAS José Benito Vives De Andréis-INVEMAR Vinculado al Ministerio de Ambiente, Vivienda y Desarrollo Territorial Programa CALIDAD AMBIENTAL MARINA-CAM.; Buceta, J. L., Lloret, A., Antequera, M., Obispo, R., Sierra, J., & Martínez-Gil, M. (2015). Nuevo marco para la caracterización y clasificación del material dragado en Espa˜na. Ribagua, 2(2), 105–115. https://doi.org/10.1016/j.riba.2015.11.001; Caballero-Gallardo, K., Guerrero-Castilla, A., Johnson-Restrepo, B., de la Rosa, J., & Olivero Verbel, J. (2015). Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals. Chemosphere, 138, 837–846. https://doi.org/10.1016/j.chemosphere.2015.07.062; Canadian Council of Ministers of the Environment. (1999a). Canadian environmental quality guidelines. CCME.; Canadian Council of Ministers of the Environment. (1999b). ZINC Canadian Sediment Quality Guidelines for the Protection of Aquatic Life 2.; Capeáns, P. P. (n.d.). Biodisponibilidad de Cromo en sedimentos marinos de la Ría de Arousa.; Casado-Martínez, M. C. (2006). Caracterización de material de dragado optimizando un método integrado de evaluación de la calidad ambiental. Thesis.; Chen, C. F., Chen, C. W., Ju, Y. R., Kao, C. M., & Dong, C. di. (2018). Impact of disposal of dredged material on sediment quality in the Kaohsiung Ocean Dredged Material Disposal Site, Taiwan. Chemosphere, 191, 555–565. https://doi.org/10.1016/j.chemosphere.2017.10.091; Choueri, R. B. (2008). Armonización del protocolo de evaluación de calidad de sedimentos y materiales dragados en zonas de estuarios y portuarias del Atlántico. May, 241.; Chyba, M., Rader, J., & Andoinian, M. (2010). Creación de mapas batimétricos usando vehículos submarinos autónomos en el río Magdalena. Ciencia y Tecnología de Buques, 4(7), 31. https://doi.org/10.25043/19098642.38; Coremar Palermo Sociedad Portuaria. (n.d.). COREMAR - Palermo Sociedad Portuaria.; Donnici et al. / Estuarine, Coastal and Shelf Science 198 (2017) 354e366. Sedimentation rate and lateral migration of tidal channels in the Lagoon of Venice (Northern Italy).; Dubois, V., Abriak, N. E., Zentar, R., & Ballivy, G. (2009). The use of marine sediments as a pavement base material. Waste Management, 29(2), 774–782. https://doi.org/10.1016/j.wasman.2008.05.004; Eggleton, J., & Thomas, K. v. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30(7), 973–980. https://doi.org/10.1016/j.envint.2004.03.001; esri. (n.d.). ArcGIS Pro. Cómo Funciona El Relleno Cortado.; Feola, A., Lisi, I., Salmeri, A., Venti, F., Pedroncini, A., Gabellini, M., & Romano, E. (2016). Platform of integrated tools to support environmental studies and management of dredging activities. Journal of Environmental Management, 166, 357–373. https://doi.org/10.1016/j.jenvman.2015.10.022; García-Chevesich, P. A., Pizarro Tapia, R., Lehmann, C., Gisella Martínez Rodríguez, O., & Sc, M. (2021). Perspectivas de la gestión actual de sedimentos en nueve países de las Américas Perú y Uruguay. Con la experiencia de Estados Unidos EDITORES. www.unesco.org/open-access/terms-use-ccbysa-sp; Helena Fernandes, E., da Silva, P. D., Gonçalv, G. A., & Olinto Möller, O. (2021). Dispersion plumes in open ocean disposal sites of dredged sediment. Water (Switzerland), 13(6). https://doi.org/10.3390/w13060808; INCONTEC. (2000). NORMA TÉCNICA NTC COLOMBIANA 174; INCONTEC. (2007). NORMA TÉCNICA NTC COLOMBIANA 77 CONCRETOS. MÉTODO DE ENSAYO PARA EL ANÁLISIS POR TAMIZADO DE LOS AGREGADOS FINOS Y GRUESOS E: STANDARD TEST METHOD FOR SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES CORRESPONDENCIA: esta norma es idéntica (IDT) a la norma ASTM D136:2005.; José Luis González García. (2003). LAS MEZCLAS DE CONCRETO Y SUS RESULTADOS EN LA CIUDAD DE TARAPOTO UTILIZANDO EL MÉTODO DE AGREGADO GLOBAL Y MÓDULO DE FINURA.; Juan A Oliveira. (2015). La draga de succión Cristobal Colón. VA DE BARCOS. https://vadebarcos.net/2015/04/25/draga-succion-cristobal-colon-la-naval-sestao/; Junakova, N., & Junak, J. (2019). Alternative reuse of bottom sediments in construction materials: Overview. IOP Conference Series: Materials Science and Engineering, 549(1). https://doi.org/10.1088/1757-899X/549/1/012038; Jurado, P. (2020, December 22). Ministerio de Transporte. Cormagdalena y Findeter Garantizan Dragado En El Río Magdalena En El 2021 Gracias a La Suscripción Del Contrato Interadministrativo.; Lomonaco, P., & Losada, M. (1999). UN MODELO DE EVOLUCIÓN A LARGO PLAZO DE DESEMBOCADURAS: APLICACIÓN AL DISEÑO DE CANALES DE NAVEGACIÓN Enhancing risk management partnerships for catastrophic natural disasters in Europe ENHANCE Project-(EC, FP7). View project iOLE project View project. https://doi.org/10.13140/RG.2.1.1547.9849; Manuel, J., Peña, S., Ruiz, J. E., & De, J. (2005). Determinación de fósforo total, nitrógeno y carbono orgánico en sedimentos del lago de Tota.; Manzolli, R. P., Portz, L., Villate-Daza, D., Pulido-Nossa, D., García-Becerra, D., & Alcántara Carrió, J. (2022). Recent geomorphological evolution of channel bar in Magdalena River (Colombia) due to natural and anthropogenic interferences. Estuarine, Coastal and Shelf Science, 275, 107959. https://doi.org/10.1016/j.ecss.2022.107959; Marquez, A., Martinez, G., & Senior, W. (2007). CONCENTRACIONES DE NITROGENO Y FOSFORO EN SEDIMENTOS RECIENTES DE LA LAGUNA LOS PATOS ESTADO SUCRE, VENEZUELA. Universidad Del Oriente.; Mojica, J. I., Galvis, G., Sánchez- Duarte, P., Castellanos, C., & Villa - Navarro, F. (2006). BIOTA COLOMBIANA. Instituto Alexander Von Humboldt. http://www.humboldt.org.co/biota; Molina, V. (2002). Flujos de Nitrógeno Orgánico Disuelto, un indicador de la capacidad degradadora de los sedimentos costeros de Chile Central. Universidad de Concepción, Escuela de Graduados; Montoya, D., & Gómez, J. (2011). COMPETITIVIDAD E INFRAESTRUCTURA PORTUARIA DE LA COSTA.; Mymrin, V., Stella, J. C., Scremim, C. B., Pan, R. C. Y., Sanches, F. G., Alekseev, K., Pedroso, D. E., Molinetti, A., & Fortini, O. M. (2017). Utilization of sediments dredged from marine ports as a principal component of composite material. Journal of Cleaner Production, 142, 4041–4049. https://doi.org/10.1016/j.jclepro.2016.10.035; Nayar, S., Miller, D. J., Hunt, A., Goh, B. P. L., & Chou, L. M. (2007). Environmental effects of dredging on sediment nutrients, carbon and granulometry in a tropical estuary. Environmental Monitoring and Assessment, 127(1–3), 1–13. https://doi.org/10.1007/s10661-006-9253-2; Otero, A. (2011). El puerto de Barranquilla: retos y recomendaciones.; Palanques, A., Guillén, J., Puig, P., & Durán, R. (2022). Effects of long-lasting massive dumping of dredged material on bottom sediment and water turbidity during port expansion works. Ocean and Coastal Management, 223. https://doi.org/10.1016/j.ocecoaman.2022.106113; Palleiro Suárez, L. (2016). Influencia de la escorrentía rural sobre el aporte de metales pesados y sedimentos al sistema fluvial: análisis a escala de cuenca.; Peña Coronado, K. E., Aguas Medina, D. de J., & Ospina Arias, J. C. (2017). The Magdalena river canal and the synergies for the development of Barranquilla. Dimensión Empresarial, 15(2), 211–240. https://doi.org/10.15665/rde.v15i2.1426.; Peña Salamanca, E, Cantera Kintz, J y Muñoz, E. (2017). Evaluación de la contaminación en ecosistemas acuáticos: un estudio de caso en la laguna de Sonso, cuenca alta del río Cauca; Puerto de Barranquilla, S. P. (n.d.). Barranquilla Ciudad - Puerto. Retrieved July 27, 2022, from https://www.puertodebarranquilla.com/index.php/cifras-del-sector-y-la ciudad/#:~:text=Barranquilla%20se%20ubica%20frente%20al%20R%C3%ADo%20Magda lena,%20principal,de%203.000.000%20ton.%20sobre%20el%20r%C3%ADo%20Mag dalena%20%28Cormagdalena%29.; Salamanca, M. A., & Jara, B. (2003). LEAD (Pb AND 210 Pb) DISTRIBUTION AND ACCUMULATION IN SEDIMENTS OF XI REGION FIORDS. CHILE (Vol. 26, Issue 2).; Sánchez, R. J., Jaimurzina, A., Wilmsmeier, G., Pérez, G., Doerr, O., & Pinto, F. (n.d.). RECURSOS NATURALES E INFRAESTRUCTURA.; Silva, L. A., Victor, M. M., Lopes, W. A., & Cunha, S. (2019). Copper: Industrial production and applications. Quimica Nova, 42(10), 1154–1161. https://doi.org/10.21577/0100- 4042.20170439; Suárez, U. (2013). Distribución espacial de fósforo en sedimentos superficiales. In N° (Vol. 17).; Universidad del Norte, 2000. Estudio de las condiciones de navegabilidad del río Magdalena entre La Gloria y el puente Pumarejo. Barranquilla, Colombia.; Universidad del Norte. (2012, June 6). Ciencia a tu alcance presenta: Dinámica sedimentaria en el río Magdalena. https://liferaypruebas.uninorte.edu.co/web/grupo prensa/noticia?articleId=254734&groupId=739; van den Berg, G. A., Meijers, G. G. A., van der Heijdt, L. M., & Zwolsman, J. J. G. (2001). Dredging-related mobilisation of trace metals: A case study in The Netherlands. Water Research, 35(8), 1979–1986. https://doi.org/10.1016/S0043-1354(00)00452-8; Vanesa, C., Marisel Fernandez, E., Cecilia Pérez, A., Sur, del, Rubén Hugo Freije, A., Nacional del Sur, U., & Nacional de La Plata, U. (2020). Primer estudio sobre fraccionamiento de fósforo en sedimentos supramareales del estuario de Bahía Blanca (Argentina). Revista Del Museo de La Plata. http://portal.amelica.org/ameli/jatsRepo/128/1281733008/index.html; Velásquez, F., Cardona, A., & Montes, C. (2019). Characterization of heavy minerals from active sediments of the Magdalena River basin, Colombia: Implications in the provenance analysis of the fluvial record. Boletin de Geologia, 41(2), 137–147. https://doi.org/10.18273/revbol.v41n2-2019008; Zentar, R., Wang, H., & Wang, D. (2021). Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material. Construction and Building Materials, 279, 122447. https://doi.org/10.1016/j.conbuildmat.2021.122447; Zoumis, T., Schmidt, A., Grigorova, L., & Calmano, W. (2001). Contaminants in sediments: remobilisation and demobilisation. Science of the Total Environment, 266(1–3), 195–202. https://doi.org/10.1016/S0048-9697(00)00740-3; https://hdl.handle.net/11323/13684; Corporación Universidad de la Costa; https://repositorio.cuc.edu.co/