يعرض 1 - 18 نتائج من 18 نتيجة بحث عن '"Breast mass detection"', وقت الاستعلام: 0.47s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Academic Journal

    المساهمون: Park, Chang Min

    Relation: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol.12926, p. 129262P; https://hdl.handle.net/10371/208847; 001223523300083; 2-s2.0-85193494368; 217104

  3. 3
    Academic Journal
  4. 4
    Book

    المساهمون: Kassahun, R. K., Molinara, M., Bria, A., Marrocco, C., Tortorella, F.

    Relation: info:eu-repo/semantics/altIdentifier/isbn/9783031510250; info:eu-repo/semantics/altIdentifier/isbn/9783031510267; ispartofbook:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); volume:14366; firstpage:71; lastpage:82; numberofpages:12; serie:LECTURE NOTES IN COMPUTER SCIENCE; https://hdl.handle.net/11580/107425; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85184126203

  5. 5
    Academic Journal

    المصدر: Sensors; Volume 21; Issue 8; Pages: 2855

    وصف الملف: application/pdf

    Relation: Physical Sensors; https://dx.doi.org/10.3390/s21082855

  6. 6
    Academic Journal

    المصدر: Biomedical Physics and Engineering Express

    وصف الملف: application/pdf

    Relation: https://eprints.qut.edu.au/197689/1/43273353.pdf; Min, Hang, Chandra, Shekhar S., Crozier, Stuart, & Bradley, Andrew P. (2019) Multi-scale sifting for mammographic mass detection and segmentation. Biomedical Physics and Engineering Express, 5(2), Article number: 025022 1-15.; https://eprints.qut.edu.au/197689/

  7. 7
    Academic Journal

    وصف الملف: Pp. 52-61; application/pdf

    Relation: Біомедична інженерія і технологія, № 10; Соколенко, О. Виявлення та класифікація пухлин молочної залози з використанням глибинного навчання / Соколенко Ольга Віталіївна, Данілова Валентина Анатоліївна // Біомедична інженерія і технологія. – 2023. – № 10. – С. 52-61. – Бібліогр.: 21 назва.; https://ela.kpi.ua/handle/123456789/58425; https://doi.org/10.20535/2617-8974.2023.10.281430; orcid:0009-0007-7514-6249; orcid:0000-0003-3009-6421

  8. 8
  9. 9
    Book

    المساهمون: Egan, G, Salvado, O

    المصدر: Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    وصف الملف: application/pdf

    Relation: https://eprints.qut.edu.au/114136/2/114136.pdf; Min, Hang, Chandra, Shekhar, Dhungel, Neeraj, Crozier, Stuart, & Bradley, Andrew (2017) Multi-scale mass segmentation for mammograms via cascaded random forests. In Egan, G & Salvado, O (Eds.) Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Institute of Electrical and Electronics Engineers Inc., United States of America, pp. 113-117.; https://eprints.qut.edu.au/114136/; Science & Engineering Faculty

  10. 10

    المصدر: Sensors, Vol 21, Iss 2855, p 2855 (2021)
    Sensors (Basel, Switzerland)
    Sensors
    Volume 21
    Issue 8

    وصف الملف: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
    Book

    المساهمون: Unal, G, Wells, W, Sabuncu, M R, Ourselin, S, Joskowicz, L

    المصدر: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016: 19th International Conference, Proceedings, Part II (Lecture Notes in Computer Science, Volume 9901)

    Relation: Dhungel, Neeraj, Carneiro, Gustavo, & Bradley, Andrew (2016) The automated learning of deep features for breast mass classification from mammograms. In Unal, G, Wells, W, Sabuncu, M R, Ourselin, S, & Joskowicz, L (Eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016: 19th International Conference, Proceedings, Part II (Lecture Notes in Computer Science, Volume 9901). Springer, Switzerland, pp. 106-114.; https://eprints.qut.edu.au/114156/; Science & Engineering Faculty

  15. 15
    Academic Journal

    المساهمون: The University of Michigan, Department of Radiology, CGC B2102, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109â 0904

    وصف الملف: application/pdf

    Relation: Petrick, Nicholas; Chan, Heang‐ping; Sahiner, Berkman; Helvie, Mark A. (1999). "Combined adaptive enhancement and regionâ growing segmentation of breast masses on digitized mammograms." Medical Physics 26(8): 1642-1654.; https://hdl.handle.net/2027.42/134789; Medical Physics; Y. L. Chang and X. Li, â Adaptive image regionâ growing,â IEEE Trans. Image Process. IIPRE4 --> 3, 868 â 872 ( 1994 ).; L. Tabar et al., â Reduction in mortality from breast cancer after mass screening with mammography,â Lancet LANCAO --> 1, 829 â 832 ( 1985 ).; E. L. Thurfjell, K. A. Lernevall, and A. A. S. Taube, â Benefit of independent double reading in a populationâ based mammography screening program,â Radiology RADLAX --> 191, 241 â 244 ( 1994 ).; C. J. Vyborny and M. L. Giger, â Computer vision and artificial intelligence in mammography,â AJR, Am. J. Roentgenol. AAJRDX --> 162, 699 â 708 ( 1994 ).; N. Karssemeijer and G. te Brake, â Detection of stellate distortions in mammograms,â IEEE Trans. Med. Imaging ITMID4 --> 15, 611 â 619 ( 1996 ).; H. Kobatake and Y. Yoshinaga, â Detection of spicules on mammogram based on skeleton analysis,â IEEE Trans. Med. Imaging ITMID4 --> 15, 235 â 245 ( 1996 ).; W. P. Kegelmeyer, J. M. Pruneda, P. D. Bourland, A. Hillis, M. W. Riggs, and M. L. Nipper, â Computerâ aided mammographic screening for spiculated lesions,â Radiology RADLAX --> 191, 331 â 337 ( 1994 ).; F. F. Yin, M. L. Giger, K. Doi, C. E. Metz, C. J. Vyborny, and R. A. Schmidt, â Computerized detection of masses in digital mammograms: Analysis of bilateral subtraction images. â Med. Phys. MPHYA6 --> 18, 955 â 963 ( 1991 ).; D. Brzakovic, X. M. Luo, and P. Brzakovic, â An approach to automated detection of tumors in mammograms,â IEEE Trans. Med. Imaging ITMID4 --> 9, 233 â 241 ( 1990 ).; H. D. Li, M. Kallergi, L. P. Clarke, V. K. Jain, and R. A. Clark, â Markov random field for tumor detection in digital ammography,â IEEE Trans. Med. Imaging ITMID4 --> 14, 565 â 576 ( 1995 ).; N. Petrick, H.â P. Chan, D. Wei, B. Sahiner, M. A. Helvie, and D. D. Adler, â Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification,â Med. Phys. MPHYA6 --> 23, 1685 â 1696 ( 1996 ).; H. Kobatake, H. Ron Jin, Y. Yoshinaga, and S. Nawano, â Computer diagnosis of breast cancer by mammogram processing,â Radiologia Diagnostica 35, 29 â 33 ( 1994 ).; N. Petrick, H. P. Chan, B. Sahiner, and D. Wei, â An adaptive densityâ weighted contrast enhancement filter for mammographic breast mass detection,â IEEE Trans. Med. Imaging ITMID4 --> 15, 59 â 67 ( 1996 ).; B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsitt, â Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis,â Med. Phys. MPHYA6 --> 25, 516 â 526 ( 1997 ).; N. Petrick, H. P. Chan, B. Sahiner, M. A. Helvie, M. M. Goodsitt, and D. D. Adler, â Computerâ aided breast mass detection: False positive reduction using breast tissue composition,â in Digital Mammography, edited by K. Doi, M. Giger, R. Nishikawa, and R. Schmidt (Elsevier, New York, 1996).; J. C. Russ, The Image Processing Handbook (CRC, Boca Rato, FL, 1992).; L. Xu, A. Krzyzak, and C. Y. Suen, â Methods of combining multiple classifiers and their applications to handwriting recognition,â IEEE Trans. Syst. Man Cybern. ISYMAW --> 22, 418 â 435 ( 1992 ).; J. Kilday, F. Palmieri, and M. D. Fox, â Classifying mammographic lesions using computerâ aided image analysis,â IEEE Trans. Med. Imaging ITMID4 --> 12, 664 â 669 ( 1993 ).; P. A. Lachenbruch, Discriminant Analysis (Hafner, New York, 1975).; R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).; D. Wei, H. P. Chan, M. A. Helvie, B. Sahiner, N. Petrick, D. D. Adler, and M. M. Goodsitt, â Classification of mass and normal breast tissue on digital mammograms: Multiresolution texture analysis,â Med. Phys. MPHYA6 --> 22, 1501 â 1513 ( 1995 ).; D. Wei, H. P. Chan, N. Petrick, B. Sahiner, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, â Falseâ positive reduction for detection of masses on digital mammograms: Global and local multiresolution texture analysis,â Med. Phys. MPHYA6 --> 24, 903 â 914 ( 1997 ).; R. M. Haralick, K. Shanmugam, and I. Dinstein, â Texture features for image classification,â IEEE Trans. Syst. Man Cybern. ISYMAW --> SMCâ 3, 610 â 621 ( 1973 ).; R. W. Conners, â Towards a set of statistical features which measure visually perceivable qualities of textures,â in Proceedings of the IEEE Conference on Pattern Recognition and Image Processing, pp. 382â 390 (1979).; D. Wei, H. P. Chan, M. A. Helvie, B. Sahiner, N. Petrick, D. D. Adler, and M. M. Goodsitt, â Multiresolution texture analysis for classification of mass and normal breast tissue on digital mammograms,â Proc. SPIE PSISDG --> 2434, 606 â 611 ( 1995 ).; H.â P. Chan, D. Wei, M. A. Helvie, B. Sahiner, D. D. Adler, M. M. Goodsitt, and N. Petrick, â Computerâ aided classification of mammographic masses and normal tissue: Linear discriminant analysis in texture feature space,â Phys. Med. Biol. PHMBA7 --> 40, 857 â 876 ( 1995 ).; D. P. Chakraborty, â Maximum likelihood analysis of freeâ response receiver operating characteristic (FROC) data,â Med. Phys. MPHYA6 --> 16, 561 â 568 ( 1989 ).; D. P. Chakraborty and L. H. L. Winter, â Freeâ response methodology, Alternate analysis and a new observerâ performance experiment,â Radiology RADLAX --> 174, 873 â 881 ( 1990 ).

  16. 16
    Electronic Resource
  17. 17
    Electronic Resource

    المصدر: Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)

    URL: https://eprints.qut.edu.au/114136/2/114136.pdf
    https://eprints.qut.edu.au/114136/2/114136.pdf
    doi:10.1109/ISBI.2017.7950481
    Min, Hang, Chandra, Shekhar, Dhungel, Neeraj, Crozier, Stuart, & Bradley, Andrew (2017) Multi-scale mass segmentation for mammograms via cascaded random forests. In Egan, G & Salvado, O (Eds.) Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Institute of Electrical and Electronics Engineers Inc., United States of America, pp. 113-117.

  18. 18
    Electronic Resource

    المصدر: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016: 19th International Conference, Proceedings, Part II (Lecture Notes in Computer Science, Volume 9901)

    URL: doi:10.1007/978-3-319-46723-8_13
    Dhungel, Neeraj, Carneiro, Gustavo, & Bradley, Andrew (2016) The automated learning of deep features for breast mass classification from mammograms. In Unal, G, Wells, W, Sabuncu, M R, Ourselin, S, & Joskowicz, L (Eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016: 19th International Conference, Proceedings, Part II (Lecture Notes in Computer Science, Volume 9901). Springer, Switzerland, pp. 106-114.