يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '"Blaschke-Minkowski homomorphism"', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
    Academic Journal

    المؤلفون: Hongying Xiao, Weidong Wang, Zhaofeng Li

    المصدر: Symmetry; Volume 14; Issue 7; Pages: 1396

    وصف الملف: application/pdf

    Relation: Mathematics and Symmetry/Asymmetry; https://dx.doi.org/10.3390/sym14071396

  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
  7. 7
    Report
  8. 8
    Academic Journal

    المؤلفون: Li, Chao, Wang, Weidong

    وصف الملف: application/pdf

    Relation: mr:MR4151704; zbl:07250688; reference:[1] Beckenbach, E., Bellman, R.: Inequalities.Ergebnisse der Mathematik und Ihrer Grenzgebiete 30, Springer, New York (1965). Zbl 0126.28002, MR 0192009, 10.1007/978-3-642-64971-4; reference:[2] Berg, A., Parapatits, L., Schuster, F. E., Weberndorfer, M.: Log-concavity properties of Minkowski valuations.Trans. Am. Math. Soc. 370 (2018), 5245-5277. Zbl 1390.52024, MR 3787383, 10.1090/tran/7434; reference:[3] Blaschke, W.: Vorlesungen über Integralgeometrie.German VEB Deutscher Verlag der Wissenschaften, Berlin (1955). Zbl 0066.40703, MR 0076373; reference:[4] Cheung, W.-S., Zhao, C.-J.: Width-integrals and affine surface area of convex bodies.Banach J. Math. Anal. 2 (2008), 70-77. Zbl 1155.52005, MR 2404711, 10.15352/bjma/1240336275; reference:[5] Dresher, M.: Moment spaces and inequalities.Duke Math. J. 20 (1953), 261-271. Zbl 0050.28202, MR 0055389, 10.1215/s0012-7094-53-02026-2; reference:[6] Feng, Y.: General mixed width-integral of convex bodies.J. Nonlinear Sci. Appl. 9 (2016), 4226-4234. Zbl 1347.52004, MR 3530126, 10.22436/jnsa.009.06.64; reference:[7] Feng, Y., Wang, W.: Blaschke-Minkowski homomorphisms and affine surface area.Publ. Math. 85 (2014), 297-308. Zbl 1340.52006, MR 3291832, 10.5486/PMD.2014.5903; reference:[8] Feng, Y., Wang, W., Yuan, J.: Inequalities of quermassintegrals about mixed Blaschke Minkowski homomorphisms.Tamkang J. Math. 46 (2015), 217-227. Zbl 1338.52005, MR 3406352, 10.5556/j.tkjm.46.2015.1689; reference:[9] Feng, Y., Wu, S.: Brunn-Minkowski type inequalies for width-integrals of index $i$.J. Comput. Anal. Appl. 24 (2018), 1408-1418. MR 3753402; reference:[10] Feng, Y., Wu, S., Wang, W.: Mixed chord-integrals of index $i$ and radial Blaschke-Minkowski homomorphisms.Rocky Mt. J. Math. 47 (2017), 2627-2640. Zbl 1385.52005, MR 3760310, 10.1216/RMJ-2017-47-8-2627; reference:[11] Firey, W. J.: Mean cross-section measures of harmonic means of convex bodies.Pac. J. Math. 11 (1961), 1263-1266. Zbl 0122.41101, MR 0140003, 10.2140/pjm.1961.11.1263; reference:[12] Gardner, R. J.: Geometric Tomography.Encyclopedia of Mathematics and Its Applications 58, Cambridge University Press, Cambridge (2006). Zbl 1102.52002, MR 2251886, 10.1017/CBO9781107341029; reference:[13] Haberl, C.: Minkowski valuations intertwining with the special linear group.J. Eur. Math. Soc. (JEMS) 14 (2012), 1565-1597. Zbl 1270.52018, MR 2966660, 10.4171/JEMS/341; reference:[14] Cifre, M. A. Hernández, Nicolás, J. Yepes: On Brunn-Minkowski-type inequalities for polar bodies.J. Geom. Anal. 26 (2016), 143-155. Zbl 1339.52007, MR 3441506, 10.1007/s12220-014-9541-y; reference:[15] Ji, L., Zeng, Z.: Some inequalities for radial Blaschke-Minkowski homomorphisms.Czech. Math. J. 67 (2017), 779-793. Zbl 06770130, MR 3697916, 10.21136/CMJ.2017.0180-16; reference:[16] Li, Y., Wang, W.: Monotonicity inequalities for $L_p$ Blaschke-Minkowski homomorphism.J. Inequal. Appl. 2014 (2014), Article ID 131, 10 pages. Zbl 1310.52003, MR 3253878, 10.1186/1029-242X-2014-131; reference:[17] Li, X.-Y., Zhao, C.-J.: On the $p$-mixed affine surface area.Math. Inequal. Appl. 17 (2014), 443-450. Zbl 1296.52004, MR 3235022, 10.7153/mia-17-33; reference:[18] Lu, F., Leng, G.: On inequalities for $i$th width-integrals of convex bodies.Math. Appl. 19 (2006), 632-636 Chinese. Zbl 1101.52001, MR 2254976; reference:[19] Ludwig, M.: Minkowski valuations.Trans. Am. Math. Soc. 357 (2005), 4191-4213. Zbl 1077.52005, MR 2159706, 10.1090/S0002-9947-04-03666-9; reference:[20] Lutwak, E.: Width-integrals of convex bodies.Proc. Am. Math. Soc. 53 (1975), 435-439. Zbl 0276.52006, MR 0383254, 10.1090/S0002-9939-1975-0383254-5; reference:[21] Lutwak, E.: Mixed width-integrals of convex bodies.Isr. J. Math. 28 (1977), 249-253. Zbl 0363.52009, MR 0464070, 10.1007/BF02759811; reference:[22] Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies.Adv. Math. 223 (2010), 220-242. Zbl 05643962, MR 2563216, 10.1016/j.aim.2009.08.002; reference:[23] Lv, S.: Dual Brunn-Minkowski inequality for volume differences.Geom. Dedicata 145 (2010), 169-180. Zbl 1202.52008, MR 2600953, 10.1007/s10711-009-9414-x; reference:[24] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory.Encyclopedia of Mathematics and its Applications 151, Cambridge University Press, Cambridge (2014). Zbl 1287.52001, MR 3155183, 10.1017/CBO9781139003858; reference:[25] Schuster, F. E.: Volume inequalities and additive maps of convex bodies.Mathematica 53 (2006), 211-234. Zbl 1129.52002, MR 2343256, 10.1112/S0025579300000103; reference:[26] Schuster, F. E.: Valuations and Busemann-Petty type problems.Adv. Math. 219 (2008), 344-368. Zbl 1146.52003, MR 2435426, 10.1016/j.aim.2008.05.001; reference:[27] Schuster, F. E.: Crofton measures and Minkowski valuations.Duke Math. J. 154 (2010), 1-30. Zbl 1205.52004, MR 2668553, 10.1215/00127094-2010-033; reference:[28] Schuster, F. E., Wannerer, T.: Even Minkowski valuations.Am. J. Math. 137 (2015), 1651-1683. Zbl 1336.52020, MR 3432270, 10.1353/ajm.2015.0041; reference:[29] Schuster, F. E., Wannerer, T.: Minkowski valuations and generalized valuations.J. Eur. Math. Soc. (JEMS) 20 (2018), 1851-1884. Zbl 1398.52018, MR 3854893, 10.4171/JEMS/801; reference:[30] Zhang, T., Wang, W.: Inequalities for mixed width-integrals.Wuhan Univ. J. Nat. Sci. 21 (2016), 185-190. Zbl 1363.26055, MR 3525752, 10.1007/s11859-016-1157-6; reference:[31] Zhao, C.-J.: On Blaschke-Minkowski homomorphisms.Geom. Dedicata 149 (2010), 373-378. Zbl 1207.52009, MR 2737698, 10.1007/s10711-010-9487-6; reference:[32] Zhao, C.-J.: On polars of Blaschke-Minkowski homomorphisms.Math. Scand. 111 (2012), 147-160. Zbl 1281.52006, MR 3001365, 10.7146/math.scand.a-15220; reference:[33] Zhao, C.-J.: Volume sums of polar Blaschke-Minkowski homomorphisms.Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 209-219. Zbl 1321.52014, MR 3361514, 10.1007/s12044-015-0227-6; reference:[34] Zhao, C.-J.: On Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski homomorphisms.J. Geom. Anal. 26 (2016), 1523-1538. Zbl 1350.52004, MR 3472843, 10.1007/s12220-015-9598-2; reference:[35] Zhao, C.-J., Cheung, W.-S.: Radial Blaschke-Minkowski homomorphisms and volume differences.Geom. Dedicata 154 (2011), 81-91. Zbl 1230.52023, MR 2832712, 10.1007/s10711-010-9568-6; reference:[36] Zhao, C.-J., Mihály, B.: Width-integrals of mixed projection bodies and mixed affine surface area.Gen. Math. 19 (2011), 123-133. Zbl 1224.52016, MR 2788350; reference:[37] Zhou, Y.: General $L_p$-mixed width-integral of convex bodies and related inequalities.J. Nonlinear Sci. Appl. 10 (2017), 4372-4380. Zbl 1412.52005, MR 3702585, 10.22436/jnsa.010.08.30

  9. 9
    Academic Journal
  10. 10
    Academic Journal

    المؤلفون: Zhao, C, Cheung, WS

    Relation: Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie; Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 2017, v. 60{108} n. 2, p. 147-157; 157; 273225; 147; http://hdl.handle.net/10722/242212; 60{108}

  11. 11
    Academic Journal

    المؤلفون: Ji, Lewen, Zeng, Zhenbing

    وصف الملف: application/pdf

    Relation: mr:MR3697916; zbl:Zbl 06770130; reference:[1] Abardia, J., Bernig, A.: Projection bodies in complex vector spaces.Adv. Math. 227 (2011), 830-846. Zbl 1217.52009, MR 2793024, 10.1016/j.aim.2011.02.013; reference:[2] Alesker, S., Bernig, A., Schuster, F. E.: Harmonic analysis of translation invariant valuations.Geom. Funct. Anal. 21 (2011), 751-773. Zbl 1228.53088, MR 2827009, 10.1007/s00039-011-0125-8; reference:[3] Beckenbach, E. F., Bellman, R.: Inequalities.Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Band 30, Springer, Berlin (1965). Zbl 0126.28002, MR 0192009; reference:[4] Gardner, R. J.: A positive answer to the Busemann-Petty problem in three dimensions.Ann. Math. (2) 140 (1994), 435-447. Zbl 0826.52010, MR 1298719, 10.2307/2118606; reference:[5] Gardner, R. J.: Intersection bodies and the Busemann-Petty problem.Trans. Am. Math. Soc. 342 (1994), 435-445. Zbl 0801.52005, MR 1201126, 10.2307/2154703; reference:[6] Gardner, R. J.: The Brunn-Minkowski inequality.Bull. Am. Math. Soc., New Ser. 39 (2002), 355-405. Zbl 1019.26008, MR 1898210, 10.1090/S0273-0979-02-00941-2; reference:[7] Gardner, R. J., Hug, D., Weil, W.: The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities.J. Differ. Geom. 97 (2014), 427-476. Zbl 1303.52002, MR 3263511, 10.4310/jdg/1406033976; reference:[8] Gardner, R. J., Hug, D., Weil, W., Ye, D.: The dual Orlicz-Brunn-Minkowski theory.J. Math. Anal. Appl. 430 (2015), 810-829. Zbl 1320.52008, MR 3351982, 10.1016/j.jmaa.2015.05.016; reference:[9] Gardner, R. J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies.Ann. Math. (2) 149 (1999), 691-703. Zbl 0937.52003, MR 1689343, 10.2307/120978; reference:[10] Gardner, R. J., Parapatits, L., Schuster, F. E.: A characterization of Blaschke addition.Adv. Math. 254 (2014), 396-418. Zbl 1291.52011, MR 3161103, 10.1016/j.aim.2013.11.017; reference:[11] Haberl, C.: Star body valued valuations.Indiana Univ. Math. J. 58 (2009), 2253-2276. Zbl 1183.52003, MR 2583498, 10.1512/iumj.2009.58.3685; reference:[12] Koldobsky, A.: Intersection bodies, positive definite distributions, and the Busemann-Petty problem.Am. J. Math. 120 (1998), 827-840. Zbl 0914.52001, MR 1637955, 10.1353/ajm.1998.0030; reference:[13] Koldobsky, A.: Stability in the Busemann-Petty and Shephard problems.Adv. Math. 228 (2011), 2145-2161. Zbl 1228.52006, MR 2836117, 10.1016/j.aim.2011.06.031; reference:[14] Koldobsky, A., Ma, D.: Stability and slicing inequalities for intersection bodies.Geom. Dedicata 162 (2013), 325-335. Zbl 1261.52003, MR 3009547, 10.1007/s10711-012-9729-x; reference:[15] Leng, G.: The Brunn-Minkowski inequality for volume differences.Adv. Appl. Math. 32 (2004), 615-624. Zbl 1056.52003, MR 2042686, 10.1016/S0196-8858(03)00095-2; reference:[16] Ludwig, M.: Projection bodies and valuations.Adv. Math. 172 (2002), 158-168. Zbl 1019.52003, MR 1942402, 10.1016/S0001-8708(02)00021-X; reference:[17] Ludwig, M.: Intersection bodies and valuations.Am. J. Math. 128 (2006), 1409-1428. Zbl 1115.52007, MR 2275906, 10.1353/ajm.2006.0046; reference:[18] Lutwak, E.: Dual mixed volumes.Pac. J. Math. 58 (1975), 531-538. Zbl 0273.52007, MR 0380631, 10.2140/pjm.1975.58.531; reference:[19] Lutwak, E.: Intersection bodies and dual mixed volumes.Adv. Math. 71 (1988), 232-261. Zbl 0657.52002, MR 0963487, 10.1016/0001-8708(88)90077-1; reference:[20] Lutwak, E.: Inequalities for mixed projection bodies.Trans. Am. Math. Soc. 339 (1993), 901-916. Zbl 0784.52009, MR 1124171, 10.2307/2154305; reference:[21] Lutwak, E.: The Brunn-Minkowski-Firey theory I. Mixed volumes and the Minkowski problem.J. Differ. Geom. 38 (1993), 131-150. Zbl 0788.52007, MR 1231704, 10.4310/jdg/1214454097; reference:[22] Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies.J. Differ. Geom. 84 (2010), 365-387. Zbl 1206.49050, MR 2652465, 10.4310/jdg/1274707317; reference:[23] Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies.Adv. Math. 223 (2010), 220-242. Zbl 05643962, MR 2563216, 10.1016/j.aim.2009.08.002; reference:[24] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory.Encyclopedia of Mathematics and Its Applications 151, Cambridge University Press, Cambridge (2014). Zbl 1287.52001, MR 3155183, 10.1017/CBO9781139003858; reference:[25] Schuster, F. E.: Volume inequalities and additive maps of convex bodies.Mathematika 53 (2006), 211-234. Zbl 1129.52002, MR 2343256, 10.1112/S0025579300000103; reference:[26] Schuster, F. E.: Valuations and Busemann-Petty type problems.Adv. Math. 219 (2008), 344-368. Zbl 1146.52003, MR 2435426, 10.1016/j.aim.2008.05.001; reference:[27] Wang, W.: $L_p$ Brunn-Minkowski type inequalities for Blaschke-Minkowski homomorphisms.Geom. Dedicata 164 (2013), 273-285. Zbl 1280.52007, MR 3054628, 10.1007/s10711-012-9772-7; reference:[28] Xi, D., Jin, H., Leng, G.: The Orlicz Brunn-Minkowski inequality.Adv. Math. 260 (2014), 350-374. Zbl 06298949, MR 3209355, 10.1016/j.aim.2014.02.036; reference:[29] Xiong, G., Zou, D.: Orlicz mixed quermassintegrals.Sci. China, Math. 57 (2014), 2549-2562. Zbl 1328.52003, MR 3275405, 10.1007/s11425-014-4812-4; reference:[30] Zhao, C.-J.: On radial Blaschke-Minkowski homomorphisms.Geom. Dedicata 167 (2013), 1-10. Zbl 1287.52009, MR 3128767, 10.1007/s10711-012-9798-x; reference:[31] Zhao, C.-J.: Orlicz dual mixed volumes.Result. Math. 68 (2015), 93-104. Zbl 1329.52008, MR 3391494, 10.1007/s00025-014-0424-0; reference:[32] Zhao, C., Cheung, W.-S.: Radial Blaschke-Minkowski homomorphisms and volume differences.Geom. Dedicata 154 (2011), 81-91. Zbl 1230.52023, MR 2832712, 10.1007/s10711-010-9568-6; reference:[33] Zhao, C.-J., Leng, G.: Brunn-Minkowski inequality for mixed intersection bodies.J. Math. Anal. Appl. 301 (2005), 115-123. Zbl 1065.52006, MR 2105924, 10.1016/j.jmaa.2004.07.013; reference:[34] Zhu, B., Zhou, J., Xu, W.: Dual Orlicz-Brunn-Minkowski theory.Adv. Math. 264 (2014), 700-725. Zbl 1307.52004, MR 3250296, 10.1016/j.aim.2014.07.019

  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
  16. 16