-
1
المؤلفون: Brekke, Morten, Torstveit, Geir, Køien Andersen, Maiken, Kjosnes Fredsvik, Lisa, Mijatović, Aleksandar, Bulant, Michal, Oleksikova, Katerina, Antalova, Natalia, Õun, Tiia, Kreulich, Klaus, Schindler, Christina, Anzi, Lucie, Hanrieder, Bettina, Gomez Puente, Sonia, Szozda, Natalia, Amaral, Carla Maria, Cravino, José, Machado, Diogo, Aslam, Tehseen, 1981, Goienetxea Uriarte, Ainhoa, 1983, Zhang, Thérèse
مصطلحات موضوعية: european higher education area, lifelong learning, teaching enhancement, digital learning, student-centered learning skills, Virtual Production Development (VPD)
وصف الملف: electronic
-
2Academic Journal
المؤلفون: Bulant, Michal, Kučera, Radan
المصدر: Journal of Number Theory ; volume 133, issue 9, page 3138-3148 ; ISSN 0022-314X
-
3Academic Journal
المؤلفون: Bulant, Michal
المصدر: Journal of Number Theory ; volume 68, issue 1, page 72-86 ; ISSN 0022-314X
-
4Book
المؤلفون: Slovák, Jan, Panák, Martin, Bulant, Michal
المصدر: ISBN 9788021063075.
-
5Academic Journal
المؤلفون: Bulant, Michal
وصف الملف: application/pdf
Relation: mr:MR2178534; zbl:Zbl 1108.11082; reference:[1] GOLD R.-KIM J.: Bases for cyclotomic units.Compositio Math. 71 (1989), 13-27. Zbl 0687.12003, MR 1008802; reference:[2] KUČERA R.: On bases of the Stickelberger ideal and of the group of circular units of a cyclotomic field.J. Number Theory 40 (1992), 284-316. Zbl 0744.11052, MR 1154041; reference:[3] KUČERA R.: On the Stickelberger ideal and circular units of a compositum of quadratic fields.J. Number Theory 56 (1996), 139-166. Zbl 0840.11044, MR 1370199; reference:[4] KUČERA R.: Circular units and class groups of abehan fields.In: Comptes Rendus de la conference internationale Maroc-Quebec (Mai 2003) "Theorie des nombres et applications'', 2004, pp. 130-143. MR 2183100; reference:[5] SINNOTT W.: On the Stickelberger ideal and the circular units of a cyclotomic field.Ann. of Math. (2) 108 (1978), 107-134. Zbl 0395.12014, MR 0485778; reference:[6] SINNOTT W.: On the Stickelberger ideal and the circular units of an abelian field.Invent. Math. 62 (1980), 181-234. Zbl 0465.12001, MR 0595586; reference:[7] WASHINGTON L. C.: Introduction to Cyclotomic Fields.(2nd ed.) Grad. Texts in Math. 83, Springer, New York, NY, 1997. Zbl 0966.11047, MR 1421575
-
6Academic Journal
المؤلفون: Bulant, Michal
وصف الملف: application/pdf
Relation: mr:MR1943020; zbl:Zbl 1061.11063; reference:[1] M. Bulant. : On the parity of the class number of the field $Q(\sqrt{p},\sqrt{q},\sqrt{r})$.J. Number Theory, 68(1):72-86, January 1998. MR 1492890; reference:[2] M. Bulant. : On the parity of the class number of the field $Q(\sqrt{p},\sqrt{q},\sqrt{r})$.Acta Mathematica et Informatica Universitatis Ostraviensis, 6:41-52, 1998. MR 1822514; reference:[3] R. Kučera. : On the parity of the class number of a biquadratic field.J. Number Theory, 52(1):43-52, May 1995. Zbl 0852.11065, MR 1331764; reference:[4] R. Kučera. : On the Stickelberger ideal and circulaг units of a compositum of quadratic fields.J. Number Theory, 56(1):139-166, January 1996. MR 1370199; reference:[5] L. C. Washington. : Introduction to Cyclotomic Fields.Number 83 in GTM. Springer, 2nd edition, 1997. Zbl 0966.11047, MR 1421575
-
7Academic Journal
المؤلفون: Bulant, Michal
وصف الملف: application/pdf
Relation: mr:MR1822514; zbl:Zbl 1024.11071; reference:[1] M. Bulant. : On the parity of the class number of the field $\Bbb Q(\sqrt{p}, \sqrt{q}, \sqrt{r})$.J. Number Theory, 68(1):72-86, Jan. 1998. MR 1492890; reference:[2] R. Kučera. : On the parity of the class number of a biquadratic field.J. Number Theory, 52(1):43-52, May 1995. Zbl 0852.11065, MR 1331764; reference:[3] R. Kučera. : On the Stickelberger ideal and circular units of a compositum of quadratic fields.J. Number Theory, 56(1):139-166, Jan. 1996. Zbl 0840.11044, MR 1370199
-
8Academic Journal
المؤلفون: Bulant, Michal
وصف الملف: application/pdf