-
1Academic Journal
المؤلفون: Shields, GA, Mills, BJW
المصدر: Estudios Geológicos , 75 (2) , Article e114. (2019)
مصطلحات موضوعية: Carbon isotopes, Sulfur isotopes, Biogeochemical balance, Ediacaran, Isótopos de carbono, Isótopos de azufre, Balance biogeoquímico, Ediacárico
وصف الملف: text
Relation: https://discovery.ucl.ac.uk/id/eprint/10087140/1/1007-3095-1-PB.pdf; https://discovery.ucl.ac.uk/id/eprint/10087140/
-
2Academic Journal
المؤلفون: Shields, G. A., Mills, B. J.W.
المصدر: Estudios Geológicos; Vol. 75 No. 2 (2019); e114 ; Estudios Geológicos; Vol. 75 Núm. 2 (2019); e114 ; 1988-3250 ; 0367-0449 ; 10.3989/egeol.16728
مصطلحات موضوعية: Carbon isotopes, Sulfur isotopes, Biogeochemical balance, Ediacaran, Isótopos de carbono, Isótopos de azufre, Balance biogeoquímico, Ediacárico
وصف الملف: text/html; application/pdf; application/xml
Relation: https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1007/1276; https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1007/1277; https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1007/1278; Bristow, T.F. & Kennedy, M.J. (2008). Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 36: 863-866. https://doi.org/10.1130/G24968A.1; Burke, A.; Present, T.M.; Paris, G.; Rae, E.C.M.; Sandilands, B.H.; Gaillardet, J.; Peucker-Ehrenbrink, B.; Fischer, W.W.; McClelland, J.W.; Spencer, R.G.M.; Voss, B.M. & Adkins, J.F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Sciences Letters, 496: 168-177. https://doi.org/10.1016/j.epsl.2018.05.022; Burns, S.J. & Matter, A. (1993). Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologica Helvetiae, 86: 595-607.; Calver, C.R. (2000). Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 100: 121-150. https://doi.org/10.1016/S0301-9268(99)00072-8; Campbell, I.H. & Squire, R.J. (2010). The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74: 4187-4206. https://doi.org/10.1016/j.gca.2010.04.064; Chen, X.; Ling, H.-F.; Vance, D.; Shields-Zhou, G.A.; Zhu, M.; Poulton, S.W.; Och, L.M.; Jiang, S.-Y.; Li, D.; Cremonese, L. & Archer, C. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6: 1-7. https://doi.org/10.1038/ncomms8142 PMid:25980960 PMCid:PMC4479002; Condon, D.; Zhu, M.; Bowring, S.; Wang, W.; Yang, A. & Jin, Y. (2005). U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science, 308: 95-98. https://doi.org/10.1126/science.1107765 PMid:15731406; Derry, L.A. (2010). A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294: 152-162. https://doi.org/10.1016/j.epsl.2010.03.022; Evans, D.A.D. (2006). Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, 444: 51-55. https://doi.org/10.1038/nature05203 PMid:17080082; Fakhraee, M.; Hancisse, O.; Canfield, D.E.; Crowe, S.A. & Katsev, S. (2019). Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nature Geoscience, 12: 375-380. https://doi.org/10.1038/s41561-019-0351-5; Garrels, R.M. & Lerman, A. (1984). Coupling of the sedimentary sulfur and carbon cycles - an improved model. American Journal of Science, 284: 989-1007. https://doi.org/10.2475/ajs.284.9.989; Gong, Z.; Kodama, K.P. & Li, Y.X. (2017). Rock magnetic cyclostratigraphy of the Doushantuo Formation, South China and its implications for the duration of the Shuram carbon isotope excursion. Precambrian Research, 289: 62-74. https://doi.org/10.1016/j.precamres.2016.12.002; Grotzinger, J.P.; Fike, D.A. & Fischer, W.W. (2011). Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4: 285-292. https://doi.org/10.1038/ngeo1138; Guilbaud, R.; Poulton, S.W.; Butterfield, N.J.; Zhu, M. & Shields-Zhou, G.A. (2015). A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience, 8:466-470. https://doi.org/10.1038/ngeo2434; He, T.; Zhu, M.; Mills, B.J.W.; Wynn, P.M.; Zhuravlev, A.Y.; Tostevin, R.; Strandmann, P.A.E.P. Von, Yang, A.; Poulton, S.W. & Shields, G.A. (2019). Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 12: 468-474. https://doi.org/10.1038/s41561-019-0357-z PMid:31178922 PMCid:PMC6548555; Kaufman, A.J.; Knoll, A.H. & Narbonne, G.M. (1997). Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences USA, 94: 6600-6605. https://doi.org/10.1073/pnas.94.13.6600 PMid:11038552 PMCid:PMC21204; Kendall, B.; Komiya, T.; Lyons, T.W.; Bates, S.M.; Gordon, G.W.; Romaniello, S.J.; Jiang, G.; Creaser, R.A.; Xiao, S.; McFadden, K.; Sawaki, Y.; Tahata, M.; Shu, D.; Han, J.; Li, Y.; Chu, X. & Anbar, A.D. (2015). Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late ediacaran period. Geochimica et Cosmochimica Acta, 156: 173-193. https://doi.org/10.1016/j.gca.2015.02.025; Krissansen-Totton, J.; Buick, R. & Catling, D.C. (2015). A statistical analysis of the carbon isotope record from the Archean to phanerozoic and implications for the rise of oxygen. American Journal of Science, 315: 275-316. https://doi.org/10.2475/04.2015.01; Lang, X.; Shen, B.; Peng, Y.; Xiao, S.; Zhou, C.; Bao, H.; Kaufman, A.J.; Huang, K.; Crockford, P.W. & Liu, Y. (2018). Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x PMid:30068999 PMCid:PMC6070556; Le Heron, D.P.; Vandyk, T.M.; Kuang, H.; Liu, Y.; Chen, X.; Wang, Y.; Yang, Z.; Scharfenberg, L.; Davies, B. & Shields, G. (2019). Bird ' s-eye view of an Ediacaran subglacial landscape, 47: 1-5. https://doi.org/10.1130/G46285.1; Lee, C.; Love, G.D.; Fischer, W.W.; Grotzinger, J.P. & Halverson, G.P. (2015). Marine organic matter cycling during the Ediacaran Shuram excursion. Geology, 43: 1103-1106. https://doi.org/10.1130/G37236.1; Lenton, T.M.; Boyle, R.A.; Poulton, S.W.; Shields-Zhou, G.A. & Butterfield, N.J. (2014). Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257-265. https://doi.org/10.1038/ngeo2108; Li, C.; Hardisty, D.S.; Luo, G.; Huang, J.; Algeo, T.J.; Cheng, M.; Shi, W.; An, Z.; Tong, J.; Xie, S.; Jiao, N. & Lyons, T.W. (2017). Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology, 15: 211-224. https://doi.org/10.1111/gbi.12222 PMid:27997754; Lu, M.; Zhu, M.; Zhang, J.; Shields-Zhou, G.; Li, G.; Zhao, F.; Zhao, X. & Zhao, M. (2013). The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Research, 225: 86-109. https://doi.org/10.1016/j.precamres.2011.10.018; Melezhik, V.; Fallick, A.E. & Pokrovsky, B.G. (2005). Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: The challenges to our understanding of the terrestrial carbon cycle. Precambrian Research, 137: 131-165. https://doi.org/10.1016/j.precamres.2005.03.010; Prince, J.K.G.; Rainbird, R.H. & Wing, B.A. (2019). Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur. Geology, 47 (4): 375-379. https://doi.org/10.1130/G45464.1; Pu, J.P.; Bowring, S.A.; Ramezani, J.; Myrow, P.; Raub, T.D.; Landing, E.; Mills, A.; Hodgin, E. & Macdonald, F.A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44 (11): 955-958. https://doi.org/10.1130/G38284.1; Rothman, D.H.; Hayes, J.M. & Summons, R.E. (2003). Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences USA, 100: 8124-8129. https://doi.org/10.1073/pnas.0832439100 PMid:12824461 PMCid:PMC166193; Sahoo, S.K.; Planavsky, N.J.; Kendall, B.; Wang, X.; Shi, X.; Scott, C.; Anbar, A.D.; Lyons, T.W. & Jiang, G. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445 PMid:23018964; Schmid, S. (2017). Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia). Precambrian Research, 290: 16-31. https://doi.org/10.1016/j.precamres.2016.12.004; Schrag, D.P.; Higgins, J.A.; Macdonald, F.A. & Johnston, D.T. (2013). Authigenic carbonate and the history of the global carbon cycle. Science 339: 540-543, https://doi.org/10.1126/science.1229578 PMid:23372007; Schroder, S.; Schreiber, B.C.; Amthor, J.E. & Matter, A. (2004). Stratigraphy and environmental conditions of the terminal Neoproterozoic-Cambrian Period in Oman: evidence from sulfur isotopes. Journal of the Geological Society of London, 161: 489-499. https://doi.org/10.1144/0016-764902-062; Shi, W.; Li, C.; Luo, G.; Huang, J.; Algeo, T.J.; Jin, C.; Zhang, Z. & Cheng, M. (2018). Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology, 46: 267-270. https://doi.org/10.1130/G39663.1; Strauss, H. (1993). The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record. Precambrian Research, 63(34): 225-246. https://doi.org/10.1016/0301-9268(93)90035-Z; Tostevin, R.; Clarkson, M.O.; Gangl, S.; Shields, G.A.; Wood, R.A.; Bowyer, F.; Penny, A.M. & Stirling, C.H. (2019). Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506: 104-112. https://doi.org/10.1016/j.epsl.2018.10.045; Turner, E.C. & Bekker, A. (2016). Thick sulfate evaporite accumulations marking a mid-neoproterozoic oxygenation event (ten stone formation, Northwest territories, Canada). Bulletin of the Geological Society of America, 128(1-2): 203-222. https://doi.org/10.1130/B31268.1; Wortmann, U.G. & Paytan, A. (2012). Rapid variability of seawater chemistry over the past 130 million years. Science, 337: 334-336. https://doi.org/10.1126/science.1220656 PMid:22822148; https://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/1007
-
3Academic Journal
المساهمون: The Pennsylvania State University CiteSeerX Archives
مصطلحات موضوعية: Massachusetts Bay, Real time forecasting, Predictive capability, Interdisciplinary data assimilation, Coastal ecosystem, Summer tooptimal interpolation scheme. Within this scheme, an approximate biogeochemical balance and dynamical adjustments areof Massachusetts Bay in late summ, real-time and postcruise
وصف الملف: application/pdf
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.617.2083; http://web.mit.edu/pierrel/www/Papers/besiktepe_pfjl_arr_jms03.pdf
-
4
المؤلفون: G. A. Shields, B. J.W. Mills
المصدر: Estudios Geológicos; Vol. 75 No. 2 (2019); e114
Estudios Geológicos; Vol. 75 Núm. 2 (2019); e114
Estudios Geológicos
Consejo Superior de Investigaciones Científicas (CSIC)
Estudios Geologicos, Vol 75, Iss 2, Pp e114-e114 (2019)مصطلحات موضوعية: Biogeochemical balance, Ediacárico, lcsh:QE1-996.5, Isótopos de carbono, Carbon isotopes, isótopos de azufre, Sulfur isotopes, lcsh:Geology, ediacárico, Ediacaran, isótopos de carbono, Isótopos de azufre, Balance biogeoquímico, balance biogeoquímico
وصف الملف: text/html; application/pdf; application/xml