-
1Academic Journal
المؤلفون: Albers, John R., Newman, Matthew, Hoell, Andrew, Breeden, Melissa L., Wang, Yan, Lou, Jiale
المصدر: Bulletin of the American Meteorological Society, 2022 Dec 01. 103(12), E2887-E2904.
URL الوصول: https://www.jstor.org/stable/27283523
-
2Academic Journal
المؤلفون: Larson, Sarah M., Okumura, Yuko, Bellomo, Katinka, Breeden, Melissa L.
المصدر: Journal of Climate, 2022 Jun 01. 35(11), 3567-3585.
URL الوصول: https://www.jstor.org/stable/27245834
-
3Academic Journal
المؤلفون: Elsbury, Dillon, Butler, Amy H., Albers, John R., Breeden, Melissa L., Langford, Andrew O'Neil
مصطلحات موضوعية: article, Verlagsveröffentlichung
وصف الملف: electronic
Relation: Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324; https://doi.org/10.5194/acp-23-5101-2023; https://noa.gwlb.de/receive/cop_mods_00066251; https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00064744/acp-23-5101-2023.pdf; https://acp.copernicus.org/articles/23/5101/2023/acp-23-5101-2023.pdf
-
4Academic Journal
المؤلفون: Albers, John R., Butler, Amy H., Langford, Andrew O., Elsbury, Dillon, Breeden, Melissa L.
مصطلحات موضوعية: article, Verlagsveröffentlichung
وصف الملف: electronic
Relation: Atmospheric Chemistry and Physics -- http://www.atmos-chem-phys.net/volumes_and_issues.html -- http://www.bibliothek.uni-regensburg.de/ezeit/?2069847 -- 1680-7324; https://doi.org/10.5194/acp-22-13035-2022; https://noa.gwlb.de/receive/cop_mods_00063126; https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00062259/acp-22-13035-2022.pdf; https://acp.copernicus.org/articles/22/13035/2022/acp-22-13035-2022.pdf
-
5Academic Journal
المؤلفون: Breeden, Melissa L., Albers, John R., Hoell, Andrew
المصدر: eISSN: 2698-4016
وصف الملف: application/pdf
-
6Academic Journal
المؤلفون: Albers, John R., Butler, Amy H., Breeden, Melissa L., Langford, Andrew O., Kiladis, George N.
مصطلحات موضوعية: article, Verlagsveröffentlichung
وصف الملف: electronic
Relation: Weather and Climate Dynamics -- https://www.weather-climate-dynamics.net/ -- 2698-4016; https://doi.org/10.5194/wcd-2-433-2021; https://noa.gwlb.de/receive/cop_mods_00056553; https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00056204/wcd-2-433-2021.pdf; https://wcd.copernicus.org/articles/2/433/2021/wcd-2-433-2021.pdf
-
7Academic Journal
المؤلفون: Breeden, Melissa L., Butler, Amy H., Albers, John R., Sprenger, Michael, O'Neil Langford, Andrew
المصدر: Atmospheric Chemistry and Physics, 21 (4)
وصف الملف: application/application/pdf
Relation: info:eu-repo/semantics/altIdentifier/wos/000625312700004; http://hdl.handle.net/20.500.11850/474225
-
8Academic Journal
المؤلفون: Breeden, Melissa L., McKinley, Galen A.
المصدر: eISSN: 1726-4189
وصف الملف: application/pdf
-
9Academic Journal
المؤلفون: Pettersen, Claire, Henderson, Stephanie A., Mattingly, Kyle S., Bennartz, Ralf, Breeden, Melissa L.
مصطلحات موضوعية: Greenland, precipitation, snowfall, blocking, Atmospheric and Oceanic Sciences, Science
وصف الملف: application/pdf
Relation: Pettersen, Claire; Henderson, Stephanie A.; Mattingly, Kyle S.; Bennartz, Ralf; Breeden, Melissa L. (2022). "The Critical Role of Euro‐Atlantic Blocking in Promoting Snowfall in Central Greenland." Journal of Geophysical Research: Atmospheres 127(6): n/a-n/a.; https://hdl.handle.net/2027.42/172069; Journal of Geophysical Research: Atmospheres; Pettersen, C., Bennartz, R., Kulie, M. S., Merrelli, A. J., Shupe, M. D., & Turner, D. D. ( 2016 ). Microwave signatures of ice hydrometeors from ground‐based observations above Summit, Greenland. Atmospheric Chemistry and Physics, 16, 4743 – 4756. https://doi.org/10.5194/acp-16-4743-2016; Papritz, L., & Dunn‐Sigouin, E. ( 2020 ). What configuration of the atmospheric circulation drives extreme net and total moisture transport into the Arctic. Geophysical Research Letters, 47, e2020GL089769. https://doi.org/10.1029/2020gl089769; Pasquier, J. T., Pfahl, S., & Grams, C. M. ( 2019 ). Modulation of atmospheric river occurrence and associated precipitation extremes in the North Atlantic region by European weather regimes. Geophysical Research Letters, 46, 1014 – 1023. https://doi.org/10.1029/2018gl081194; Pelly, J. L., & Hoskins, B. J. ( 2003 ). A new perspective on blocking. Journal of Atmospheric Science, 60, 743 – 755. https://doi.org/10.1175/1520-0469(2003)0602.0.co;2; Pettersen, C., Bennartz, R., Merrelli, A. J., Shupe, M. D., Turner, D. D., & Walden, V. P. ( 2018 ). Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations. Atmospheric Chemistry and Physics, 18, 4715 – 4735. https://doi.org/10.5194/acp-18-4715-2018; Pettersen, C., & Merrelli, A. J. ( 2018 ). Microwave radiometer snow categorization tool for Summit, Greenland, 2010 – 2015. Arctic Data Center. https://doi.org/10.18739/A2R28Q; Rex, D. F. ( 1950 ). Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 2, 275 – 301. https://doi.org/10.3402/tellusa.v2i4.8603; Schiemann, R., Demory, M. E., Shaffrey, L. C., Strachan, J., Vidale, P. L., Mizielinski, M. S., et al. ( 2017 ). The resolution sensitivity of Northern Hemisphere blocking in four 25‐km atmospheric global circulation models. Journal of Climate, 30, 337 – 358. https://doi.org/10.1175/jcli-d-16-0100.1; Schuenemann, K. C., Cassano, J. J., & Finnis, J. ( 2009 ). Synoptic forcing of precipitation over Greenland: Climatology for 1961–99. Journal of Hydrometerology, 10, 60 – 78. https://doi.org/10.1175/2008jhm1014.1; Shupe, M. D., Daniel, J. S., De Boer, G., Eloranta, E. W., Kollias, P., Long, C. N., et al. ( 2008 ). A focus on mixed‐phase clouds: The status of ground‐based observational methods. Bulletin of the American Meteorological Society, 89, 1549 – 1562. https://doi.org/10.1175/2008bams2378.1; Shupe, M. D., Turner, D. D., Walden, V. P., Bennartz, R., Cadeddu, M. P., Castellani, B. B., et al. ( 2013 ). High and dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bulletin of the American Meteorological Society, 94, 169 – 186. https://doi.org/10.1175/bams-d-11-00249.1; Sodemann, H., Masson‐Delmotte, V., Schwierz, C., Vinther, B. M., & Wernli, H. ( 2008 ). Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. Journal of Geophysical Research: Atmospheres, 113, D12. https://doi.org/10.1029/2007jd009416; Solomon, A., & Shupe, M. D. ( 2019 ). A case study of airmass transformation and cloud formation at Summit, Greenland. Journal of Atmospheric Science, 76, 3095 – 3113. https://doi.org/10.1175/jas-d-19-0056.1; Sousa, P. M., Barriopedro, D., García‐Herrera, R., Woollings, T., & Trigo, R. M. ( 2021 ). A new combined detection algorithm for blocking and subtropical ridges. Journal of Climate, 34, 7735 – 7758. https://doi.org/10.1175/jcli-d-20-0658.1; Steffe, K., & Box, J. ( 2001 ). Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999. Journal of Geophysical Research: Atmospheres, 106, 33951 – 33964. https://doi.org/10.1029/2001jd900161; Thomas, R. H. E. A., Akins, T., Csatho, B., Fahnestock, M., Gogineni, P., Kim, C., & Sonntag, J. ( 2000 ). Mass balance of the Greenland Ice Sheet at high elevations. Science, 289, 426 – 428. https://doi.org/10.1126/science.289.5478.426; van As, D. ( 2011 ). Programme for monitoring of the Greenland Ice Sheet (PROMICE): First temperature and ablation records. Geological Survey of Denmark and Greenland Bulletin, 23, 73 – 76.; van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., et al. ( 2016 ). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933 – 1946. https://doi.org/10.5194/tc-10-1933-2016; van Tricht, K., Lhermitte, S., Lenaerts, J. T., Gorodetskaya, I. V., L’Ecuyer, T. S., Noël, B., et al. ( 2016 ). Clouds enhance Greenland ice sheet meltwater runoff. Nature Communications, 7, 1 – 9. https://doi.org/10.1038/ncomms10266; Waliser, D., & Guan, B. ( 2017 ). Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10, 179 – 183. https://doi.org/10.1038/ngeo2894; Ward, J. L., Flanner, M. G., & Dunn‐Sigouin, E. ( 2020 ). Impacts of Greenland block location on clouds and surface energy fluxes over the Greenland Ice Sheet. Journal of Geophysical Research: Atmospheres, 125, e2020JD033172. https://doi.org/10.1029/2020jd033172; Woods, C., Caballero, R., & Svensson, G. ( 2013 ). Large‐scale circulation associated with moisture intrusions into the Arctic during winter. Geophysical Research Letters, 40, 4717 – 4721. https://doi.org/10.1002/grl.50912; Woollings, T., & Hoskins, B. ( 2008 ). Simultaneous Atlantic–Pacific blocking and the northern annular mode. Quarterly Journal of the Royal Meteorological Society, 134, 1635 – 1646. https://doi.org/10.1002/qj.310; Woollings, T., Hoskins, B., Blackburn, M., & Berrisford, P. ( 2008 ). A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. Journal of Atmospheric Science, 65, 609 – 626. https://doi.org/10.1175/2007jas2347.1; Zwally, H. J., Li, J., Brenner, A. C., Beckley, M., Cornejo, H. G., DiMarzio, J., et al. ( 2011 ). Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. Journal of Glaciology, 57, 88 – 102. https://doi.org/10.3189/002214311795306682; Gallagher, M. R., Chepfer, H., Shupe, M. D., & Guzman, R. ( 2020 ). Warm temperature extremes across Greenland connected to clouds. Geophysical Research Letters, 47, e2019GL086059. https://doi.org/10.1029/2019gl086059; Appenzeller, C., Schwander, J., Sommer, S., & Stocker, T. F. ( 1998 ). The North Atlantic Oscillation and its imprint on precipitation and ice accumulation in Greenland. Geophysical Research Letters, 25, 1939 – 1942. https://doi.org/10.1029/98gl01227; Auger, J. D., Birkel, S. D., Maasch, K. A., Mayewski, P. A., & Schuenemann, K. C. ( 2017 ). Examination of precipitation variability in southern Greenland. Journal of Geophysical Research: Atmospheres, 122, 6202 – 6216. https://doi.org/10.1002/2016jd026377; Barrett, B. S., Henderson, G. R., McDonnell, E., Henry, M., & Mote, T. ( 2020 ). Extreme Greenland blocking and high‐latitude moisture transport. Atmospheric Science Letters, 21, e1002. https://doi.org/10.1002/asl.1002; Benedict, J. J., Clement, A. C., & Medeiros, B. ( 2019 ). Atmospheric blocking and other large‐scale precursor patterns of landfalling atmospheric rivers in the North Pacific: A CESM2 study. Journal of Geophysical Research: Atmospheres, 124, 11330 – 11353. https://doi.org/10.1029/2019jd030790; Bennartz, R., Fell, F., Pettersen, C., Shupe, M. D., & Schuettemeyer, D. ( 2019 ). Spatial and temporal variability of snowfall over Greenland from CloudSat observations. Atmospheric Chemistry and Physics, 19, 8101 – 8121. https://doi.org/10.5194/acp-19-8101-2019; Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., et al. ( 2013 ). Greenland melt extent enhanced by low‐level liquid clouds. Nature, 496, 83 – 86. https://doi.org/10.1038/nature12002; Berdahl, M., Rennermalm, A., Hammann, A., Mioduszweski, J., Hameed, S., Tedesco, M., et al. ( 2018 ). Southeast Greenland winter precipitation strongly linked to the Icelandic low position. Journal of Climate, 31, 4483 – 4500. https://doi.org/10.1175/jcli-d-17-0622.1; Berggren, R., Bolin, B., & Rossby, C. G. ( 1949 ). An aerological study of zonal motion, its perturbations and break‐down. Tellus, 1, 14 – 37. https://doi.org/10.3402/tellusa.v1i2.8501; Binder, H., Boettcher, M., Grams, C. M., Joos, H., Pfahl, S., & Wernli, H. ( 2017 ). Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event. Geophysical Research Letters, 44, 12 – 028. https://doi.org/10.1002/2017gl075841; Booth, J. F., Dunn‐Sigouin, E., & Pfahl, S. ( 2017 ). The relationship between extratropical cyclone steering and blocking along the North American East Coast. Geophysical Research Letters, 44, 11 – 976. https://doi.org/10.1002/2017gl075941; Breeden, M. L., Hoover, B. T., Newman, M., & Vimont, D. J. ( 2020 ). Optimal North Pacific blocking precursors and their deterministic subseasonal evolution during Boreal winter. Monthly Weather Review, 148, 739 – 761. https://doi.org/10.1175/mwr-d-19-0273.1; Bromwich, D. H., Chen, Q. S., Li, Y., & Cullather, R. I. ( 1999 ). Precipitation over Greenland and its relation to the North Atlantic Oscillation. Journal of Geophysical Research: Atmospheres, 104, 22103 – 22115. https://doi.org/10.1029/1999jd900373; Castellani, B. B., Shupe, M. D., Hudak, D. R., & Sheppard, B. E. ( 2015 ). The annual cycle of snowfall at Summit, Greenland. Journal of Geophysical Research: Atmospheres, 120, 6654 – 6668. https://doi.org/10.1002/2015jd023072; Cullather, R. I., Nowicki, S. M., Zhao, B., & Suarez, M. J. ( 2014 ). Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. Journal of Climate, 27, 4835 – 4856. https://doi.org/10.1175/jcli-d-13-00635.1; Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. ( 2011 ). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553 – 597. https://doi.org/10.1002/qj.828; Delhasse, A., Hanna, E., Kittel, C., & Fettweis, X. ( 2021 ). Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. International Journal of Climatology, 41, 2589 – 2596. https://doi.org/10.1002/joc.6977; Dufour, A., Zolina, O., & Gulev, S. K. ( 2016 ). Atmospheric moisture transport to the Arctic: Assessment of reanalyses and analysis of transport components. Journal of Climate, 29, 5061 – 5081. https://doi.org/10.1175/jcli-d-15-0559.1; Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. ( 2018 ). Global analysis of climate change projection effects on atmospheric rivers. Geophysical Research Letters, 45, 4299 – 4308. https://doi.org/10.1029/2017gl076968; Fausto, R. S., van As, D., Mankoff, K. D., Vandecrux, B., Citterio, M., Ahlstrøm, A. P., et al. ( 2021 ). Programme for monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data. Earth System Science Data, 13, 3819 – 3845. https://doi.org/10.5194/essd-13-3819-2021; Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., & Hurrell, J. W. ( 2009 ). The summer North Atlantic Oscillation: Past, present, and future. Journal of Climate, 22, 1082 – 1103. https://doi.org/10.1175/2008jcli2459.1; Gallagher, M., Shupe, M., Chepfer, H., & L’Ecuyer, T. ( 2021 ). Relating snowfall observations to Greenland ice sheet mass changes: An atmospheric circulation perspective. The Cryosphere Discussions, 1 – 26. https://doi.org/10.5194/tc‐16‐435‐2022; Hanna, E., Cropper, T. E., Hall, R. J., & Cappelen, J. ( 2016 ). Greenland blocking index 1851–2015: A regional climate change signal. International Journal of Climatology, 36, 4847 – 4861. https://doi.org/10.1002/joc.4673; Hanna, E., Jones, J. M., Cappelen, J., Mernild, S. H., Wood, L., Steffen, K., & Huybrechts, P. ( 2013 ). The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. International Journal of Climatology, 33, 862 – 880. https://doi.org/10.1002/joc.3475; Hanna, E., McConnell, J., Das, S., Cappelen, J., & Stephens, A. ( 2006 ). Observed and modeled Greenland ice sheet snow accumulation, 1958–2003, and links with regional climate forcing. Journal of Climate, 19, 344 – 358. https://doi.org/10.1175/jcli3615.1; Henderson, G. R., Barrett, B. S., Wachowicz, L. J., Mattingly, K. S., Preece, J. R., & Mote, T. L. ( 2021 ). Local and remote atmospheric circulation drivers of Arctic change: A review. Frontiers of Earth Science, 9, 549. https://doi.org/10.3389/feart.2021.709896; Henderson, S. A., & Maloney, E. D. ( 2018 ). The impact of the Madden–Julian oscillation on high‐latitude winter blocking during El Niño–Southern Oscillation events. Journal of Climate, 31, 5293 – 5318. https://doi.org/10.1175/jcli-d-17-0721.1; Henderson, S. A., Maloney, E. D., & Barnes, E. A. ( 2016 ). The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. Journal of Climate, 29, 4597 – 4616. https://doi.org/10.1175/jcli-d-15-0502.1; Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999 – 2049. https://doi.org/10.1002/qj.3803; Hofer, S., Lang, C., Amory, C., Kittel, C., Delhasse, A., Tedstone, A., & Fettweis, X. ( 2020 ). Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nature Communications, 11, 1 – 11. https://doi.org/10.1038/s41467-020-20011-8; Holton, J. ( 2004 ). An introduction to dynamical meteorology ( 4th ed., pp. 151 – 155 ).; Krabill, W., Abdalati, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., et al. ( 2000 ). Greenland ice sheet: High‐elevation balance and peripheral thinning. Science, 289, 428 – 430. https://doi.org/10.1126/science.289.5478.428; Lenaerts, J., Camron, M. D., Wyburn‐Powell, C. R., & Kay, J. E. ( 2020 ). Present‐day and future Greenland Ice Sheet precipitation frequency from CloudSat observations and the Community Earth system model. The Cryosphere, 14, 2253 – 2265. https://doi.org/10.5194/tc-14-2253-2020; Lenggenhager, S., & Martius, O. ( 2019 ). Atmospheric blocks modulate the odds of heavy precipitation events in Europe. Climate Dynamics, 53, 4155 – 4171. https://doi.org/10.1007/s00382-019-04779-0; Liu, C., & Barnes, E. A. ( 2015 ). Extreme moisture transport into the Arctic linked to Rossby wave breaking. Journal of Geophysical Research: Atmospheres, 120, 3774 – 3788. https://doi.org/10.1002/2014jd022796; Masato, G., Hoskins, B. J., & Woollings, T. J. ( 2013 ). Winter and summer Northern Hemisphere blocking in CMIP5 models. Journal of Climate, 26, 7044 – 7059. https://doi.org/10.1175/jcli-d-12-00466.1; Masato, G., Woollings, T., & Hoskins, B. J. ( 2014 ). Structure and impact of atmospheric blocking over the Euro‐Atlantic region in present‐day and future simulations. Geophysical Research Letters, 41, 1051 – 1058. https://doi.org/10.1002/2013gl058570; Mattingly, K. S., Mote, T. L., & Fettweis, X. ( 2018 ). Atmospheric river impacts on Greenland Ice Sheet surface mass balance. Journal of Geophysical Research: Atmospheres, 123, 8538 – 8560. https://doi.org/10.1029/2018jd028714; Mattingly, K. S., Mote, T. L., Fettweis, X., Van As, D., Van Tricht, K., Lhermitte, S., et al. ( 2020 ). Strong summer atmospheric rivers trigger Greenland Ice Sheet melt through spatially varying surface energy balance and cloud regimes. Journal of Climate, 33, 6809 – 6832. https://doi.org/10.1175/jcli-d-19-0835.1; Mattingly, K. S., Ramseyer, C. A., Rosen, J. J., Mote, T. L., & Muthyala, R. ( 2016 ). Increasing water vapor transport to the Greenland Ice Sheet revealed using self‐organizing maps. Geophysical Research Letters, 43, 9250 – 9258. https://doi.org/10.1002/2016gl070424; McIlhattan, E. A., L’Ecuyer, T. S., & Miller, N. B. ( 2017 ). Observational evidence linking Arctic supercooled liquid cloud biases in CESM to snowfall processes. Journal of Climate, 30, 4477 – 4495. https://doi.org/10.1175/jcli-d-16-0666.1; McIlhattan, E. A., Pettersen, C., Wood, N. B., & L’Ecuyer, T. S. ( 2020 ). Satellite observations of snowfall regimes over the Greenland Ice Sheet. The Cryosphere, 14, 4379 – 4404. https://doi.org/10.5194/tc-14-4379-2020; McLeod, J. T., & Mote, T. L. ( 2016 ). Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet. International Journal of Climatology, 36, 1484 – 1499. https://doi.org/10.1002/joc.4440; Morrison, H., De Boer, G., Feingold, G., Harrington, J., Shupe, M. D., & Sulia, K. ( 2012 ). Resilience of persistent Arctic mixed‐phase clouds. Nature Geoscience, 5, 11 – 17. https://doi.org/10.1038/ngeo1332; Mosley‐Thompson, E., Readinger, C. R., Craigmile, P., Thompson, L. G., & Calder, C. A. ( 2005 ). Regional sensitivity of Greenland precipitation to NAO variability. Geophysical Research Letters, 32. https://doi.org/10.1029/2005gl024776; Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., et al. ( 2019 ). Forty‐six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the United States of America, 116, 9239 – 9244. https://doi.org/10.1073/pnas.1904242116; Mundhenk, B. D., Barnes, E. A., Maloney, E. D., & Nardi, K. M. ( 2016 ). Modulation of atmospheric rivers near Alaska and the US West Coast by northeast Pacific height anomalies. Journal of Geophysical Research: Atmospheres, 121, 12 – 751. https://doi.org/10.1002/2016jd025350; Naakka, T., Nygård, T., Vihma, T., Sedlar, J., & Graversen, R. ( 2019 ). Atmospheric moisture transport between mid‐latitudes and the Arctic: Regional, seasonal and vertical distributions. International Journal of Climatology, 39, 2862 – 2879. https://doi.org/10.1002/joc.5988; Neff, W., Compo, G. P., Martin Ralph, F., & Shupe, M. D. ( 2014 ). Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889. Journal of Geophysical Research: Atmospheres, 119, 6520 – 6536. https://doi.org/10.1002/2014jd021470; Niwano, M., Box, J. E., Wehrlé, A., Vandecrux, B., Colgan, W. T., & Cappelen, J. ( 2021 ). Rainfall on the Greenland Ice Sheet: Present‐day climatology from a high‐resolution non‐hydrostatic polar regional climate model. Geophysical Research Letters, 48, e2021GL092942. https://doi.org/10.1029/2021gl092942; Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J., & Van Den Broeke, M. R. ( 2021 ). A 21st century warming threshold for sustained Greenland Ice Sheet mass loss. Geophysical Research Letters, 48, e2020GL090471.; Nygård, T., Graversen, R. G., Uotila, P., Naakka, T., & Vihma, T. ( 2019 ). Strong dependence of wintertime Arctic moisture and cloud distributions on atmospheric large‐scale circulation. Journal of Climate, 32, 8771 – 8790.
-
10Academic Journal
المؤلفون: Elsbury, Dillon, Butler, Amy H., Albers, John R., Breeden, Melissa L., Langford, Andrew O'Neil
المصدر: Atmospheric Chemistry & Physics Discussions; 11/22/2022, p1-27, 27p
-
11Academic Journal
المؤلفون: Breeden, Melissa L.1,2 (AUTHOR) melissa.breeden@noaa.gov, Albers, John R.1,2 (AUTHOR), Butler, Amy H.3 (AUTHOR), Newman, Matthew1,2 (AUTHOR)
المصدر: Monthly Weather Review. Oct2022, Vol. 150 Issue 10, p2617-2628. 12p. 7 Maps.
مصطلحات موضوعية: *SPRING, *JET streams, *PHASE transitions, *FORECASTING, *WINTER, *SIGNAL-to-noise ratio
مصطلحات جغرافية: NORTH America
-
12Academic Journal
المؤلفون: Albers, John R., Butler, Amy H., Langford, Andrew O., Elsbury, Dillon, Breeden, Melissa L.
المصدر: Atmospheric Chemistry & Physics; 2022, Vol. 22 Issue 19, p13035-13048, 14p
مصطلحات موضوعية: OZONE layer, OZONE, TELECONNECTIONS (Climatology), EL Nino, AIR quality standards, STRATOSPHERIC circulation, ATMOSPHERIC models
مصطلحات جغرافية: NORTH America
-
13Academic Journal
المؤلفون: Breeden, Melissa L., Albers, John R., Hoell, Andrew
المصدر: Weather & Climate Dynamics; 2022, Vol. 3 Issue 4, p1183-1197, 15p
مصطلحات موضوعية: METEOROLOGICAL precipitation, FORECASTING, EL Nino, SOUTHERN oscillation, MADDEN-Julian oscillation
-
14Academic Journal
المؤلفون: BREEDEN, MELISSA L.1 melissa.breeden@noaa.gov, CLARE, RYAN2, MARTIN, JONATHAN E.3, DESAI, ANKUR R.3
المصدر: Monthly Weather Review. Nov2020, Vol. 148 Issue 11, p4479-4495. 17p. 1 Chart, 15 Maps.
مصطلحات موضوعية: *CYCLOGENESIS, *METEOROLOGICAL research, *SNOW removal, *WEATHER forecasting, *CYCLONES, *VORTEX motion
-
15Academic Journal
المؤلفون: Breeden, Melissa L.1 (AUTHOR) melissa.breeden@noaa.gov, Hoover, Brett T.2 (AUTHOR), Newman, Matthew3 (AUTHOR), Vimont, Daniel J.4 (AUTHOR)
المصدر: Monthly Weather Review. Feb2020, Vol. 148 Issue 2, p739-761. 23p. 2 Charts, 6 Graphs, 13 Maps.
-
16Academic Journal
المؤلفون: Breeden, Melissa L., McKinley, Galen A.
المصدر: Biogeosciences; 2016, Vol. 13 Issue 11, p3387-3396, 10p, 2 Color Photographs, 5 Graphs