يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '"C. capitata"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Tannous, Michael, Stefanini, Cesare, Romano, Donato

    Relation: volume:14; issue:2; firstpage:148; numberofpages:14; journal:INSECTS; https://hdl.handle.net/11382/552211

  3. 3
    Academic Journal
  4. 4

    المصدر: Insects
    Volume 14
    Issue 2
    Pages: 148

    مصطلحات موضوعية: Mediterranean fruit fly, the similar shape and movement patterns of the two insects did not interfere with the network precision. The proposed method can be extended to other pest species, Artificial Intelligence (AI) and automation are fostering more sustainable and effective solutions for a wide spectrum of agricultural problems. Pest management is a major challenge for crop production that can benefit from machine learning techniques to detect and monitor specific pests and diseases. Traditional monitoring is labor intensive, time demanding, and expensive, while machine learning paradigms may support cost-effective crop protection decisions. However, previous studies mainly relied on morphological images of stationary or immobilized animals. Other features related to living animals behaving in the environment (e.g., walking trajectories, different postures, etc.) have been overlooked so far. In this study, we developed a detection method based on convolutional neural network (CNN) that can accurately classify in real-time two tephritid species (Ceratitis capitata and Bactrocera oleae) free to move and change their posture. Results showed a successful automatic detection (i.e., precision rate about 93%) in real-time of C. capitata and B. oleae adults using a camera sensor at a fixed height. In addition, the similar shape and movement patterns of the two insects did not interfere with the network precision. The proposed method can be extended to other pest species, needing minimal data pre-processing and similar architecture, Artificial Intelligence (AI) and automation are fostering more sustainable and effective solutions for a wide spectrum of agricultural problems. Pest management is a major challenge for crop production that can benefit from machine learning techniques to detect and monitor specific pests and diseases. Traditional monitoring is labor intensive, deep learning, etc.) have been overlooked so far. In this study, we developed a detection method based on convolutional neural network (CNN) that can accurately classify in real-time two tephritid species (Ceratitis capitata and Bactrocera oleae) free to move and change their posture. Results showed a successful automatic detection (i.e, integrate pest management, tephritid, monitoring, machine learning, AI, Insect Science, olive fruit fly, and expensive, while machine learning paradigms may support cost-effective crop protection decisions. However, walking trajectories, precision rate about 93%) in real-time of C. capitata and B. oleae adults using a camera sensor at a fixed height. In addition, previous studies mainly relied on morphological images of stationary or immobilized animals. Other features related to living animals behaving in the environment (e.g, agtech, time demanding, needing minimal data pre-processing and similar architecture, real-time classification, different postures

    وصف الملف: application/pdf

  5. 5
    Conference

    المساهمون: Zanoni, S., Baldessari, M., De Cristofaro, A., Angeli, G., Bosch, D., Escudero Colomar, L.A., Ioriatti, C.

    Relation: ispartofbook:X Congreso nacional de entomología aplicada: XVI jornadas científicas de la SEEA, Logroño, 16-20 octubre 2017; X Congreso nacional de entomología aplicada: XVI jornadas científicas de la SEEA; firstpage:131; http://hdl.handle.net/10449/51668

  6. 6

    المؤلفون: Davi, Mateus Caetano Costa

    المساهمون: Godoy, Maurício Sekiguchi de, http://lattes.cnpq.br/, Gomes, Jessé Malveira, Silva, Daniel Gonçalves da

    وصف الملف: application/pdf

    Relation: DAVI, Mateus Caetano Costa . Monitoramento de mosca-das-frutas em áreas produtoras de mamão (Carica papaya l.) no Município de Baraúna, RN. 2018. 37 f. Monografia (Graduação em Agronomia), Centro de Ciências Agronômicas e Florestais, Universidade Federal Rural do Semi-Árido, Mossoró, 2018.; https://repositorio.ufersa.edu.br/handle/prefix/1038; https://repositorio.ufersa.edu.br/handle/prefix/3260

  7. 7
    Academic Journal

    وصف الملف: application/pdf

    Relation: Mahmoud, M.F., M.A.M. Osman, M.A.M. El-Hussiny, A.A. Elsebae, S.A. Hassan, M. Said. 2017. ”Low environmental impact method for controlling the peach fruit fly, Bactrocera zonata (Saunders) and the Mediterranean fruit fly, Ceratitis capitata (Wied.), in mango orchards in Egypt”. Cercetări Agronomice în Moldova 50 (4): 93-108. DOI:10.1515/cerce-2017-0039.; https://repository.uaiasi.ro/xmlui/handle/20.500.12811/1019

  8. 8
    Dissertation/ Thesis

    Thesis Advisors: Μαρμάρας, Βασίλειος, Soldatos, Anastasios, Κατσώρης, Παναγιώτης, Γεωργίου, Χρήστος, Δημόπουλος, Νικόλαος, Στεφάνου, Γεωργία, Δερμών, Αικατερίνη, Ροσμαράκη, Ελευθερία

    Relation: Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

  9. 9

    المساهمون: Μαρμάρας, Βασίλειος, Soldatos, Anastasios, Κατσώρης, Παναγιώτης, Γεωργίου, Χρήστος, Δημόπουλος, Νικόλαος, Στεφάνου, Γεωργία, Δερμών, Αικατερίνη, Ροσμαράκη, Ελευθερία

  10. 10
    Dissertation/ Thesis

    المساهمون: Μαρμάρας, Βασίλειος, Soldatos, Anastasios, Κατσώρης, Παναγιώτης, Γεωργίου, Χρήστος, Δημόπουλος, Νικόλαος, Στεφάνου, Γεωργία, Δερμών, Αικατερίνη, Ροσμαράκη, Ελευθερία

    وصف الملف: application/pdf

    Relation: Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.; http://hdl.handle.net/10889/8397

  11. 11
    Academic Journal
  12. 12
    Academic Journal