-
1Academic Journal
المؤلفون: Nova López, Carlos Julio, Torres Bonilla, Javier Mauricio, Mendoza Mesa, Dary Luz, Arango Isaza, Rafael Eduardo
المصدر: Ciencia, Tecnología e Innovación en Salud; Vol. 8 (2023): Ciencia, tecnología e innovación en salud; 26-44 ; 2590-5708 ; 2539-3871
مصطلحات موضوعية: Molecular farming, Heterologous proteins, Plant expression systems, Biosimilars, Plant suspension cells, Agricultura molecular, Proteínas heterólogas, Sistemas de expresión vegetal, Biosimilares, Células vegetales en suspensión
وصف الملف: application/pdf
Relation: https://revistas.sena.edu.co/index.php/CITEISA/article/view/6211/6315; https://revistas.sena.edu.co/index.php/CITEISA/article/view/6211
-
2Dissertation/ Thesis
المؤلفون: Chiquiza Montaño, Laura Natalia
المساهمون: Durango Restrepo, Diego Luis, Orozco Sánchez, Fernando, Chiquiza Montaño, Laura Natalia 0000-0002-9563-9610, Laura Natalia Chiquiza Montaño
مصطلحات موضوعية: 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas, Bioprospección, Cultivo de tejidos, Cultivo in vitro, Borojó - Propiedades medicinales, Biotecnología de alimentos, Alibertia patinoi, Cultivos de células vegetales en suspensión, Bioactividades, Fitoquímica, Volátiles, antimicrobiana, composición química, elicitores, Bioprospecting, Plant cell suspension culture, Phytochemistry, antimicrobial, chemical composition, elicitors
جغرافية الموضوع: Colombia
وصف الملف: 267 páginas; application/pdf
Relation: LaReferencia; Minambiente, “Política nacional para la gestión integral de la biodiversidad y sus servicios ecosistémicos,” https://archivo.minambiente.gov.co/index.php/bosques-biodiversidad-y-servicios-ecosistematicos/politica-nacional-de-biodiversidad, 2023; D. Martins y C. Nunez, “Secondary Metabolites from Rubiaceae Species,” Molecules, vol. 20, no. 7, pp. 13422–13495, Jul. 2015, doi:10.3390/molecules200713422; C. Cháves López, G. Mazzarrino, A. Rodríguez, J. Fernández-López, J. A. Pérez-Álvarez y M. Viuda-Martos, “Assessment of antioxidant and antibacterial potential of borojo fruit (Borojoa patinoi Cuatrecasas) from the rainforests of South America,” Ind Crops Prod, vol. 63, pp. 79–86, Jan. 2015, doi:10.1016/j.indcrop.2014.10.047.; J. B. Calixto, “The role of natural products in modern drug discovery.,” An Academia Brasilera Ciencias, vol. 91, no. suppl 3, 2019, doi:10.1590/0001-3765201920190105.; N. González-Jaramillo, N. Bailon-Moscoso, R. Duarte-Casar, y J. C. Romero-Benavides, “Alibertia patinoi (Cuatrec.) Delprete & C.H.Perss. (Borojó): food safety, phytochemicals, and aphrodisiac potential,” SN Appl Sci, vol. 5, no. 1, p. 27, Jan. 2023, doi:10.1007/s42452-022-05251-1.; L. Svetaz, “Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries,” J Ethnopharmacol, vol. 127, no. 1, pp. 137–158, Jan. 2010, doi:10.1016/j.jep.2009.09.034.; V. Muñoz, “A search for natural bioactive compounds in Bolivia through a multidisciplinary approach,” J Ethnopharmacol, vol. 69, no. 2, pp. 127–137, Feb. 2000, doi:10.1016/S0378-8741(99)00148-8.; D. Figueiredo de Santana Aquino, “Investigation of the antioxidant and hypoglycemiant properties of Alibertia edulis (L.C. Rich.) A.C. Rich. leaves,” J Ethnopharmacology, vol. 253, p. 112648, May 2020, doi:10.1016/j.jep.2020.112648; V. Cândida da Silva, “New Antifungal Terpenoid Glycosides from Alibertia edulis (Rubiaceae),” Helv Chim Acta, vol. 91, no. 7, pp. 1355–1362, Jul. 2008, doi:10.1002/hlca.200890147; R. S. Gallegos Olea, N. F. Roque, y V. da S. Bolzani, “Acylated flavonol glycosides and terpenoids from the leaves of Alibertia sessilis,” J. Braz. Chem. Soc, vol. 8, pp. 257–259, 1997.; F. Xu, “Optimization, characterization, sulfation and antitumor activity of neutral polysaccharides from the fruit of Borojoa sorbilis cuter,” Carbohydrates Polymers, vol. 151, pp. 364–372, Oct. 2016, doi:10.1016/j.carbpol.2016.05.091; F. Rabelo Rodrigues, A. de Souza Ramos, A. C. Fernandes Amaral, J. L. Pinto Ferreira, C. da Silva Carneiro y J. Rocha de Andrade Silva, “Evaluation of Amazon fruits: chemical and nutritional studies on Borojoa sorbilis,” J Sci Food Agric, vol. 98, no. 10, pp. 3943–3952, Aug. 2018, doi:10.1002/jsfa.8917; L. Peres et al., “Chemical compounds and bioactivity of aqueous extracts of Alibertia spp. in the control of Plutella xylostella L. (Lepidoptera: Plutellidae),” Insects, vol. 8, no. 4, p. 125, Nov. 2017, doi:10.3390/insects8040125; V. D. S. Bolzani, L. M. V. Trevisa y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991; C. M. Taylor, “Rubiacearum Americanarum Magna Hama Pars XXVIII: New Taxa, New Combinations, New Names, and Lectotypification for Several Species Found in Mexico and Central America,” Novon (St Louis), vol. 21, no. 1, pp. 133–148, Apr. 2011, doi:10.3417/2009129.; J. Cuatrecasas, “Borojoa, un nuevo género de rubiáceas.,” Revista de la Academia Colombiana de Ciencias Exactas, Ffsicas y Naturales, vol. 7, pp. 474–477, 1950; M. Ricker, J. H. Jessen, and D. C. Daly, “The case for Borojoa patinoi (rubiaceae) in the Chocó region, Colombia,” Econ Bot, vol. 51, no. 1, pp. 39–48, 1997; L. H. Mosquera, G. Moraga, y N. Martínez-Navarrete, “Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder,” J Food Eng, vol. 97, no. 1, pp. 72–78, Mar. 2010, doi:10.1016/j.jfoodeng.2009.09.017; J. Asprilla-Perea, J. M. Díaz-Puente, and S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi:10.1007/s13280-021-01624-9; G. Salamanca Grosso, P. M, L. O, y Montoya Devia L, “Formulation of a functional beverage of high biological value based on Borojo (Borojoa patinoi Cuatr.),” Revista chilena de nutrición, vol. 37, 2010; Instituto colombiano de bienestar familiar, “Tabla de composición de alimentos colombianos,” Universidad Nacional de Colombia, Bogotá, vol. 1, 2018; M. Burbano Pulles, “Caracterización físico, química y bromatológica del Borojó (Borojoa patinoi) proveniente de la Parroquia de Chical de la Provincia del Carchi,” SATHIRI, no. 6, p. 79, Jul. 2018, doi:10.32645/13906925.280; R. Díaz Ocampo, C. Vallejo Torres, J. M. Franco Gómez, and L. García Zapateiro, “Caracterización bromatológica, fisicoquímica, microbiológica y reológica de la pulpa de Borojó (Borojoa patinoi Cuatrec),” Ciencia y Tecnología, vol. 5, no. 1, pp. 17–24, Jul. 2012, doi:10.18779/cyt.v5i1.118; L. H. Mosquera, H. A. Ríos, y P. S. Zapata, “Obtención de una materia prima con valor agregado mediante secado por aspersión a partir del fruto fresco de borojó (Borojoa patinoi Cuatrec.),” Rev Inst Univ Tecnológica Chocó, vol. 11, no. 23, pp. 5–10, 2005; L. Ospina Medina, M. Pastrana, y W. Maya, “Extractos de frutas afrodisíacas como inhibidores de la movilidad espermática humana in vitro,” Revista cubana Plant Med, vol. 23, 2018.; I. Sotelo, N. Casas, y G. Camelo, “Borojó (Borojoa patinoi): fuente de polifenoles con actividad antimicrobiana,” Vitae, vol. 17, pp. 329–336, 2010; C. Chaves-López et al., “Potential of Borojoa patinoi Cuatrecasas water extract to inhibit nosocomial antibiotic resistant bacteria and cancer cell proliferation in vitro,” Food Funct, vol. 9, no. 5, pp. 2725–2734, 2018, doi:10.1039/C7FO01542A; G. A. Hincapié Llanos, J. C. Palacio Piedrahita, S. Paez Sierra, C. E. Restrepo Flórez, y L. M. Vélez Acosta, “Elaboración de una bebida energizante a partir de borojó (Borojoa patinoi Cuatrec.),” Rev Lasallista Investig, vol. 9, no. 2, pp. 33–43, 2012; L. M. Vélez Acosta, “Borojó, todo lo que debe saber sobre esta ‘superfruta,’” Revista I Alimentos; J. Asprilla-Perea, J. M. Díaz-Puente, y S. Martín-Fernández, “Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia,” Ambio, vol. 51, no. 4, pp. 955–971, Apr. 2022, doi:10.1007/s13280-021-01624-9; G. Camelo-Mendez y I. Sotelo-Díaz, “Effect of storage conditions on color, polyphenol content and antioxidant capacity of Borojoa patinoi Cuatrecasas beverage,” Bol Latinoamerica Caribe Plantas Med Aromat, vol. 11, no. 2, pp. 196–205, Jan. 2012; M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, y K. R. Pardesi, “Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review,” Front Microbiol, vol. 10, Apr. 2019, doi:10.3389/fmicb.2019.00539; F. Buccioni, “Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study,” Microorganisms, vol. 10, no. 5, p. 920, Apr. 2022, doi:10.3390/microorganisms10050920; J. D. Pitout, “Multiresistant Enterobacteriaceae: new threat of an old problem,” Expert Rev Anti Infect Ther, vol. 6, no. 5, pp. 657–669, Oct. 2008, doi:10.1586/14787210.6.5.657; T.-K. Yeh, H.-J. Lin, P.-Y. Liu, J.-H. Wang, y P.-R. Hsueh, “Antibiotic resistance in Enterobacter hormaechei,” Int J Antimicrob Agents, vol. 60, no. 4, p. 106650, Oct. 2022, doi:10.1016/j.ijantimicag.2022.106650; H. Wang, “Change in antimicrobial susceptibility of Listeria spp. in response to stress conditions,” Front Sustain Food Syst, vol. 7, Apr. 2023, doi:10.3389/fsufs.2023.1179835; M. P. Falomir, H. Rico, y D. Gozalbo, “Enterobacter and Klebsiella Species Isolated from Fresh Vegetables Marketed in Valencia (Spain) and Their Clinically Relevant Resistances to Chemotherapeutic Agents,” Foodborne Pathog Dis, vol. 10, no. 12, pp. 1002–1007, Dec. 2013, doi:10.1089/fpd.2013.1552; J. Gil-Serna, M. García-Díaz, C. Vázquez, M. T. González-Jaén, y B. Patiño, “Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins,” Food Microbiology, vol. 82, pp. 240–248, Sep. 2019, doi:10.1016/j.fm.2019.02.013.; G. S. Patten, M. Y. Abeywardena, y L. E. Bennett, “Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families,” Crit Rev Food Sci Nutr, vol. 56, no. 2, pp. 181–214, Jan. 2016, doi:10.1080/10408398.2011.651176; F. H. Messerli, S. Bangalore, C. Bavishi, y S. F. Rimoldi, “Angiotensin-Converting Enzyme Inhibitors in Hypertension,” J Am Coll Cardiol, vol. 71, no. 13, pp. 1474–1482, Apr. 2018, doi:10.1016/j.jacc.2018.01.058; Y.-W. Liu, M.-T. Liong, y Y.-C. Tsai, “New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis,” Journal of Microbiology, vol. 56, no. 9, pp. 601–613, Sep. 2018, doi:10.1007/s12275-018-8079-2; J. B. Molina-Hernandez, “The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death,” Sci Rep, vol. 11, no. 1, p. 21557, Nov. 2021, doi:10.1038/s41598-021-00545-7; J. de S. Aquino, K. S. Batista, F. N. D. D. Menezes, P. P. Lins, J. A. de S. Gomes, y L. A. da Silva, “Models to Evaluate the Prebiotic Potential of Foods,” in Functional Food - Improve Health through Adequate Food, InTech, 2017. doi:10.5772/intechopen.69174; M. Wang et al., “Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum,” LWT, vol. 154, p. 112572, Jan. 2022, doi:10.1016/j.lwt.2021.112572; L. L. Antunes, A. L. Back, M. L. B. C. Kossar, A. G. Spessato, E. Colla, y D. A. Drunkler, “Prebiotic potential of carbohydrates from defatted rice bran – Effect of physical extraction methods,” Food Chem, vol. 404, p. 134539, Mar. 2023, doi:10.1016/j.foodchem.2022.134539; D. Abouelenein, A. M. Mustafa, G. Caprioli, M. Ricciutelli, G. Sagratini, y S. Vittori, “Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d’Alba and Verdicchio varieties,” Food Biosci, vol. 53, p. 102808, Jun. 2023, doi:10.1016/j.fbio.2023.102808; T. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi:10.1186/1471-2105-11-395.; Y. Cui et al., “AFM study of the differential inhibitory effects of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria,” Food Microbiol, vol. 29, no. 1, pp. 80–87, Feb. 2012, doi:10.1016/j.fm.2011.08.019; L. A. Clifton, “Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models,” Langmuir, vol. 31, no. 1, pp. 404–412, Jan. 2015, doi:10.1021/la504407v; W. Mędrzycka-Dąbrowska, S. Lange, K. Zorena, S. Dąbrowski, D. Ozga, y L. Tomaszek, “Carbapenem-Resistant Klebsiella pneumoniae Infections in ICU COVID-19 Patients—A Scoping Review,” J Clin Med, vol. 10, no. 10, p. 2067, May 2021, doi:10.3390/jcm10102067; F. Maggio, “Effectiveness of essential oils against dual-species biofilm of Listeria monocytogenes and Pseudomonas fluorescens in a Ricotta-based model system,” Ital J Food Saf, vol. 12, no. 1, Mar. 2023, doi:10.4081/ijfs.2023.11048; L. L. Herman, S. A. Padala, I. Ahmed, y K. Bashir, Angiotensin-Converting Enzyme Inhibitors (ACEI). 2023; H.-J. Park, J.-Y. Kim, H. S. Kim, S.-H. Lee, J. S. Jang, y M. H. Lee, “Synergistic effect of fruit–seed mixed juice on inhibition of angiotensin I-converting enzyme and activation of NO production in EA.hy926 cells,” Food Sci Biotechnol, vol. 28, no. 3, pp. 881–893, Jun. 2019, doi:10.1007/s10068-018-0512-0; L. Actis-Goretta, J. I. Ottaviani, y C. G. Fraga, “Inhibition of Angiotensin Converting Enzyme Activity by Flavanol-Rich Foods,” J Agric Food Chem, vol. 54, no. 1, pp. 229–234, Jan. 2006, doi:10.1021/jf052263o; D. M. A. Saulnier, D. Molenaar, W. M. de Vos, G. R. Gibson, y S. Kolida, “Identification of Prebiotic Fructooligosaccharide Metabolism in Lactobacillus plantarum WCFS1 through Microarrays,” Appl Environ Microbiol, vol. 73, no. 6, pp. 1753–1765, Mar. 2007, doi:10.1128/AEM.01151-06; Q.-Y. Ji et al., “The Effect of Different Organic Acids and Their Combination on the Cell Barrier and Biofilm of Escherichia coli,” Foods, vol. 12, no. 16, p. 3011, Aug. 2023, doi:10.3390/foods12163011; R. Álvarez, H. Araya, R. Navarro-Lisboa y C. Lopez de Dicastillo, “Evaluation of Polyphenols and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction Method,” Food Technol Biotechnol, vol. 54, no. 4, 2016, doi:10.17113/ftb.54.04.16.4497; H. A. R. Suleria, C. J. Barrow, y F. R. Dunshea, “Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels,” Foods, vol. 9, no. 9, p. 1206, Sep. 2020, doi:10.3390/foods9091206; I. Gutiérrez-del-Río, J. Fernández, y F. Lombó, “Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols,” Int J Antimicrob Agents, vol. 52, no. 3, pp. 309–315, Sep. 2018, doi:10.1016/j.ijantimicag.2018.04.024; E. Sousa y M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019.; B. Dinda, S. Debnath, y R. Banik, “Naturally Occurring Iridoids and Secoiridoids. An Updated Review, Part 4,” Chem Pharm Bull (Tokyo), vol. 59, no. 7, pp. 803–833, 2011, doi:10.1248/cpb.59.803; C. Wang et al., “Iridoids: Research Advances in Their Phytochemistry, Biological Activities, and Pharmacokinetics,” Molecules, vol. 25, no. 2, p. 287, Jan. 2020, doi:10.3390/molecules25020287; D. D. Orhan, B. Özçelik, S. Özgen, y F. Ergun, “Antibacterial, antifungal, and antiviral activities of some flavonoids,” Microbiol Res, vol. 165, no. 6, pp. 496–504, Aug. 2010, doi:10.1016/j.micres.2009.09.002; T. H. Grenby y J. Colley, “Dental effects of xylitol compared with other carbohydrates and polyols in the diet of laboratory rats,” Arch Oral Biol, vol. 28, no. 8, pp. 745–758, 1983, doi:10.1016/0003-9969(83)90111-5; D. Tuncer, A. Onen, y A. R. Yazici, “Effect of chewing gums with xylitol, sorbitol and xylitol-sorbitol on the remineralization and hardness of initial enamel lesions in situ.,” Dent Res J (Isfahan), vol. 11, no. 5, pp. 537–43, Sep. 2014; J.-L. Zhang, J. Yao, J.-N. Zhuge, y Y.-J. Zhang, “[Antibacterial activity of erythritol on periodontal pathogen].,” Shanghai Kou Qiang Yi Xue, vol. 28, no. 4, pp. 362–367, Aug. 2019; V. Loimaranta, D. Mazurel, D. Deng, y E. Söderling, “Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans,” BMC Microbiol, vol. 20, no. 1, p. 184, Dec. 2020, doi:10.1186/s12866-020-01867-8; T. O. Ajiboye, “Involvement of oxidative stress in protocatechuic acid‐mediated bacterial lethality,” Microbiologyopen, vol. 6, no. 4, Aug. 2017, doi:10.1002/mbo3.472; N. Silva, S. Alves, A. Gonçalves, J. S. Amaral, y P. Poeta, “Antimicrobial activity of essential oils from mediterranean aromatic plants against several foodborne and spoilage bacteria,” Food Science and Technology International, vol. 19, no. 6, pp. 503–510, Dec. 2013, doi:10.1177/1082013212442198; S. Kakkar y S. Bais, “A Review on Protocatechuic Acid and Its Pharmacological Potential,” ISRN Pharmacol, vol. 2014, pp. 1–9, Mar. 2014, doi:10.1155/2014/952943; M. Kępa, “Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus Clinical Strains,” Biomed Res Int, vol. 2018, pp. 1–9, Jul. 2018, doi:10.1155/2018/7413504.; V. D. S. Bolzani, L. M. V. Trevisa, y M. C. C. Young, “Caffeic acids esters and triterpenes of Alibertia macrophylla,” Phytochemistry, vol. 30, no. 6, pp. 2089–2091, 1991; N. C. C. Carvalho, O. S. Monteiro, C. Q. da Rocha, J. K. R. da Silva, y J. G. S. Maia, “Phenolic Compounds and Antioxidant Properties of Puruí (Alibertia edulis, Rubiaceae), an Edible Dark Purple Fruit from the Brazilian Amazon,” Nutraceuticals, vol. 3, no. 4, pp. 529–539, Nov. 2023, doi:10.3390/nutraceuticals3040038; P.-G. Li et al., “Caffeic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II in Stroke-Prone Spontaneously Hypertensive Rats,” Hypertension Research, vol. 28, no. 4, pp. 369–377, 2005, doi:10.1291/hypres.28.369; W. Londoño Jaramillo, “Manejo post-cosecha y comercialización de Borojó. Programa post-cosecha.” Convenio SENA - Reino Unido, 1999. Acceso: Jan. 22, 2024. [Online]. Disponible: https://hdl.handle.net/11404/7009; C. Li, “Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing,” Food Chem, vol. 355, p. 129685, Sep. 2021, doi:10.1016/j.foodchem.2021.129685.; Y. Wang, “Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS,” Food Chem, vol. 116, no. 1, pp. 356–364, Sep. 2009, doi:10.1016/j.foodchem.2009.02.004; H. Deng, “Optimization of a static headspace GC-MS method and its application in metabolic fingerprinting of the leaf volatiles of 42 citrus cultivars,” Front Plant Sci, vol. 13, Dec. 2022, doi:10.3389/fpls.2022.1050289; H. Van Den Dool y D. J. Kratz, “A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography,” J Chromatogr A, vol. 11, pp. 463–471, 1963, doi:10.1016/S0021-9673(01)80947-X.; J. Kreissl, V. Mall, P. Steinhaus, y M. Steinhaus, “Leibniz-LSB@TUM Odorant Database.; N. Reyes-Garcés, “Advances in Solid Phase Microextraction and Perspective on Future Directions,” Anal Chem, vol. 90, no. 1, pp. 302–360, Jan. 2018, doi:10.1021/acs.analchem.7b04502; J.-F. Cavalli, X. Fernandez, L. Lizzani-Cuvelier, y A.-M. Loiseau, “Comparison of Static Headspace, Headspace Solid Phase Microextraction, Headspace Sorptive Extraction, and Direct Thermal Desorption Techniques on Chemical Composition of French Olive Oils,” J Agric Food Chem, vol. 51, no. 26, pp. 7709–7716, Dec. 2003, doi:10.1021/jf034834n; I. Eduardo, G. Chietera, D. Bassi, L. Rossini, y A. Vecchietti, “Identification of key odor volatile compounds in the essential oil of nine peach accessions,” J Sci Food Agric, vol. 90, no. 7, pp. 1146–1154, May 2010, doi:10.1002/jsfa.3932; R. R. Jetti, E. Yang, A. Kurnianta, C. Finn, y M. C. Qian, “Quantification of Selected Aroma‐Active Compounds in Strawberries by Headspace Solid‐Phase Microextraction Gas Chromatography and Correlation with Sensory Descriptive Analysis,” J Food Sci, vol. 72, no. 7, Sep. 2007, doi:10.1111/j.1750-3841.2007.00445.x.; K. Matsui, “Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism,” Curr Opin Plant Biol, vol. 9, no. 3, pp. 274–280, Jun. 2006, doi:10.1016/j.pbi.2006.03.002; G. Defilippi, D. Manríquez, K. Luengwilai, y M. González-Agüero, “Chapter 1 Aroma Volatiles,” 2009, pp. 1–37. doi:10.1016/S0065-2296(08)00801-X; D. Holland, “Developmental and Varietal Differences in Volatile Ester Formation and Acetyl-CoA: Alcohol Acetyl Transferase Activities in Apple (Malus domestica Borkh.) Fruit,” J Agric Food Chem, vol. 53, no. 18, pp. 7198–7203, Sep. 2005, doi:10.1021/jf050519k; H. Yao, “Evolution of volatile profile and aroma potential of table grape Hutai-8 during berry ripening,” Food Research International, vol. 143, p. 110330, May 2021, doi:10.1016/j.foodres.2021.110330; M. El Hadi, F.-J. Zhang, F.-F. Wu, C.-H. Zhou, y J. Tao, “Advances in Fruit Aroma Volatile Research,” Molecules, vol. 18, no. 7, pp. 8200–8229, Jul. 2013, doi:10.3390/molecules18078200; R. G. Berger, Flavours y Fragrances. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-49339-6.; S. A. Goff y H. J. Klee, “Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value?,” Science (1979), vol. 311, no. 5762, pp. 815–819, Feb. 2006, doi:10.1126/science.1112614; S. K. Wendakoon, Y. Ueda, Y. Imahori, y M. Ishimaru, “Effect of short‐term anaerobic conditions on the production of volatiles, activity of alcohol acetyltransferase and other quality traits of ripened bananas,” J Sci Food Agric, vol. 86, no. 10, pp. 1475–1480, Aug. 2006, doi:10.1002/jsfa.2518.; J. A. Pino y J. Mesa, “Contribution of volatile compounds to mango (Mangifera indica L.) aroma,” Flavour Fragr J, vol. 21, no. 2, pp. 207–213, Mar. 2006, doi:10.1002/ffj.1703; Y. Tokitomo, M. Steinhaus, A. Buttner, y P. Schieberle, “Odor-Active Constituents in Fresh Pineapple (Ananas comosus [L.] Merr.) by Quantitative and Sensory Evaluation,” Biosci Biotechnol Biochem, vol. 69, no. 7, pp. 1323–1330, Jan. 2005, doi:10.1271/bbb.69.1323.; X. Song, “Characterization of the volatile profile of feijoa (Acca sellowiana) fruit at different ripening stages by HS-SPME-GC/MS,” LWT, vol. 184, p. 115011, Jul. 2023, doi:10.1016/j.lwt.2023.115011; Q. Wu et al., “Effect of solvent extraction on the key aroma components of Tamarindus indica L. pulp,” Journal of Food Composition and Analysis, vol. 123, p. 105613, Oct. 2023, doi:10.1016/j.jfca.2023.105613; Oliveira, P. Guedes de Pinho, R. Malheiro, P. Baptista, y J. A. Pereira, “Volatile profile of Arbutus unedo L. fruits through ripening stage,” Food Chem, vol. 128, no. 3, pp. 667–673, Oct. 2011, doi:10.1016/j.foodchem.2011.03.084; M. Abd El-Mageed, “Development of volatile compounds of avocado and casimiroa during fruit maduration,” Arab Universities Journal of Agricultural Sciences, vol. 15, no. 1, pp. 89–100, Mar. 2007, doi:10.21608/ajs.2007.14626; P. Fuggate, C. Wongs-Aree, S. Noichinda, y S. Kanlayanarat, “Quality and volatile attributes of attached and detached ‘Pluk Mai Lie’ papaya during fruit ripening,” Sci Hortic, vol. 126, no. 2, pp. 120–129, Sep. 2010, doi:10.1016/j.scienta.2010.06.019; E. J. F. Souleyre, “Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit,” Plant Physiol, vol. 190, no. 2, pp. 1100–1116, Sep. 2022, doi:10.1093/plphys/kiac316; Z. Guler y Y. E. Sekerli, “Distribution of volatile compounds in organic tomato (Lycopersicon esculentum) at different ripening stages,” Academic Food Journal, vol. 11, no. 2, pp. 6–13, 2013.; O. Nevo y K. Valenta, “The Ecology and Evolution of Fruit Odor: Implications for Primate Seed Dispersal,” Int J Primatol, vol. 39, no. 3, pp. 338–355, Jun. 2018, doi:10.1007/s10764-018-0021-2.; O. Nevo, “Fruit defense syndromes: the independent evolution of mechanical and chemical defenses,” Evol Ecol, vol. 31, no. 6, pp. 913–923, Dec. 2017, doi:10.1007/s10682-017-9919-y.; O. Nevo y M. Ayasse, “Fruit Scent: Biochemistry, Ecological Function, and Evolution,” 2020, pp. 403–425. doi:10.1007/978-3-319-96397-6_33.; J.-L. Wolfender, G. Marti, A. Thomas, y S. Bertrand, “Current approaches and challenges for the metabolite profiling of complex natural extracts,” J Chromatogr A, vol. 1382, pp. 136–164, Feb. 2015, doi:10.1016/j.chroma.2014.10.091.; C. Persson y P. G. Delprete, The Alibertia Group (Gardenieae–Rubiaceae), Part 1 (Agouticarpa, Alibertia, Cordiera, Melanopsidium, Riodocea, and Stenosepala). 2017. [Online]. Available: https://www.nhbs.com/flora-neotropica-volume-119-the-alibertia-group-gardenieae-rubiaceae-part-1-agouticarpa-alibertia-cordiera-melanopsidium-riodocea-and-stenosepala-book; A. C. Estupiñán-González y N. D. Jiménez-Escobar, “Uso de las plantas por grupos campesinos en la franja tropical del parque nacional natural Jaramillo (Córdoba, Colombia),” Caldasia, vol. 32, no. 1, pp. 21–38, 2010; M. C. M. Young, M. R. Braga, S. M. C. Dietrich, H. E. Gottlieb, L. M. V. Trevisan, y V. D. S. Bolzani, “Fungitoxic non-glycosidic iridoids from Alibertia macrophylla,” Phytochemistry, vol. 31, no. 10, pp. 3433–3435, Oct. 1992, doi:10.1016/0031-9422(92)83701-Y; A. Nahrstedt, J. Rockenbach, y V. Wray, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the Rubiaceae,” Phytochemistry, vol. 29, pp. 375–378, Aug. 1995; I. A. Neri-Numa et al., “Genipap (Genipa americana L.) fruit extract as a source of antioxidant and antiproliferative iridoids,” Food Research International, vol. 134, p. 109252, Aug. 2020, doi:10.1016/j.foodres.2020.109252.; S.-J. Kim, K.-M. Kim, J. Park, J.-H. Kwak, Y. S. Kim, y S.-M. Lee, “Geniposidic acid protects against d-galactosamine and lipopolysaccharide-induced hepatic failure in mice,” J Ethnopharmacol, vol. 146, no. 1, pp. 271–277, Mar. 2013, doi:10.1016/j.jep.2012.12.042; C. Wang et al., “Iridoids and sfingolipids from Hedyotis diffusa,” Fitoterapia, vol. 124, pp. 152–159, Jan. 2018, doi:10.1016/j.fitote.2017.11.004; Y. Wang et al., “Systematic Separation and Purification of Iridoid Glycosides and Crocetin Derivatives from Gardenia jasminoides Ellis by High-speed Counter-current Chromatography,” Phytochemical Analysis, vol. 26, no. 3, pp. 202–208, May 2015, doi:10.1002/pca.2553; R. Buathong et al., “Uncommon fatty acids, Iridoids and other secondary metabolites from the medicinal plant species Ixora cibdela Craib (Rubiaceae),” Phytochem Lett, vol. 33, pp. 77–80, Oct. 2019, doi:10.1016/j.phytol.2019.07.011; Takeda, H. Nishimura, y H. Inouye, “Two new iridoid glucosides from Ixora chinensis,” Phytochemistry, vol. 14, pp. 2647–2650, Feb. 1975; L. J. El-Naggar y J. L. Beal, “Iridoids. A Review,” J Nat Prod, vol. 43, no. 6, pp. 649–707, Nov. 1980, doi:10.1021/np50012a001; Y. Takeda, H. Nishimura, y H. Inouye, “Studies on monoterpene glucosides and related natural products. XXXII. Iridoid glucosides of Tarenna kotoensis var. gyokushinka.,” Chem Pharm Bull (Tokyo), vol. 24, no. 6, pp. 1216–1218, 1976, doi:10.1248/cpb.24.1216; D. F. de Santana Aquino et al., “Alibertia edulis (L.C. Rich.) A.C. Rich – A potent diuretic arising from Brazilian indigenous species,” J Ethnopharmacol, vol. 196, pp. 193–200, Jan. 2017, doi:10.1016/j.jep.2016.12.024.; W. M. Abdel-Mageed, E. Y. Backheet, A. A. Khalifa, Z. Z. Ibraheim, y S. A. Ross, “Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis,” Fitoterapia, vol. 83, no. 3, pp. 500–507, Apr. 2012, doi:10.1016/j.fitote.2011.12.025; M. Singh et al., “Isolation of phytochemicals from Dolichandrone atrovirens followed by semisynthetic modification of ixoside via azomethine ylide cycloaddition; computational approach towards chemo-selection,” Nat Prod Res, vol. 37, no. 13, pp. 2215–2224, Jul. 2023, doi:10.1080/14786419.2022.2037084.; Bano, T. A. Qadri, Mahnoor, y N. Khan, “Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress,” South African Journal of Botany, vol. 159, pp. 98–109, Aug. 2023, doi:10.1016/j.sajb.2023.05.049.; T. Wu, S. M. Kerbler, A. R. Fernie, y Y. Zhang, “Plant cell cultures as heterologous bio-factories for secondary metabolite production,” Plant Commun, vol. 2, no. 5, p. 100235, Sep. 2021, doi:10.1016/j.xplc.2021.100235.; S. S. Arya, J. E. Rookes, D. M. Cahill, y S. K. Lenka, “Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories,” Biotechnol Adv, vol. 45, p. 107635, Dec. 2020, doi:10.1016/j.biotechadv.2020.107635.; R. Eibl, P. Meier, I. Stutz, D. Schildberger, T. Hühn, y D. Eibl, “Plant cell culture technology in the cosmetics and food industries: current state and future trends,” Appl Microbiol Biotechnol, vol. 102, no. 20, pp. 8661–8675, Oct. 2018, doi:10.1007/s00253-018-9279-8; G. Guerriero et al., “Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists,” Genes (Basel), vol. 9, no. 6, p. 309, Jun. 2018, doi:10.3390/genes9060309; M. Davey, “Secondary Metabolism in Plant Cell Cultures,” in Encyclopedia of Applied Plant Sciences, Elsevier, 2017, pp. 462–467. doi:10.1016/B978-0-12-394807-6.00146-5.; Y. Kobayashi et al., “Life cycle assessment of plant cell cultures,” Science of The Total Environment, vol. 808, p. 151990, Feb. 2022, doi:10.1016/j.scitotenv.2021.151990; S. Karuppusamy, “A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures,” Journal of medicinal plants research, vol. 3, no. 13, pp. 1222–1239, 2009; H. N. Murthy, E.-J. Lee, y K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi:10.1007/s11240-014-0467-7; E. A. Motolinía-Alcántara, C. O. Castillo-Araiza, M. Rodríguez-Monroy, A. Román-Guerrero, y F. Cruz-Sosa, “Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors,” Plants, vol. 10, no. 12, p. 2762, Dec. 2021, doi:10.3390/plants10122762; M. Takahashi y H. Aoyagi, “Effect of intermittent opening of breathable culture plugs and aeration of headspace on the structure of microbial communities in shake-flask culture,” J Biosci Bioeng, vol. 126, no. 1, pp. 96–101, Jul. 2018, doi:10.1016/j.jbiosc.2018.01.009; S. T. Häkkinen et al., “Plant cell cultures as food—aspects of sustainability and safety,” Plant Cell Rep, vol. 39, no. 12, pp. 1655–1668, Dec. 2020, doi:10.1007/s00299-020-02592-2.; A. C. Alvarez-Yela, L. N. Chiquiza-Montaño, R. Hoyos, y F. Orozco-Sánchez, “Rheology and mixing analysis of plant cell cultures (Azadirachta indica, Borojoa patinoi and Thevetia peruviana) in shake flasks,” Biochem Eng J, vol. 114, 2016, doi:10.1016/j.bej.2016.06.019; A. Scroccarello et al., “Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger,” Colloids Surf B Biointerfaces, vol. 199, p. 111533, Mar. 2021, doi:10.1016/j.colsurfb.2020.111533; D. Pan, Y. Luo, y M. Tanokura, “Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004,” Food Chem, vol. 91, no. 1, pp. 123–129, Jun. 2005, doi:10.1016/j.foodchem.2004.05.055; L.-F. Nothias et al., “Feature-based molecular networking in the GNPS analysis environment,” Nat Methods, vol. 17, no. 9, pp. 905–908, Sep. 2020, doi:10.1038/s41592-020-0933-6.; M. Wang et al., “Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.,” Nat Biotechnol, vol. 34, no. 8, pp. 828–837, Aug. 2016, doi:10.1038/nbt.3597; D. Petras et al., “GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser,” Nat Methods, vol. 19, no. 2, pp. 134–136, Feb. 2022, doi:10.1038/s41592-021-01339-5; T. Pluskal, S. Castillo, A. Villar-Briones, y M. Orešič, “MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data,” BMC Bioinformatics, vol. 11, no. 1, p. 395, Dec. 2010, doi:10.1186/1471-2105-11-395; H. Horai et al., “MassBank: a public repository for sharing mass spectral data for life sciences,” Journal of Mass Spectrometry, vol. 45, no. 7, pp. 703–714, Jul. 2010, doi:10.1002/jms.1777.; P. Shannon et al., “Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks,” Genome Res, vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi:10.1101/gr.1239303.; C. W. T. Lee y M. L. Shuler, “The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells,” Biotechnol Bioeng, vol. 67, no. 1, pp. 61–71, Jan. 2000, doi:10.1002/(SICI)1097; K. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi:10.1007/BF00269047.; H. N. Murthy, E.-J. Lee, and K.-Y. Paek, “Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 118, no. 1, pp. 1–16, Jul. 2014, doi:10.1007/s11240-014-0467-7.; S. Werner, R. W. Maschke, D. Eibl, and R. Eibl, “Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products,” 2018, pp. 413–432. doi:10.1007/978-3-319-54600-1_6.; M. I. Georgiev, J. Weber, and A. Maciuk, “Bioprocessing of plant cell cultures for mass production of targeted compounds,” Appl Microbiol Biotechnol, vol. 83, no. 5, pp. 809–823, Jul. 2009, doi:10.1007/s00253-009-2049-x.; P. Nartop, “Engineering of Biomass Accumulation and Secondary Metabolite Production in Plant Cell and Tissue Cultures,” in Plant Metabolites and Regulation Under Environmental Stress, Elsevier, 2018, pp. 169–194. doi:10.1016/B978-0-12-812689-9.00009-1.; F. Bourgaud, A. Gravot, S. Milesi, and E. Gontier, “Production of plant secondary metabolites: a historical perspective,” Plant Science, vol. 161, no. 5, pp. 839–851, Oct. 2001, doi:10.1016/S0168-9452(01)00490-3; Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi:10.1186/s40659-019-0246-3.; S. Chung, V. Nguyen, Y. L. Lin, L. Kamen, and A. Song, “Thaw-and-use target cells pre-labeled with calcein AM for antibody-dependent cell-mediated cytotoxicity assays,” J Immunol Methods, vol. 447, pp. 37–46, Aug. 2017, doi:10.1016/j.jim.2017.04.005.; M. Ghasemi, T. Turnbull, S. Sebastian, and I. Kempson, “The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis,” Int J Mol Sci, vol. 22, no. 23, p. 12827, Nov. 2021, doi:10.3390/ijms222312827; J. C. Stockert, R. W. Horobin, L. L. Colombo, and A. Blázquez-Castro, “Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives,” Acta Histochem, vol. 120, no. 3, pp. 159–167, Apr. 2018, doi:10.1016/j.acthis.2018.02.005.; T. J. Mead and V. Lefebvre, “Proliferation Assays (BrdU and EdU) on Skeletal Tissue Sections,” 2014, pp. 233–243. doi:10.1007/978-1-62703-989-5_17.; C. Chaves-López, R. Tofalo, A. Serio, A. Paparella, G. Sacchetti, and G. Suzzi, “Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk,” Int J Food Microbiol, vol. 159, no. 1, pp. 39–46, Sep. 2012, doi:10.1016/j.ijfoodmicro.2012.07.028; J. Wu, W. Liao, and C. C. Udenigwe, “Revisiting the mechanisms of ACE inhibitory peptides from food proteins,” Trends Food Sci Technol, vol. 69, pp. 214–219, Nov. 2017, doi:10.1016/j.tifs.2017.07.011.; L. Kovanda et al., “In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria,” Molecules, vol. 24, no. 20, p. 3770, Oct. 2019, doi:10.3390/molecules24203770; H.-L. Alakomi, E. Skyttä, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and I. M. Helander, “Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane,” Appl Environ Microbiol, vol. 66, no. 5, pp. 2001–2005, May 2000, doi:10.1128/AEM.66.5.2001-2005.2000; M. E. Terzioğlu and İ. Bakirci, “Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture,” Probiotics Antimicrob Proteins, Jul. 2023, doi:10.1007/s12602-023-10123-0.; H. Fan, H. Liu, Y. Zhang, S. Zhang, T. Liu, and D. Wang, “Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development,” Journal of Future Foods, vol. 2, no. 2, pp. 143–159, Jun. 2022, doi:10.1016/j.jfutfo.2022.03.003; A. Durak, B. Baraniak, A. Jakubczyk, and M. Świeca, “Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds,” Food Chem, vol. 141, no. 3, pp. 2177–2183, Dec. 2013, doi:10.1016/j.foodchem.2013.05.012; A. Kaur, B. A. Kehinde, P. Sharma, D. Sharma, and S. Kaur, “Recently isolated food-derived antihypertensive hydrolysates and peptides: A review,” Food Chem, vol. 346, p. 128719, Jun. 2021, doi:10.1016/j.foodchem.2020.128719.; N. Ciau-Solís, W. Rodríguez-Canto, L. Fernández-Martínez, M. Sandoval-Peraza, L. Chel-Guerrero, and D. Betancur-Ancona, “Inhibitory activity of Angiotensin-I converting enzyme (ACE-I) from partially purified Phaseolus lunatus peptide fractions,” Process Biochemistry, Feb. 2024, doi:10.1016/j.procbio.2024.01.022.; E. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi:10.5586/asbp.3638.; L. J. McGaw, A. K. Jäger, and J. van Staden, “Antibacterial effects of fatty acids and related compounds from plants,” South African Journal of Botany, vol. 68, no. 4, pp. 417–423, Dec. 2002, doi:10.1016/S0254-6299(15)30367-7.; G. Casillas-Vargas et al., “Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents,” Prog Lipid Res, vol. 82, p. 101093, Apr. 2021, doi:10.1016/j.plipres.2021.101093; B. H. Kallipolitis, “How can naturally occurring fatty acids neutralize Listeria ?,” Future Microbiol, vol. 12, no. 14, pp. 1239–1241, Nov. 2017, doi:10.2217/fmb-2017-0176; V. S. Thibane, J. L. F. Kock, R. Ells, P. W. J. van Wyk, and C. H. Pohl, “Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis,” Mar Drugs, vol. 8, no. 10, pp. 2597–2604, Oct. 2010, doi:10.3390/md8102597.; C. Borreby, E. M. S. Lillebæk, and B. H. Kallipolitis, “Anti-infective activities of long-chain fatty acids against foodborne pathogens,” FEMS Microbiol Rev, vol. 47, no. 4, Jul. 2023, doi:10.1093/femsre/fuad037.; C. Altieri, D. Cardillo, A. Bevilacqua, and M. Sinigaglia, “Inhibition of Aspergillus spp. and Penicillium spp. by Fatty Acids and Their Monoglycerides,” J Food Prot, vol. 70, no. 5, pp. 1206–1212, May 2007, doi:10.4315/0362-028X-70.5.1206; U. N. Das, “Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules,” Lipids Health Dis, vol. 7, no. 1, p. 37, 2008, doi:10.1186/1476-511X-7-37.; X. Li, W. Zhang, D. Niu, and X. Liu, “Effects of abiotic stress on chlorophyll metabolism,” Plant Science, vol. 342, p. 112030, May 2024, doi:10.1016/j.plantsci.2024.112030.; J. Kim, Y.-Y. Kim, J.-Y. Chang, and H.-S. Kho, “Candidacidal Activity of Xylitol and Sorbitol,” J Oral Med Pain, vol. 41, no. 4, pp. 155–160, Dec. 2016, doi:10.14476/jomp.2016.41.4.155; V. Lattanzio, A. Cardinali, and V. Linsalata, “Plant Phenolics: A Biochemical and Physiological Perspective,” in Recent Advances in Polyphenol Research, Wiley, 2012, pp. 1–39. doi:10.1002/9781118299753.ch1; N. Hounsome, B. Hounsome, D. Tomos, and G. Edwards‐Jones, “Plant Metabolites and Nutritional Quality of Vegetables,” J Food Sci, vol. 73, no. 4, May 2008, doi:10.1111/j.1750-3841.2008.00716.x.; Elfahmi et al., “Lignans from Cell Suspension Cultures of Phyllanthus n iruri , an Indonesian Medicinal Plant,” J Nat Prod, vol. 69, no. 1, pp. 55–58, Jan. 2006, doi:10.1021/np050288b.; J. N. Kabera, E. Semana, A. R. Mussa, and X. He, “Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties,” Journal of Pharmacy and Pharmacology, vol. 2, pp. 377–392, 2014.; H. Haraguchi, S. Kataoka, S. Okamoto, M. Hanafi, and K. Shibata, “Antimicrobial triterpenes fromIlex integra and the mechanism of antifungal action,” Phytotherapy Research, vol. 13, no. 2, pp. 151–156, Mar. 1999, doi:10.1002/(SICI)1099-1573(199903)13:23.0.CO;2-C.; M. Modaressi et al., “Antibacterial iridoid glucosides from Eremostachys laciniata,” Phytotherapy Research, vol. 23, no. 1, pp. 99–103, Jan. 2009, doi:10.1002/ptr.2568; H. You, H.-E. Yoon, J.-H. Yoon, H. Ko, and Y.-C. Kim, “Synthesis of pheophorbide-a conjugates with anticancer drugs as potential cancer diagnostic and therapeutic agents,” Bioorg Med Chem, vol. 19, no. 18, pp. 5383–5391, Sep. 2011, doi:10.1016/j.bmc.2011.07.058.; P. Behera and S. Balaji, “The forgotten sugar: A review on multifarious applications of melezitose,” Carbohydr Res, vol. 500, p. 108248, Feb. 2021, doi:10.1016/j.carres.2021.108248.; J. A. Mora Vargas, J. Orduña Ortega, G. Metzker, J. E. Larrahondo, and M. Boscolo, “Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds,” Phytochemistry, vol. 177, p. 112433, Sep. 2020, doi:10.1016/j.phytochem.2020.112433.; W. Kobayashi, T. Miyase, S. Suzuki, H. Noguchi, and X.-M. Chen, “Oligosaccharide Esters from the Roots of Polygala a rillata,” J Nat Prod, vol. 63, no. 8, pp. 1066–1069, Aug. 2000, doi:10.1021/np0000567; P. R. K. Reddy et al., “Plant secondary metabolites as feed additives in calves for antimicrobial stewardship,” Anim Feed Sci Technol, vol. 264, p. 114469, Jun. 2020, doi:10.1016/j.anifeedsci.2020.114469.; N. Selwal et al., “Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies,” J Agric Food Res, vol. 14, p. 100702, Dec. 2023, doi:10.1016/j.jafr.2023.100702.; Y. Li, D. Kong, Y. Fu, M. R. Sussman, and H. Wu, “The effect of developmental and environmental factors on secondary metabolites in medicinal plants,” Plant Physiology and Biochemistry, vol. 148, pp. 80–89, Mar. 2020, doi:10.1016/j.plaphy.2020.01.006.; B. A. Rasool Hassan, “Medicinal Plants (Importance and Uses),” Pharm Anal Acta, vol. 03, no. 10, 2012, doi:10.4172/2153-2435.1000e139.; A. G. Atanasov et al., “Discovery and resupply of pharmacologically active plant-derived natural products: A review,” Biotechnol Adv, vol. 33, no. 8, pp. 1582–1614, Dec. 2015, doi:10.1016/j.biotechadv.2015.08.001; T. Isah, “Stress and defense responses in plant secondary metabolites production,” Biol Res, vol. 52, no. 1, p. 39, Dec. 2019, doi:10.1186/s40659-019-0246-3.; H. Patel and R. Krishnamurthy, “Elicitors in plant tissue culture,” J Pharmacogn Phytochem, vol. 2, no. 2, pp. 60–65, 2013; J. M. Al Khayri and P. M. Naik, “Impact of Abiotic Elicitors on In vitro Production of Plant Secondary Metabolites: A Review,” Journal of Advanced Research in Biotechnology, vol. 1, no. 2, pp. 1–7, Jan. 2016, doi:10.15226/2475-4714/1/2/00102; M. Onrubia, E. Moyano, M. Bonfill, O. Expósito, J. Palazón, and R. M. Cusidó, “An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: The role of txs and bapt gene expression,” Biochem Eng J, vol. 53, no. 1, pp. 104–111, Dec. 2010, doi:10.1016/j.bej.2010.10.001.; O. Exposito et al., “Metabolic responses of Taxus media transformed cell cultures to the addition of methyl jasmonate,” Biotechnol Prog, vol. 26, no. 4, pp. 1145–1153, Jul. 2010, doi:10.1002/btpr.424.; M. Arias Zabala, M. Angarita, J. M. Restrepo, L. A. Caicedo, and M. Perea, “Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana,” In Vitro Cellular & Developmental Biology - Plant, vol. 46, no. 3, pp. 233–238, Jun. 2010, doi:10.1007/s11627-009-9249-z.; M. Yousefzadi, M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano, and J. Palazon, “Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis,” Biotechnol Lett, vol. 32, no. 11, pp. 1739–1743, Nov. 2010, doi:10.1007/s10529-010-0343-4.; E. Sousa and M. Chaves, “Iridoides e atividades biológicas de espécies da tribo Gardenieae: uma contribuicao quimio-taxonòmica para a família Rubiaceae ,” Rev Vir Quím, vol. 11, 2019.; T. Krumm, K. Bandemer, and W. Boland, “Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine‐ and isoleucine conjugates of 1‐oxo‐ and 1‐hydroxyindan‐4‐carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway,” FEBS Lett, vol. 377, no. 3, pp. 523–529, Dec. 1995, doi:10.1016/0014-5793(95)01398-9.; L. Botero, S. Vizcaíno, W. Quiñones, F. Echeverri, J. Gil, and D. Durango, “Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives,” Biotechnology Reports, vol. 29, p. e00601, Mar. 2021, doi:10.1016/j.btre.2021.e00601; Y. Nakamura et al., “Synthesis of 6-Substituted 1-oxoindanoyl Isoleucine Conjugates and Modeling Studies with the COI1-JAZ Co-Receptor Complex of Lima Bean,” J Chem Ecol, vol. 40, no. 7, pp. 687–699, Jul. 2014, doi:10.1007/s10886-014-0469-2.; T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures,” Physiol Plant, vol. 15, no. 3, pp. 473–497, Jul. 1962, doi:10.1111/j.1399-3054.1962.tb08052.x.; J. Garg, G. Ghoshal, S. K. Bhadada, and O. Katare, “Derivatisation Mechanistic-guided Identification of Phytoconstituents of Different Extracts of Cissus quadrangularis by TLC and Standardization by HPTLC,” Phytomedicine Plus, p. 100601, Jun. 2024, doi:10.1016/j.phyplu.2024.100601.; K. A. McDonald and A. P. Jackman, “Bioreactor studies of growth and nutrient utilization in alfalfa suspension cultures,” Plant Cell Rep, vol. 8, no. 8, pp. 455–458, Dec. 1989, doi:10.1007/BF00269047; D. Gabotti et al., “Cell Suspensions of Cannabis sativa (var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity,” Molecules, vol. 24, no. 22, p. 4056, Nov. 2019, doi:10.3390/molecules24224056; T.-T. Ho, H. N. Murthy, and S.-Y. Park, “Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures,” Int J Mol Sci, vol. 21, no. 3, p. 716, Jan. 2020, doi:10.3390/ijms21030716; J. Dong, G. Wan, and Z. Liang, “Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture,” J Biotechnol, vol. 148, no. 2–3, pp. 99–104, Jul. 2010, doi:10.1016/j.jbiotec.2010.05.009; S. Chattopadhyay, S. Farkya, A. K. Srivastava, and V. S. Bisaria, “Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures,” Biotechnology and Bioprocess Engineering, vol. 7, no. 3, pp. 138–149, Jun. 2002, doi:10.1007/BF02932911; R. Jeyasri, P. Muthuramalingam, K. Karthick, H. Shin, S. H. Choi, and M. Ramesh, “Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review,” Plant Cell, Tissue and Organ Culture (PCTOC), vol. 153, no. 3, pp. 447–458, Jun. 2023, doi:10.1007/s11240-023-02485-8.; A. Humbal and B. Pathak, “Influence of exogenous elicitors on the production of secondary metabolite in plants: A review (‘VSI: secondary metabolites’),” Plant Stress, vol. 8, p. 100166, Jun. 2023, doi:10.1016/j.stress.2023.100166.; J.-H. Kim et al., “Production of Secondary Metabolites from Cell Cultures of Sageretia thea (Osbeck) M.C. Johnst. Using Balloon-Type Bubble Bioreactors,” Plants, vol. 12, no. 6, p. 1390, Mar. 2023, doi:10.3390/plants12061390.; M. A. Farag, H. Mekky, and S. El-Masry, “Metabolomics driven analysis of Erythrina lysistemon cell suspension culture in response to methyl jasmonate elicitation,” J Adv Res, vol. 7, no. 5, pp. 681–689, Sep. 2016, doi:10.1016/j.jare.2016.07.002; J. Zhao, L. C. Davis, and R. Verpoorte, “Elicitor signal transduction leading to production of plant secondary metabolites,” Biotechnol Adv, vol. 23, no. 4, pp. 283–333, Jun. 2005, doi:10.1016/j.biotechadv.2005.01.003; E. Kochan, G. Szymańska, I. Grzegorczy-Karolak, P. Szymczyk, and M. Sienkiewicz, “Ginsenoside and phenolic compounds in hydromethanolic extracts of American ginseng cell cultures and their antioxidant properties,” Acta Societatis Botanicorum Poloniae, vol. 88, no. 4, Dec. 2019, doi:10.5586/asbp.3638; P. Ahmad et al., “Jasmonates: Multifunctional Roles in Stress Tolerance,” Front Plant Sci, vol. 7, Jun. 2016, doi:10.3389/fpls.2016.00813; N. De Geyter, A. Gholami, S. Goormachtig, and A. Goossens, “Transcriptional machineries in jasmonate-elicited plant secondary metabolism,” Trends Plant Sci, vol. 17, no. 6, pp. 349–359, Jun. 2012, doi:10.1016/j.tplants.2012.03.001; N. Verma and S. Shukla, “Impact of various factors responsible for fluctuation in plant secondary metabolites,” J Appl Res Med Aromat Plants, vol. 2, no. 4, pp. 105–113, Dec. 2015, doi:10.1016/j.jarmap.2015.09.002.; G. TopÇu, G. Herrmann, U. Kolak, C. Gören, A. Porzel, and T. M. Kutchan, “Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia,” Nat Prod Res, vol. 21, no. 2, pp. 100–105, Feb. 2007, doi:10.1080/14786410500462884.; K. Zalewski, S. Czaplicki, R. Rafałowski, R. Stryiński, A. Okorski, and B. Nitkiewicz, “The effect of exogenous methyl jasmonate on the fatty acid composition of germinating triticale kernels (x Triticosecale Wittmack, cv. Ugo),” Curr Plant Biol, vol. 28, p. 100225, Dec. 2021, doi:10.1016/j.cpb.2021.100225; O. Parra, A. M. Gallego, A. Urrea, L. F. Rojas, C. Correa, and L. Atehortúa, “Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.,” Plant Physiology and Biochemistry, vol. 111, pp. 59–66, Feb. 2017, doi:10.1016/j.plaphy.2016.11.013; B. Parthier, “Jasmonates, New Regulators of Plant Growth and Development: Many Facts and Few Hypotheses on their Actions,” Botanica Acta, vol. 104, no. 6, pp. 446–454, Dec. 1991, doi:10.1111/j.1438-8677.1991.tb00257.x.; S. Fonseca, J. M. Chico, and R. Solano, “The jasmonate pathway: the ligand, the receptor and the core signalling module,” Curr Opin Plant Biol, vol. 12, no. 5, pp. 539–547, Oct. 2009, doi:10.1016/j.pbi.2009.07.013; J. Szczegielniak, “[Wound signal transduction pathways in plants].,” Postepy Biochem, vol. 53, no. 2, pp. 121–32, 2007; Y. Wang, S. Mostafa, W. Zeng, and B. Jin, “Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses,” Int J Mol Sci, vol. 22, no. 16, p. 8568, Aug. 2021, doi:10.3390/ijms22168568.; S. Gandi, K. Rao, B. Chodisetti, and A. Giri, “Elicitation of Andrographolide in the Suspension Cultures of Andrographis paniculata,” Appl Biochem Biotechnol, vol. 168, no. 7, pp. 1729–1738, Dec. 2012, doi:10.1007/s12010-012-9892-4.; S. S. Mian, M. I. Alam, N. A. Khan, and M. Shuaib, “Standardisation of different extracts of detoxified Nux-vomica seeds with its comparative study by TLC and HPTLC,” J Herb Med, vol. 42, p. 100792, Dec. 2023, doi:10.1016/j.hermed.2023.100792; E. Kaale, P. Risha, and T. Layloff, “TLC for pharmaceutical analysis in resource limited countries,” J Chromatogr A, vol. 1218, no. 19, pp. 2732–2736, May 2011, doi:10.1016/j.chroma.2010.12.022; W. Wen et al., “Screening and identification of antibacterial components in Artemisia argyi essential oil by TLC–direct bioautography combined with comprehensive 2D GC × GC-TOFMS,” Journal of Chromatography B, vol. 1234, p. 124026, Feb. 2024, doi:10.1016/j.jchromb.2024.124026; L. Qi, C. Chen, and P. Li, “Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode‐array detection and time‐of‐flight mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 23, no. 19, pp. 3227–3242, Oct. 2009, doi:10.1002/rcm.4245; S. Sang et al., “Citrifolinin A, a new unusual iridoid with inhibition of activator protein-1 (AP-1) from the leaves of noni (Morinda citrifolia L.) ,” Tetrahedron Lett, pp. 1823–1825, 2001.; F. Xu, X. Huang, H. Wu, and X. Wang, “Beneficial health effects of lupenone triterpene: A review,” Biomedicine & Pharmacotherapy, vol. 103, pp. 198–203, Jul. 2018, doi:10.1016/j.biopha.2018.04.019; S.-S. Lee et al., “Tricin derivatives as anti-inflammatory and anti-allergic constituents from the aerial part of Zizania latifolia,” Biosci Biotechnol Biochem, vol. 79, no. 5, pp. 700–706, May 2015, doi:10.1080/09168451.2014.997184.; M. O. Agbo, D. Lai, F. B. C. Okoye, P. O. Osadebe, and P. Proksch, “Antioxidative polyphenols from Nigerian mistletoe Loranthus micranthus (Linn.) parasitizing on Hevea brasiliensis,” Fitoterapia, vol. 86, pp. 78–83, Apr. 2013, doi:10.1016/j.fitote.2013.02.006; S. Z. M. R. Jamil, E. R. Rohani, S. N. Baharum, and N. M. Noor, “Metabolite profiles of callus and cell suspension cultures of mangosteen,” 3 Biotech, vol. 8, no. 8, p. 322, Aug. 2018, doi:10.1007/s13205-018-1336-6; L. K. Rodríguez-Sánchez et al., “Effect of methyl jasmonate and salicylic acid on the production of metabolites in cell suspensions cultures of Piper cumanense (Piperaceae),” Biotechnology Reports, vol. 28, p. e00559, Dec. 2020, doi:10.1016/j.btre.2020.e00559; D. Durango, N. Pulgarin, F. Echeverri, G. Escobar, and W. Quiñones, “Effect of Salicylic Acid and Structurally Related Compounds in the Accumulation of Phytoalexins in Cotyledons of Common Bean (Phaseolus vulgaris L.) Cultivars,” Molecules, vol. 18, no. 9, pp. 10609–10628, Sep. 2013, doi:10.3390/molecules180910609; A. Nahrstedt, “Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae,” Phytochemistry, vol. 39, no. 2, pp. 375–378, May 1995, doi:10.1016/0031-9422(94)00906-A.; L.-X. Wang et al., “Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications,” Phytochemistry, vol. 202, p. 113326, Oct. 2022, doi:10.1016/j.phytochem.2022.113326; D. Mendoza, O. Cuaspud, J. P. Arias, O. Ruiz, and M. Arias, “Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana,” Biotechnology Reports, vol. 19, p. e00273, Sep. 2018, doi:10.1016/j.btre.2018.e00273; D. Mendoza, J. P. Arias, O. Cuaspud, O. Ruiz, and M. Arias, “FT-NIR spectroscopy and RP-HPLC combined with multivariate analysis reveals differences in plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate,” Biotechnology Reports, vol. 27, p. e00519, Sep. 2020, doi:10.1016/j.btre.2020.e00519.; B. Chodisetti, K. Rao, S. Gandi, and A. Giri, “Gymnemic acid enhancement in the suspension cultures of Gymnema sylvestre by using the signaling molecules—methyl jasmonate and salicylic acid,” In Vitro Cellular & Developmental Biology - Plant, vol. 51, no. 1, pp. 88–92, Feb. 2015, doi:10.1007/s11627-014-9655-8.; M. Taurino et al., “Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures,” Springerplus, vol. 4, no. 1, p. 49, Dec. 2015, doi:10.1186/s40064-015-0831-z; C. D’Onofrio, A. Cox, C. Davies, and P. K. Boss, “Induction of secondary metabolism in grape cell cultures by jasmonates,” Functional Plant Biology, vol. 36, no. 4, p. 323, 2009, doi:10.1071/FP08280; J. Shah, “Plants under attack: systemic signals in defence,” Curr Opin Plant Biol, vol. 12, no. 4, pp. 459–464, Aug. 2009, doi:10.1016/j.pbi.2009.05.011; M. He and N.-Z. Ding, “Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response,” Front Plant Sci, vol. 11, Sep. 2020, doi:10.3389/fpls.2020.562785; K.-X. Zhang, Y.-J. Hao, M.-Y. Jin, M.-L. Lian, J. Jiang, and X.-C. Piao, “Cell culture of Euphorbia fischeriana and enhancement of terpenoid accumulation through MeJA elicitation,” Ind Crops Prod, vol. 207, p. 117781, Jan. 2024, doi:10.1016/j.indcrop.2023.117781.; https://repositorio.unal.edu.co/handle/unal/87178; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
3Academic Journal
المؤلفون: Carlos Julio Nova-López, Jorge Mario Muñoz-Pérez, Luisa Fernanda Granger-Serrano, Mario Eveilio Arias-Zabala, Rafael Eduardo Arango-Isaza
المصدر: Dyna, Vol 84, Iss 201, Pp 34-41 (2017)
مصطلحات موضوعية: Cultivo de células vegetales en suspensión, proteínas recombinantes, Solanum tuberosum, Technology, Mining engineering. Metallurgy, TN1-997
وصف الملف: electronic resource
-
4Academic Journal
المؤلفون: Nova López, Carlos Julio, Torres Bonilla, Javier Mauricio, Mendoza Meza, Dary Luz, Arango Isaza, Rafael
المصدر: Ciencia, tecnología en innovación en salud, ISSN 2590-5708, Nº. 8, 2023, pags. 26-44
مصطلحات موضوعية: Molecular farming, Heterologous proteins, Plant expression systems, Biosimilars, Plant suspension cells, Agricultura molecular, Proteínas heterólogas, Sistemas de expresión vegetal, Biosimilares, Células vegetales en suspensión
وصف الملف: application/pdf
-
5Academic Journal
المؤلفون: Juan Pablo Arias, Karol Zapata, Benjamín Rojano, Mariana Peñuela, Mario Arias
المصدر: Revista U.D.C.A Actualidad & Divulgación Científica, Vol 20, Iss 2 (2017)
مصطلحات موضوعية: Metabolitos de plantas, Actividad antioxidante, Especies reactivas de oxígeno, Fenoles, Cultivo de células vegetales en suspensión, Thevetia peruviana, Agriculture (General), S1-972, Medicine (General), R5-920, Biology (General), QH301-705.5
وصف الملف: electronic resource
-
6Academic Journal
المؤلفون: Nova-López, Carlos Julio, Muñoz-Pérez, Jorge Mario, Granger-Serrano, Luisa Fernanda, Arias-Zabala, Mario Eveilio, Arango-Isaza, Rafael Eduardo
المصدر: DYNA; Vol. 84 No. 201 (2017): April - June; 34-41 ; DYNA; Vol. 84 Núm. 201 (2017): Abril - Junio; 34-41 ; 2346-2183 ; 0012-7353
مصطلحات موضوعية: Plant cell suspension culture, recombinant proteins, Solanum tuberosum, Cultivo de células vegetales en suspensión, proteínas recombinantes
وصف الملف: application/pdf; application/xml
-
7Academic Journal
المؤلفون: Nova-López, Carlos Julio, Muñoz-Pérez, Jorge Mario, Granger-Serrano, Luisa Fernanda, Arias-Zabala, Mario Eveilio, Arango-Isaza, Rafael Eduardo
مصطلحات موضوعية: 62 Ingeniería y operaciones afines / Engineering, Plant cell suspension culture, recombinant proteins, Solanum tuberosum, Cultivo de células vegetales en suspensión, proteínas recombinantes
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/dyna/article/view/59829; Universidad Nacional de Colombia Revistas electrónicas UN Dyna; Dyna; Nova-López, Carlos Julio and Muñoz-Pérez, Jorge Mario and Granger-Serrano, Luisa Fernanda and Arias-Zabala, Mario Eveilio and Arango-Isaza, Rafael Eduardo (2017) Expresión de la proteína recombinante Cry 1Ac en cultivos de células de papa en suspensión: Establecimiento del cultivo y optimización de la producción de la biomasa y la proteína mediante la adición de nitrógeno. DYNA, 84 (201). pp. 34-41. ISSN 2346-2183; https://repositorio.unal.edu.co/handle/unal/60402; http://bdigital.unal.edu.co/58734/
-
8
المصدر: Repositorio Institucional UDCA
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
instacron:Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica, Vol 20, Iss 2 (2017)
Revista U.D.C.A Actualidad & Divulgación Científica, Volume: 20, Issue: 2, Pages: 353-362, Published: 30 DEC 2017مصطلحات موضوعية: Medicine (General), Especies reactivas de oxígeno, QH301-705.5, Agriculture (General), Biomasa, Cultivos, S1-972, Anti-oxidant activity, Fenoles, Metabolitos de plantas, R5-920, Plant cell suspension culture, Phenols, Cultivo de células vegetales en suspensión, Glucosa, Plant metabolites, Actividad antioxidante, Biology (General), Reactive Oxygen Species, Thevetia peruviana
وصف الملف: application/pdf; text/html
-
9
المؤلفون: Mario Arias-Zabala, Carlos Julio Nova-López, Luisa Fernanda Granger-Serrano, Rafael Eduardo Arango-Isaza, Jorge Mario Muñoz-Pérez
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombia
Dyna, Vol 84, Iss 201, Pp 34-41 (2017)مصطلحات موضوعية: lcsh:TN1-997, 0301 basic medicine, Specific growth, Callus formation, lcsh:Technology, Suspension culture, recombinant proteins, law.invention, 03 medical and health sciences, Murashige and Skoog medium, law, Cultivo de células vegetales en suspensión, proteínas recombinantes, lcsh:Mining engineering. Metallurgy, Solanum tuberosum, lcsh:T, Chemistry, General Engineering, Molecular biology, Genetically modified organism, 030104 developmental biology, Plant cell suspension culture, 62 Ingeniería y operaciones afines / Engineering, Recombinant protein production, Recombinant DNA, Explant culture
وصف الملف: application/pdf
-
10Academic Journal
المؤلفون: Nova López, Carlos Julio, Muñoz Pérez, Jorge Mario, Granger Serrano, Luisa Fernanda, Arias Zabala, Mario, Arango Isaza, Rafael Eduardo
المصدر: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín, ISSN 0012-7353, Vol. 84, Nº. 201, 2017, pags. 34-41
مصطلحات موضوعية: Plant cell suspension culture, recombinant proteins, Solanum tuberosum, Cultivo de células vegetales en suspensión, proteínas recombinantes, Solanum tuber
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=5990932; (Revista) ISSN 0012-7353
-
11
المؤلفون: Granger-Serrano, Luisa Fernanda
المساهمون: Arias Zabala, Mario Evelio (Thesis advisor), Arango Isaza, Rafael Eduardo
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Solanum tuberosum L, 66 Ingeniería química y Tecnologías relacionadas/ Chemical engineering, Cultivo de células vegetales en suspensión, 57 Ciencias de la vida, Biología / Life sciences, biology, 58 Plantas / Plants, Proteínas recombinantes
وصف الملف: application/pdf
-
12Electronic Resource
Additional Titles: Expresión de la proteína recombinante Cry 1Ac en cultivos de células de papa en suspensión: Establecimiento del cultivo y optimización de la producción de la biomasa y la proteína mediante la adición de nitrógeno
المؤلفون: Nova-López, Carlos Julio, Muñoz-Pérez, Jorge Mario, Granger-Serrano, Luisa Fernanda, Arias-Zabala, Mario Eveilio, Arango-Isaza, Rafael Eduardo
المصدر: DYNA; Vol. 84 Núm. 201 (2017): April-June, 2017; 34-41; DYNA; Vol. 84 No. 201 (2017): April-June, 2017; 34-41; 2346-2183; 0012-7353
مصطلحات الفهرس: Plant cell suspension culture, recombinant proteins, Solanum tuberosum, Cultivo de células vegetales en suspensión, proteínas recombinantes, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
https://revistas.unal.edu.co/index.php/dyna/article/view/59829/59703 https://revistas.unal.edu.co/index.php/dyna/article/view/59829/63673 https://revistas.unal.edu.co/index.php/dyna/article/view/59829/59703 https://revistas.unal.edu.co/index.php/dyna/article/view/59829/63673
*ref*/Smetanska, I., Production of secondary metabolites using plant cell cultures, Adv. Biochem. Eng. Biotechnol, 111(1), pp. 187-228, 2008. DOI: 10.1007/10_2008_103
*ref*/Yue, W., Ming, Q.-L., Lin, B., Rahman, K., Zheng, C.-J., Han, T. and Qin, L.-P., Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites, Crit. Rev. Biotechnol, 36(2), pp. 215-232, 2016. DOI: 10.3109/07388551.2014.923986
*ref*/Zhang, W., Franco, C., Curtin, C. and Conn, S., To stretch the boundary of secondary metabolite production in plant cell-based bioprocessing: Anthocyanin as a case study, J. Biomed. Biotechnol, 2004(5), pp. 264-271, 2004. DOI: 10.1155/S1110724304404148
*ref*/Kovacs, K., Zhang, L., Linforth, R.S.T., Whittaker, B., Hayes, C.J. and Fray, R.G., Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit, Transgenic Res, 16(1), pp. 121-126, 2006. DOI: 10.1007/s11248-006-9039-x
*ref*/Ikram, N.K., Zhan, X., Pan, X.-W., King, B.C. and Simonsen, H.T., Stable heterologous expression of biologically active terpenoids in green plant cells, Front. Plant. Sci., 6(1), pp. 1-10, 2015. DOI: 10.3389/fpls.2015.00129
*ref*/Wilson, S.A. and Roberts, S.C., Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol. J., 10(3), pp. 249-268, 2012. DOI: 10.1111/j.1467-7652.2011.00664.x
*ref*/Twyman, R.M., Stoger, E., Schillberg, S., Christou, P. and Fischer, R., Molecular farming in plants: Host systems and expression technology, Trends Biotechnol, 21(12), pp. 570-578, 2003. DOI: 10.1016/j.tibtech.2003.10.002
*ref*/Horn, M.E., Woodard, S.L. and Howard, J.A., Plant molecular farming: Systems and products, Plant. Cell. Rep., 22(10), pp. 711-720, 2004. DOI: 10.1007/s00299-004-0767-1
*ref*/Obembe, O.O., Popoola, J.O., Leelavathi, S. and Reddy, S.V., Advances in plant molecular farming, Biotechnol. Adv., 29(2), pp. 210-222, 2011. DOI: 10.1016/j.biotechadv.2010.11.004
*ref*/Dingermann, T., Recombinant therapeutic proteins: Production platforms and challenges, Biotechnol. J., 3(1), pp. 90-97, 2008. DOI: 10.1002/biot.200700214
*ref*/Jacobs, P.P. and Callewaert, N., N-glycosylation engineering of biopharmaceutical expression systems, Curr. Mol. Med, 9(7) pp. 774-800, 2009. DOI: 10.2174/156652409789105552
*ref*/Giddings, G., Allison, G., Brooks, D. and Carter, A., Transgenic plants as factories for biopharmaceuticals, Nat. Biotechnol, 8(11) pp. 1151-1155, 2000. DOI: 10.1038/81132
*ref*/Karg, S.R. and Kallio, P.T., Biotechnol. Adv., 27(6), pp. 879-894, 2009. DOI: 10.1016/j.biotechadv.2009.07.002
*ref*/Huang, T.-K. and McDonald, K.A., Bioreactor engineering for recombinant protein production in plant cell suspension cultures, Biochem. Eng. J., 45(3), pp. 168-184, 2009. DOI: 10.1016/j.bej.2009.02.008
*ref*/Xu, J., Ge, X. and Dolan, M.C., Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures, Biotechnol. Adv., 29(3), pp. 278-299, 2011. DOI: 10.1016/j.biotechadv.2011.01.002
*ref*/Hellwig, S., Drossard, J., Twyman, R.M. and Fischer, R., Plant cell cultures for the production of recombinant proteins, Nat. Biotechnol., 22(11), pp. 1415-1422, 2004. DOI: 10.1038/nbt1027
*ref*/Becerra-Arteaga, A., Mason, H.S. and Shuler, M.L., Production, secretion, and stability of human secreted alkaline phosphatase in tobacco NT1 cell suspension cultures, Biotechnol. Prog, 22(6), pp. 1643-1649, 2006. DOI: 10.1021/bp060151r
*ref*/Andrews, L.B. and Curtis, W.R., Comparison of transient protein expression in tobacco leaves and plant suspension culture, Biotechnol. Prog., 21(3), pp. 946-952, 2005. DOI: 10.1021/bp049569k
*ref*/Xu, J., Okada, S., Tan, L., Goodrum, K.J., Kopchick, J.J. and Kieliszewski, M.J., Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life, Transgenic Res., 19(5), pp. 849-867, 2010. DOI: 10.1007/s11248-010-9367-8
*ref*/Holland, T., Sack, M., Rademacher, T., Schmale, K., Altmann, F., Stadlmann, J., Fischer, R. and Hellwig, S., Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture, Biotechnol. Bioeng., 107(2), pp. 278-289, 2010. DOI: 10.1002/bit.2280
*ref*/Park, C.-I., Lee, S.-J., Kang, S.-H., Jung, H.-S., Kim, D.-I. and Lim, S.-M., Fed-batch cultivation of transgenic rice cells for the production of hCTLA4Ig using concentrated amino acids, Process Biochem., 45(1), pp. 67-74, 2010. DOI: 10.1016/j.procbio.2009.08.004
*ref*/Corbin, J.M., Hashimoto, B.I., Karuppanan, K., Kyser, Z.R., Wu, L., Roberts, B.A., Noe, A.R., Rodriguez, R.L., McDonald, K.A. and Nandi, S., Semicontinuous bioreactor production of recombinant butyrylcholinesterase in transgenic rice cell suspension cultures, Plant Biotechnol., 7(1), pp. 1-10, 2016. DOI: 10.3389/fpls.2016.00412
*ref*/Fox, J.L., First plant-made biologic approved, Nat. Biotechnol, 30(6), pp. 472-472, 2012. DOI: 10.1038/nbt0612-472
*ref*/Torabi, F., Majad, A., Ehsanpour, A.A., Plant regeneration from cell suspension culture of potato (Solanum tuberosum L.), Pak. J. Biol. Sci. PJBS, 11(5) pp. 778-782, 2008.
*ref*/Sapko, O.A., Utarbaeva, A.S.and Makulbek, S., Effect of fusaric acid on prooxidant and antioxidant properties of the potato cell suspensión culture, Russ. J. Plant Physiol., 58(5), pp. 828-835, 2011. DOI: 10.1134/S1021443711050190
*ref*/Sabbah, S. and Tal, M., Development of callus and suspension cultures of potato resistant to NaCl and mannitol and their response to stress, Plant Cell Tissue Organ. Cult., 21(2), pp. 119-128, 1990. DOI: 10.1007/BF00033430
*ref*/Rukavtsova, E.B., Rudenko, N.V., Puchko, E.N., Zakharchenko, N.S. and Buryanov, Y.I., Study of the immunogenicity of hepatitis B surface antigen synthesized in transgenic potato plants with increased biosafety, J. Biotechnol., 203(1), pp. 84-88, 2015. DOI: 10.1016/j.jbiotec.2015.03.019
*ref*/Gerszberg, A., Wiktorek-Smagur, A., Hnatuszko-Konka, K., Łuchniak, P. and Kononowicz, A.K., Expression of recombinant staphylokinase, a fibrin-specific plasminogen activator of bacterial origin, in potato (Solanum tuberosum L.) plants, World J. Microbiol. Biotechnol., 28(3), pp. 1115-1123, 2012. DOI: 10.1007/s11274-011-0912-2
*ref*/Park, Y. and Cheong, H., Expression and production of recombinant human interleukin-2 in potato plants, Protein Expr. Purif., 25(1), pp. 160-165, 2002. DOI: 10.1006/prep.2002.1622
*ref*/He, D.-M., Qian, K.-X., Shen, G.-F., Li, Y.-N., Zhang, Z.-F., Su, Z.-L. and Shao, H.-B., Stable expression of foot-and-mouth disease virus protein VP1 fused with cholera toxin B subunit in the potato (Solanum tuberosum), Colloids Surf. B Biointerfaces, 55(2), pp. 159-163, 2007. DOI: 10.1006/prep.2002.162210.1016/j.colsurfb.2006.11.043
*ref*/Villalobos, E.S.T., Torres, J., Moreno, C. and Arango, R., Development of transgenic lines from a male-sterile potato variety, with potential resistance to Tecia solanivora Povolny. Agron. Colomb., 30(2), pp. 163-171, 2012.
*ref*/Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant, 15(3) pp. 473-497, 1962. DOI: 10.1111/j.1399-3054.1962.tb08052.x
*ref*/Castro-Concha, L., Escobedo, R. and de Miranda-Ham, M., Measurement of cell viability in vitro cultures, in: Loyola-Vargas, V. and Vázquez-Flota, F. Eds., Plant Cell Culture Protocols, Humana Press, 2006, pp. 71-76. DOI: 10.1385/1-59259-959-1:071
*ref*/Farzana, S., Hossain, M., Kabir, M.F., Roy, M. and Sarker, S.R., Callus induction and plant regeneration from internodal and leaf explants of four potato (Solanum tuberosum L.) cultivars, World J. Agric. Sci, 3(1), pp. 1-6, 2007.
*ref*/Chakravarty, B., Wang-Pruski, G., Rapid regeneration of stable transformants in cultures of potato by improving factors influencing Agrobacterium-mediated transformation, Adv. Biosci. Biotechnol, 1 (5), pp. 409–416, 2010. https://doi.org/10.4236/abb.2010.15054
*ref*/Kumlay, A.M. and Ercisli, S., Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions, Biotechnol. Biotechnol. Equip., 29(6), pp. 1075-1084, 2015. DOI: 10.1080/13102818.2015.1077685
*ref*/Kumar, V., Rashmi, D. and Banerjee, M., Callus induction and plant regeneration in Solanum tuberosum L. cultivars (Kufri Chipsona 3 and MP-97/644) via leaf explants, Int. Res. J. Biol. Sci., 3(6), pp. 66-72, 2014.
*ref*/Mustafa, N.R., de Winter, W., van Iren, F. and Verpoorte, R., Initiation, growth and cryopreservation of plant cell suspension cultures, Nat. Protoc, 6(6), pp. 715-742, 2011. DOI: 10.1038/nprot.2010.144
*ref*/Zabala, M.A., Angarita, M., Restrepo, J.M., Caicedo, L.A. and Perea, M., Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana, Vitro Cell. Dev. Biol. – Plant, 46(3), pp. 233-238, 2009. DOI: 10.1007/s11627-009-9249-z
*ref*/Byth, H.A., Mchunu, B.I., Dubery, I.A. and Bornman, L., Assessment of a simple, non-toxic Alamar blue cell survival assay to monitor tomato cell viability, Phytochem. Anal. PCA, 12(5), pp. 340-346, 2001. DOI: 10.1002/pca.595
*ref*/Wucherpfennig, T., Schulz, A., Pimentel, J.A., Corkidi, G., Sieblitz, D., Pump, M., Gorr, G., Schütte, K., Wittmann, C. and Krull, R., Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric- and image analysis-based techniques, Bioprocess Biosyst. Eng, 37(9), pp. 1799-1808, 2014. DOI: 10.1007/s00449-014-1153- [42] Choi, S.-M., Lee, O.-S., Kwon, S.-Y., Kwak, S.-S., Yu, D.-Y. and Lee, H.-S., High expression of a human lactoferrin in transgenic tobacco cell cultures, Biotechnol. Lett, 25(3), pp. 213-218, 2003.
*ref*/Gao, J. and Lee, J.M., Effect of oxygen supply on the suspension culture of genetically modified tobacco cells, Biotechnol. Prog, 8(4), pp. 285-290, 1992. DOI: 10.1021/bp00016a004
*ref*/Dong, H.-D. and Zhong, J.-J., Enhanced taxane productivity in bioreactor cultivation of Taxus chinensis cells by combining elicitation, sucrose feeding and ethylene incorporation, Enzyme Microb. Technol, 31(1–2), pp. 116-121, 2002. DOI: 10.1016/S0141-0229(02)00079-0
*ref*/Hussain, M.S., Fareed, S., Ansari, S., Rahman, M.A., Ahmad, I.Z. and Saeed, M., Current approaches toward production of secondary plant metabolites, J. Pharm. Bioallied Sci, 4(1), pp. 10-20, 2012. DOI: 10.4103/0975-7406.92725
*ref*/Zhang, Y.-H., Zhong, J.-J. and Yu, J.-T., Effect of nitrogen source on cell growth and production of ginseng saponin and polysaccharide in suspension cultures of panax notoginseng, Biotechnol. Prog, 12(4), pp. 567-571, 1996. DOI: 10.1021/bp9600391
*ref*/Panda, A.K., Bisaria, V.S. and Mishra, S., Alkaloid production by plant cell cultures of Holarrhena antidysenterica: II. Effect of precursor feeding and cultivation in stirred tank bioreactor, Biotechnol. Bioeng, 39(10), pp. 1052-1057, 1992. DOI: 10.1002/bit.260391009
*ref*/Kaul, K. and Hoffman, S.A., Ammonium ion inhibition of Pinus strobus L. callus growth, Plant Sci, 8(2), pp. 169-173, 1993. DOI: 10.1016/0168-9452(93)90088-H
*ref*/Fujiuchi, N., Matsuda, R., Matoba, N. and Fujiwara, K., Effect of nitrate concentration in nutrient solution on hemagglutinin content of Nicotiana benthamiana leaves in a viral vector-mediated transient gene expression system, Plant Tissue Cult. Lett, 31(3), pp. 207-211, 2014.
*ref*/Peng, M., Bi, Y.-M., Zhu, T. and Rothstein, S.J., Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA, Plant Mol. Biol, 65(6), pp. 775-797, 2007. DOI: 10.1007/s11103-007-9241-0
*ref*/Gutiérrez, R.A., Lejay, L.V., Dean, A., Chiaromonte, F., Shasha, D.E. and Coruzzi, G.M., Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis, Genome Biol, 8(1), pp. R7, 2007. DOI: 10.1186/gb-2007-8-1-r7