يعرض 1 - 20 نتائج من 64 نتيجة بحث عن '"Betancourt, Erika"', وقت الاستعلام: 0.80s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Book
  3. 3
    Book
  4. 4
    Academic Journal

    المصدر: sour topics; Vol. 27 No. 1 (2022): Continuous publication - Volume 27(1) of 2022 ; Temas Agrarios; Vol. 27 Núm. 1 (2022): Publicación continua - Volumen 27(1) de 2022 ; 2389-9182 ; 10.21897/rta.v27i1

    وصف الملف: application/pdf

    Relation: https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3080/4908; https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3080/4909; AboShama, H.M. and Atwa, MM. 2019. Anther Culture in Potato (Solanum tuberosum L.) in vitro. J Plant Biochem Physiol. 7:244. doi:10.35248/2329-9029.19.7.244; Adan, A., Alizada, G., Kiraz, Y., Baran, Y. and Nalbant, A. 2017. Flow cytometry: basic principles and applications. Critical Reviews in Biotechnology 37(2):163-176. http://dx.doi.org/10.3109/07388551.2015.1128876; Agronet – Ministerio de Agricultura de Colombia. 2022. Electronic search in May. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; ANALDEX – Asociación Nacional de Comercio Exterior. 2022. Informe de las exportaciones de uchuva. Electronic search in May. https://www.analdex.org/2021/07/30/informe-exportaciones-de-uchuva-mayo-2021/; Asadi, A., Zebarjadi, A., Reza Abdollahi, M and Seguí-Simarro, JM. 2018. Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica 214: 216. https://doi.org/10.1007/s10681-018-2297-x; Bačovský, V., Hobza, R. and Vyskot, B. 2018. Technical Review: Cytogenetic Tools for Studying Mitotic Chromosomes. In: Bemer, M. and Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_30; Bala, S. and Gupta, RC. 2011. Effect of secondary associations on meiosis, pollen fertility and pollen size in cape gooseberry (Physalis peruviana L.). Chromosome Botany 6: 25-28. https://doi.org/10.3199/iscb.6.25; Bracamonte, O., Guevara, M., González, R., Cox, E., Siles, M. and Maguiña, E. 1997. Estudio citogenético de Physalis peruviana “capulí de la costa”. Revista Universidad Nacional de San Marcos.; Castillo, A.M., Valero-Rubira, I., Burrell, M.A., Allué, S., Costar, M.A. and Vallés, M.P. 2020. "Trichostatin A Affects Developmental Reprogramming of Bread Wheat Microspores towards an Embryogenic Route". Plants 9(11): 1442. https://doi.org/10.3390/plants9111442; Cusaro, C.M., Grazioli, C., Zambuto, F., Capelli, E. and Brusoni, M. 2022. An Improved Method for Assessing Simple Sequence Repeat (SSR) Variation in Echinochloa crus-galli (L.) P. Beauv (Barnyardgrass). Diversity 14(3). https://doi.org/10.3390/d14010003; Diaz, D.E. y Gonzalez, D.C. 2008. Desarrollo de procesos organogénicos y estudio del efecto de la colchicina sobre yemas vegetativas de Physalis peruviana L. Tesis Biología, Universidad Pedagógica y Tecnológica de Colombia, Tunja.; Dice, L.R. 1945. Measures of the amount of ecological association between species. Ecology 26 (3): 297-302. https://doi.org/10.2307/1932409; Escobedo-Gracia-Medrano, R.M., Burgos-Tan, M.J., Ku-Cauich, J.R. and Quiroz-Moreno, A. 2018. Using Flow Cytometry Analysis in Plant Tissue Culture Derived Plants. In: Loyola-Vargas, V., and Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology 1815: 317-332. https://doi.org/10.1007/978-1-4939-8594-4_22; Escobar-Guzman, R., Hernandez-Godinez, F., Martinez, O., and Ochoa-Alejo, N. (2009). In vitro embryo formation and plant regeneration from anther culture of different cultivars of Mexican husk tomato (Physalisxocarpa Brot.). Plant Cell, Tissue and Organ Culture. 96: 181–189.; Franco-Florez, V., Liberato Guío, S.A., Sánchez-Betancourt, E., García-Arias, F.L. and Núñez Zarantes, VM. 2021. Cytogenetic and cytological analysis of Colombian cape gooseberry genetic material for breeding purposes. Caryologia 74(3): 21-30. https://doi.org/10.36253/caryologia-1081; Jacquier, N., Gilles, L., Pyott, D., Martinant, J-P., Rogowsky, P. and Widiez, T. 2020. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nature Plants, Nature Publishing Group, 6(6): 610-619. https://doi.org/10.1038/s41477-020-0664-9; Lagos, T.C. 2006. Comportamiento citogenético de Physalis peruviana. En: Biología reproductiva, citogenética, diversidad genética y heterosis en parentales de uvilla o uchuva Physalis peruviana L. Tesis de grado para optar al título de Doctor en Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira.; Lantos, C., Lehoczki-Krsjak, S. and Pauk, J. 2022. Induction of in vitro androgenesis in anther culture of recalcitrant einkorn (Triticum monococcum L.). Plant Cell Tiss Organ Cult 150: 417–426. https://doi.org/10.1007/s11240-022-02293-6; Larsen, B., Gardner, K., Pedersen, C., Orgaard, M., Migicovksky, Z., Myles, S. and Toldam-Andersen, TB. 2018. Population structure, relatedness and ploidy levels in an apple gene bank revealed through genotyping-by-sequencing. PLoS ONE 13, e0201889 6093671 10.1371/journal.pone.0201889; Lattier, J.D., Ballard, H.E., Kramer, M. and Pooler, M. 2022. Genome size, ploidy levels, and development of novel SSR primer to evaluate genetic diversity of Corylopsis Siebold & Zucc. germplasm collections. Genet Resour Crop Evol 69, 2203–2216. https://doi.org/10.1007/s10722-022-01371-0; Liberato, S., Sanchez-Betancourt, Erika., Argüelles, J., González, C., Nunez, V. and Barrero. L. 2014. Cytogenetic of Physalis peruviana L., and Physalis floridana Rydb. Genotypes with differential response to Fusarium oxysporum. Revista Corpoica 15(1): 51-61.; Meena, R., Bhandari, M. and Ginwal, H. 2020. Usage of microsatellite markers for characterization of polyploids: A case study in reference to hexaploid bamboo species. Silvae Genetica 69: 94–97. https://doi.org/10.2478/sg-2020-0013 Menzel, M.Y. 1951. The Cytotaxonomy and Genetics of Physalis. Proccedings of the American Phylosophycal Society 95: 132-183.; Mohammed, B., Farahi Bilooei, S., Dóczi, R., Grove, E., Railo, S., Palme, K., Anicet Ditengou, F., Bögre, L. and López-Juez, E. 2018. Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth. Plant Physiology 176(2): 1365–1381. https://doi.org/10.1104/pp.17.01730; Pacey, E.K., Maherali, H. and Husband, B.C. 2019. The influence of experimentally induced polyploidy on the relationships between endopolyploidy and plant function in Arabidopsis thaliana. Ecology and evolution 10(1): 198–216. https://doi.org/10.1002/ece3.5886; Putri, ICS., Yuniastuti, E. and Parjanto, P. 2022. The rambutan (Nephelium lappaceum L.) chromosomes. Biodiversitas 23(4): 2196-2202. https://doi.org/10.13057/biodiv/d230455; Qi, F. and Zhang, F. 2020. Cell cycle regulation in the plant response to stress. Frontiers in Plant Science 10:1765. https://doi.org/10.3389/fpls.2019.01765; Redpath, LE., Aryal, R., Lynch, N., Spencer, JA., Hulse-Kemp, A.M., Ballington, JR., Green, J., Bassil, N., Hummer, K., Ranney, T. and Ashrafi, H. 2022. Nuclear DNA contents and ploidy levels of North American Vaccinium species and interspecific hybrids. Scientia Horticulturae 297: 110955. https://doi.org/10.1016/j.scienta.2022.110955; Rocha, P.J. 2002. Teoría y práctica para la extracción y purificación del ADN de palma de aceite. Palmas 23(3): 9-17. Rodríguez, N. and Bueno, M. 2006. Study of the cytogenetic diversity of Physalis peruviana L. (Solanaceae) L. Acta Biológica Colombiana 11(2): 75-85.; Rohlf, F.J. 2009. NTSYSpc Numerical taxonomy and multivariate analysis system. Applied Biostatistics Inc. New York. ISBN: 0-925031-31-3; Sangur, K., Smith, A. and Tomasoa, M. 2021. The Mitotic Index of Cajanus cajan from Kisar Island, in the Southwest of Maluku. Biosaintifika: Journal of Biology & Biology Education 13(2): 128-134. http://dx.doi.org/10.15294/biosaintifika.v13i2.29496; Simbaqueba, J., Catanzariti, A. M., González, C. and Jones, D.A. 2018. Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Molecular Plant Pathology 19(10): 2302–2318. https://doi.org/10.1111/mpp.12700; Simbaqueba, J., Sanchez, P., Sanchez, E., Nuñez Zarantes, V.M., Chacon, M.I., Barrero, L.S. and Mariño-Ramírez, L. 2011. Development and Characterization of Microsatellite Markers for the Cape Gooseberry Physalis peruviana. PLoS ONE 6(10): e26719. https://doi.org/10.1371/journal.pone.0026719; Srisuwan, S., Sihachakr, D., Martín, J., Vallès, J., Ressayre, A., Brown, S.C. and Siljak-Yakovlev, S. 2019. Change in nuclear DNA content and pollen size with polyploidisation in the sweet potato (Ipomoea batatas, Convolvulaceae) complex. Plant biology (Stuttgart, Germany) 21(2): 237–247. https://doi.org/10.1111/plb.12945; Steel, R.G.D., Torrie, J.H. and Dickey, D.A. 1997. Principles and Procedures of Statistics. A biometrical approach. Third Edition, McGraw-Hill. New York. ISBN 0070610282; Suescun, L., Sanchez-Betancourt, E., Gomez, M., Garcia, F.L. and Nuñez, V.M. 2011. Producción de plantas genéticamente puras de uchuva. Corpoica, MADR, Novacampo, Cámara de Comercio de Bogotá. Editorial Kimpres Ltda. 44p. ISBN: 978; Tomaszewska, P., Pellny, T.K., Hernández, L.M., Mitchell, R.A.C., Castiblanco, V., de Vega, J.J., Schwarzacher, T. and Heslop-Harrison, P. 2021. Flow Cytometry-Based Determination of Ploidy from Dried Leaf Specimens in Genomically Complex Collections of the Tropical Forage Grass Urochloa s. l. Genes 12(7): 957. https://doi.org/10.3390/genes12070957; Wang, GF., Qin, HY., Sun, D., Fan, ST., Yang, YM., Wang, ZX., Xu, PL., Zhao, Y., Liu, YX. and Ai, J. 2018. Haploid plant regeneration from hardy kiwifruit (Actinidia arguta Planch.) anther culture. Plant Cell Tiss Organ Cult 134: 15–28. https://doi.org/10.1007/s11240-018-1396-7; Yan, L., Zhang, Y., Cai, G., Qing, Y., Song, J., Wang, H., Tan, X., Liu, C., Yang, M., Fang, Z. and Lai, X. 2021. Genome assembly of primitive cultivated potato Solanum stenotomum provides insights into potato evolution. G3 Genes%7CGenomes%7CGenetics 11(10): jkab262. https://doi.org/10.1093/g3journal/jkab262; Zarabizadeh, H., Karimzadeh, G., Monfared, S.R. and Esfahani, S.T. 2022. Karyomorphology, ploidy analysis, and flow cytometric genome size estimation of Medicago monantha populations. Turkish Journal of Botany 46(1). https://doi.org/10.3906/bot-2105-22; https://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/3080

  5. 5
    Academic Journal

    المؤلفون: Quintero Pertuz, Irma, Castañeda Nava, José Juvencio, Núñez Zarantes, Víctor Manuel, Mayorga Cubillos, Franklin Giovanny, García Arias, Francy Liliana, Sánchez Betancourt, Erika, Molina , Adriana, Ostos , Manuel E., Buenaventura , Mario S., Arguelles , Jorge H., Álvarez Correa, Cristian Camilo, Suárez Padrón, Isidro Elías, López Diaz, Claudia Marcela, Carvajal Valderrama, Evaristo Alberto, Gerónimo, Maribel del Ángel, Vite Cristóbal, Claudio, Ortega Vargas, Eloísa, Arrieta González, Armando, Pech Caché, Juan Manuel, Torres, Carlos A., Ortiz González, Daniel, Paredes Martínez, Oscar Eduardo, García Parra, Miguel Ángel, Pérez Cordero, Cristo Rafael, Hurtado Salazar, Alejandro, Ceballos Aguirre, Nelson, Arango, Juan Felipe, Franco, Didier Alexander, Ibáñez Fernandez, Carlos Ernesto, Combatt Caballero, Enrique, Hernández Murillo, Jenry R., Araméndiz Tatis, Hermes, Cardona Ayala, Carlos, Espitia Camacho, Miguel, Marín Colorado, Jaime Alberto, Vanderschuren, Hervé, Bernal Monterrosa, Miguel Ángel, Fonseca Mercado, Fabian Felipe, Henao Ortiz, Alvaro, Meza Cogollo, Jose Raul, Ochoa Salas, Allan Sebastian, Araújo Vásquez, Hernando Alberto, Jarma Orozco, Alfredo De Jesús, Espitia Romero, Carlos Andrés, Yacomelo Hernandez, Marlon José, Florez Cordero, Elias David, Carrascal Perez, Francisco Fabian, Rodriguez Ysquierdo, Gustavo Adolfo, Royet Barroso, Jhoandys De Jesus, Campo Arana, Rodrigo Orlando, Martínez Alayón, Fredy, De La Ossa Quiñones, Ana Elena, Aguirre Ortega, Emily, Sánchez, Manuel Alejandro, Villegas Estrada, Bernardo, Valencia Jiménez, Arnubio, Gutiérrez Rodríguez, Betty Jazmín, Castro Navarro, Olga María, Arroyo Martínez, Erika Paola, Beltrán Herrera, Javier Darío, Salgado Chávez, José Alberto, Mercado Correa, Álvaro José, Arrieta Mesa, Luz Edith, Quintero Mercado, Andrés Felipe, Quintero Mercado, Alberto Rafael, Buelvas Jiménez, Miguel Ramiro, Cadena Torres, Jorge, Rodríguez, Caren Dayana, Vásquez Bettin, Ana Milena, Quintero Torres, Andrés, Iguarán Díaz, Camilo José, Rodríguez Polanco, Eleonora, Parra Alferes, Edinson Bayardo, Bermeo Fuquene, Paula Andrea, Segura Amaya, Jose Dima, Saavedra De Castro, Enrique, Echeverri Rico, Johanna, Burgos Bedoya, Camila, Díaz Narváez, Lucia, Polanco, Heberto, Zapata Osorio, Yurani Maria, Rodríguez Puertas, David, Cely Pardo, Nubia Liliana, Lasso Paredes, Zahara Lucía, Romero Barrera, Yajaira, Barreto Triana, Nancy del Carmen, Araujo Vasquez, Hernando Alberto, Novoa Yánez, Rafael Segundo, Grandett Martínez, Liliana María, Martínez, Mauricio Fernando, Holguín Aránzazu, Claudia María, Hernández Jorge, Freddy Eliseo, Díaz Godínez, Laura Ahtziri, Santacruz Ruvalcaba, Fernando, Zarazúa Villaseñor, Patricia, Gutiérrez Mora, Antonia, Hernández Fernández, Israel Antonio, Pompelli, Marcelo Francisco, Rodríguez Mora, Diana Milena, Rodríguez Arévalo, Kevin Alejandro, Murcia Riaño, Nubia, Martínez Caballero, Luz Natalia, Jaramillo Laverde, Alejandro, Quevedo García, Enrique, Galindo Gil, Luis Fernando, Mazo Ordóñez, Oscar Miguel, Burgos Paz, William Orlando, Cortés Vera, Andrés, Alegría Fernández, Gustavo, Sánchez León, Gina Lorena, Franco Flórez, Clara Viviana, Liberato Guío, Sara Alejandra, Cruz Lopez, Nidia Angélica, Alvear Arcos, Gennifer Rosio, Casas Zapata, Juan Carlos, Tello Espinosa, Julián Giovanni, Flórez Faura, Rafael Antonio, Vega Diaz, Jhon Jairo, Martín Duarte, Julio, Gutiérrez, Betty Jazmín, Castro, Olga María, Orjuela Angulo, Mayerlin, Sánchez Del Castillo, Felipe, Moreno Pérez, Esaú Del Carmen, Villar, Jesús Magdaleno

    المصدر: sour topics; Vol. 26 No. Suplemento 1 (2021): Revista Temas Agrarios Volumen 26; 1-91 ; Temas Agrarios; Vol. 26 Núm. Suplemento 1 (2021): Revista Temas Agrarios Volumen 26; 1-91 ; 2389-9182 ; 10.21897/rta.v26i1

    مصطلحات موضوعية: Ciencia, Agronomia, innovación, Scienc, Agronomy, Innovation

    وصف الملف: application/pdf

  6. 6
  7. 7
  8. 8
    Academic Journal

    المصدر: Agronomía Colombiana; Vol. 38 Núm. 1 (2020); 9-18 ; Agronomía Colombiana; Vol. 38 No. 1 (2020); 9-18 ; Agronomía Colombiana; v. 38 n. 1 (2020); 9-18 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/agrocol/article/view/80559/74929; Abiodun, O. and R. Akinoso. 2014. Physico-chemical properties of Serendipity berry (Dioscoreophyllum cumminsii) fruit. J. Appl. Sci. Environ. Manage. 18(2) 218-221. Doi:10.4314/jasem.v18i2.10; Afanador-Kafuri, L., E. Alvarez, J.F. Mejia, and A. Gonzalez. 2015. Identifying and analyzing the diversity of resistance gene analogs in Colombian Rubus genotypes. Plant Dis. 99, 994-1001. Doi:10.1094/PDIS05-14-0475-RE; Agronet. 2017. Estadísticas, agrícola, producción, rendimiento y participación. URL: http://www.agronet.gov.co/estadistica/Paginas/default.aspx (accessed May 2018).; Ali, L., B. Svensson, B.W. Alsanius, and M.E. Olsson. 2011. Late season harvest and storage of Rubus berries - Major antioxidant and sugar levels. Sci. Hortic. 129, 376-381. Doi:10.1016/j.scienta.2011.03.047; Ayala, L.C., C.P. Valenzuela, and Y. Bohórquez. 2013. Caracterización fisicoquímica de mora de castilla (Rubus glaucus benth) en seis estados de madurez. Biotecnol. Sector Agropec. Agroind. 11(2), 10-18.; Brock, K. 2017. Use of molecular markers in the berry fruit Industry. Hort innovation. Nuffield Australia Project N° 14117. URL: http://nuffieldinternational.org/live/Report/AU/2014/karen-brock (accessed January 2018).; Carvalho, C. and J. Betancur. 2015. Quality characterization of Andean blackberry fruits (Rubus glaucus Benth.) in different maturity stages in Antioquia, Colombia. Agron. Colomb. 33(1), 74-83. Doi:10.15446/agron.colomb.v33n1.47132; Clark, J.R. and C.E. Finn. 2008. New trends in blackberry breeding. Acta Hortic. 777, 41-47. Doi:10.17660/ActaHortic.2008.777.2; Clark, J.R. and C.E. Finn. 2011. Blackberry breeding and genetics. Fruit Veg. Cereal Sci. Biotech. 5(special Issue 1), 27-43.; Clark, J.R., M. Worthington, and T. Ernst. 2019. ‘Caddo’ Thornless Blackberry. HortSci. 54(9), 1632-1636. Doi:10.21273/HORTSCI14119-19; Conway, M.A. 2018. Supplemental foliar nutrients effects on fruit quality and yield of two new Primocane blackberry cultivars. MSc. thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.; Espín, J.C., R. González-Barrio, B. Cerda, C. López-Bote, A. Rey, and F. Tomás-Barberán. 2007. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of Ellagitannins in humans. J. Agric. Food Chem. 55, 10476-10485. Doi:10.1021/jf0723864; Espinosa, N., D. Sánchez, A. García, M. Ariza, C. Ariza, and L. Barrero. 2009. Evaluación agronómica, nutricional y selección participativa de materiales de mora en Silvania (Cundinamarca). pp. 34-42. In: Barrero, L.S. (ed.). Caracterización, evaluación y producción de material limpio de mora con alto valor agregado. Corpoica, Ministerio de Agricultura y Desarrollo Rural, Mosquera, Colombia.; Farinango, M. 2010. Estudio de la fisiología postcosecha de la mora de castilla (Rubus glaucus Benth) y mora variedad brazos (Rubus sp). Undergraduate thesis. Escuela Politécnica Nacional, Quito.; García, M.C. and B.H. García, 2001. Harvest and post-harvest management of Blackberry, Solanum quitoense and Tree tomato. Produmedios, Bogota.; García, M.C. and F. Vaillant. 2014. Metabolic fate of Ellagitannin: implications for health, and research perspectives for innovative functional foods. Crit. Rev. Food Sci. Nutr. 54(12), 1584-1598. Doi:10.1080/10408398.2011.644643; García, M.C., L. Hernández, A. Pérez, and F. Vaillant. 2014. Diversity of urinary excretion patterns of main ellagitannins’ colonic metabolites after ingestion of tropical highland blackberry (Rubus adenotrichus) juice. Food Res. Int. 55, 161-169. Doi:10.1016/j.foodres.2013.10.049; Grijalba, C.M., L.A. Calderón, and M.M. Pérez. 2010. Rendimiento y calidad de la fruta en mora de Castilla (Rubus glaucus Benth), con y sin espinas, cultivada en campo abierto en Cajicá (Cundinamarca, Colombia). Rev. Fac. Cienc. Bas. 6, 24-41.; Hassimotto, N., R. Mota, B. Cordenunsi, and F. Lalolo. 2008. Physico-chemical characterization and bioactive compounds of blackberry fruits (Rubus sp.) grown in Brazil. Ciênc. Tecnol. Aliment. 28(3), 702-708. Doi:10.1590/S0101-20612008000300029; Icontec. 1997. Frutas frescas. Mora de Castilla, especificaciones - NTC 4106. Norma Técnica Colombiana. Icontec, Bogota.; Joo, M., N. Lewandowski, R. Auras, J. Harte, and E. Almenar. 2011. Comparative shelf life study of blackberry fruit in bio-based and petroleum-based containers under retail storage conditions. Food Chem. 126, 1734-1740. Doi:10.1016/j.foodchem.2010.12.071; Lewers, K.S., S.Y. Wang, and B.T. Vinyard. 2010. Evaluation of blackberry cultivars and breeding selections for fruit quality traits and flowering and fruiting dates. Crop Sci. 50, 2475-2491. Doi:10.2135/cropsci2010.02.0097; Marulanda, M.L., A.M. López, J. Arias, and J.M. López. 2011. Biodiversidad y biotecnología en la evaluación y selección de cultivares promisorios de mora de castilla. Universidad Tecnológica de Pereira, Pereira, Colombia.; McGuire, R. 1992. Reporting of objective color measurements. HortSci. 27(12), 1254-1255.; Morales, A.L., D. Albarracín, J. Rodríguez, C. Duque, L.E. Riaño, and J. Espitia. 1996. Volatile constituents from Andes berry (Rubus glaucus Benth). J. High Resolut. Chromatogr. 19, 585-587. Doi:10.1002/jhrc.1240191011; Moreno, B. and Y. Deaquiz. 2016. Physico-chemical characterization parameters in fruit blackberry (Rubus alpinus Macfad). Acta Agron. 65(2), 130-136. Doi:10.15446/acag.v65n2.45587; Perkins-Veazie, P., J. Clark, D. Huber, and E. Baldwin. 2000. Ripening physiology in ‘Navaho’ thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. J. Amer. Soc. Hort. Sci. 125(3), 357-363. Doi:10.21273/JASHS.125.3.357; Santos Guedes, M.N., C.M. Patto de Abreu, L.A. Castilho Maro, R. Pio, J.R. de Abreu, and J.O. de Oliveira. 2013. Chemical characterization and mineral levels in the fruits of blackberry cultivars grown in a tropical climate at an elevation. Acta Sci. Agron. 35, 191-196. Doi:10.4025/actasciagron.v35i2.16630; Seeram, N.P., L.S. Adams, Y.J. Zhang, R. Lee, D. Sand, H.S. Scheuller, and D. Heber. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agr. Food Chem. 54, 9329-9339. Doi:10.1021/jf061750g; Segantini, D., R. Threlfall, J. Clark, L. Howard, and C. Brownmiller. 2018. Physiochemical changes in Floricane and Primocane blackberries harvested from Primocane genotypes. Hortsci. 53(1), 9-15. Doi:10.21273/HORTSCI12554-17; Threlfall, R., O. Hines, J. Clark, L. Howard, C. Brownmiller, D. Segantini, and J. Lawless. 2016. Physiochemical and sensory attributes of fresh blackberries grown in the Southeastern United States. Hortsci. 51, 1351-1362. Doi:10.21273/HORTSCI10678-16; Vrhovsek, U., L. Giongo, F. Mattivi, and R. Viola. 2008. A survey of ellagitannin content in raspberry and blackberry cultivars grown in Trentino (Italy). Eur. Food Res. Technol. 226, 817-824. Doi:10.1007/s00217-007-0601-4; Zielinski, A.A., C. Goltz, M.A. Casagrande Yamato, S. Ávila, E. Yoko, G. Wosiacki, A. Nogueira, and I.M. Demiate. 2015. Blackberry (Rubus spp.): influence of ripening and processing on levels of phenolic compounds and antioxidant activity of the ‘Brazos’ and ‘Tupy’ varieties grown in Brazil. Cienc. Rural 45(4), 744-749. Doi:10.1590/0103-8478cr20120715; https://revistas.unal.edu.co/index.php/agrocol/article/view/80559

  9. 9
    Dissertation/ Thesis

    المساهمون: Mesa Montoya, Carlos Andrés

    وصف الملف: 105 páginas; application/pdf

    Relation: [1] N. O. and A. A. US Department of Commerce, “What’s the difference between a tide and a current?”.; [2] D. Khojasteh et al., “A large-scale review of wave and tidal energy research over the last 20 years”, Ocean Engineering, vol. 282. Elsevier Ltd, el 15 de agosto de 2023. doi:10.1016/j.oceaneng.2023.114995.; [3] G. E. Quintero Aguilar y J. G. Rueda Bayona, “Tidal Energy Potential in the Center Zone of the Colombian Pacific Coast”, INGE CUC, vol. 17, núm. 2, abr. 2021, doi:10.17981/ingecuc.17.2.2021.07.; [4] J. C. Correa, D. A. Fí orez, N. L. Posada, R. A. ul Valencia, y C. A. Zuluaga, “IMECE2010- 38546 MARINE ENERGY DEVICES FOR COLOMBIAN SEAS”, 2010. [En línea]. Disponible en: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/confer ences/imece2010/72217/; [5] Vikas Khare, Cheshta Khare, Savita Nema, y Prashant Baredar, Tidal Energy Systems_ Design, Optimization and Control, Elsevier., vol. 1. india: Katie Hammon, 2018. Consultado: el 22 de octubre de 2023. [En línea]. Disponible en: https://www.elsevier.com/books-and-journals; [6] M. Benbouzid, Desing, control and monitoring of tidal stream turbine system. 2023.; [7] A. F. Osorio et al., “Building a roadmap for the implementation of Marine Renewable Energy in Colombia”.; [8] M. Shadman et al., “A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives”, Sustainability (Switzerland), vol. 15, núm. 2. MDPI, el 1 de enero de 2023. doi:10.3390/su15021740.; [9] A. F. Osorio, S. Ortega, y S. Arango-Aramburo, “Assessment of the marine power potential in Colombia”, Renewable and Sustainable Energy Reviews, vol. 53. Elsevier Ltd, pp. 966–977, el 1 de enero de 2016. doi:10.1016/j.rser.2015.09.057.; [10] S. Song, W. Shi, Y. K. Demirel, y M. Atlar, “The effect of biofouling on the tidal turbine performance”, 2019. [En línea]. Disponible en: https://www.researchgate.net/publication/334327026; [11] B. Polagye, B. Van Cleve, A. Copping, y K. Kirkendall, Enviromental effects of tidal energy development, vol. 1. washington: 2011, 2010. Consultado: el 14 de noviembre de 2023. [En línea]. Disponible en: http://spo.nmfs.noaa.gov/tm/; [12] S. Junianto, W. N. Fadilah, A. F. Adila, Tuswan, D. Satrio, y S. Musabikha, “State of the Art in Floating Tidal Current Power Plant Using Multi-Vertical-Axis-Turbines”, en IES 2022 - 2022 International Electronics Symposium: Energy Development for Climate Change Solution and Clean Energy Transition, Proceeding, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 97–103. doi:10.1109/IES55876.2022.9888749.; [13] M. Benbouzid, “IET ENERGY ENGINEERING SERIES 201 Design, Control and Monitoring of Tidal Stream Turbine Systems”, Inglaterra, 2023.; [14] P. Brøndsted, R. P. L. Nijssen, y S. Goutianos, Advances in wind turbine blade design and materials.; [15] G. Li, G. Wu, L. Tan, y H. Fan, “A Review: Design and Optimization Approaches of the Darrieus Water Turbine”, Sustainability (Switzerland), vol. 15, núm. 14. Multidisciplinary Digital Publishing Institute (MDPI), el 1 de julio de 2023. doi:10.3390/su151411308.; [16] N. Rolffot et al., “COMPARACIÓN DE AEROGENERADORES DE EJE HORIZONTAL Y VERTICAL DE PEQUEÑA POTENCIA MEDIANTE ESTUDIO EXPERIMENTAL”, 2014.; [17] Z. qi Li, G. nian Li, L. Du, H. peng Guo, y W. xin Yuan, “Optimal design of horizontal axis tidal current turbine blade”, Ocean Engineering, vol. 271, mar. 2023, doi:10.1016/j.oceaneng.2023.113666.; [18] K. Sun, Y. Yi, J. Zhang, J. Zhang, S. S. Haider Zaidi, y S. Sun, “Influence of blade numbers on start-up performance of vertical axis tidal current turbines”, Ocean Engineering, vol. 243, ene. 2022, doi:10.1016/j.oceaneng.2021.110314.; [19] A. Bianchini, G. Ferrara, y L. Ferrari, “Design guidelines for H-Darrieus wind turbines: Optimization of the annual energy yield”, Energy Convers Manag, vol. 89, pp. 690–707, ene. 2015, doi:10.1016/j.enconman.2014.10.038.; [20] J. M. Schoenung y E. A. Olivetti, “Sustainable development of materials: Broadening stakeholder engagement”, MRS Bull, vol. 48, núm. 4, pp. 362–367, abr. 2023, doi:10.1557/s43577-023-00521-8.; [21] P. Koltun, “Materials and sustainable development”.; [22] A. E. Bonilla Hernandez, “On how the selection of materials affects sustainability”, en Procedia Manufacturing, Elsevier B.V., 2019, pp. 625–631. doi:10.1016/j.promfg.2019.04.078.; [23] L. Y. Ljungberg, “Materials selection and design for development of sustainable products”, Mater Des, vol. 28, núm. 2, pp. 466–479, 2007, doi:10.1016/j.matdes.2005.09.006.; [24] S. Kappenthuler y S. Seeger, “Holistic evaluation of the suitability of metal alloys for sustainable marine construction from a technical, economic and availability perspective”, Ocean Engineering, vol. 219, ene. 2021, doi:10.1016/j.oceaneng.2020.108378.; [25] United State Envariomental protection agency, “Sustainable Materials Management Basics %7C”. Consultado: el 23 de noviembre de 2023. [En línea]. Disponible en: https://www.epa.gov/smm/sustainable-materials-management-basics; [26] S. R. J. Walker y P. R. Thies, “A life cycle assessment comparison of materials for a tidal stream turbine blade”, Appl Energy, vol. 309, mar. 2022, doi:10.1016/j.apenergy.2021.118353.; [27] M. Nachtane, M. Tarfaoui, D. Saifaoui, A. El Moumen, O. H. Hassoon, y H. Benyahia, “Evaluation of durability of composite materials applied to renewable marine energy: Case of ducted tidal turbine”, Energy Reports, vol. 4, pp. 31–40, nov. 2018, doi:10.1016/j.egyr.2018.01.002.; [28] “Estándares GRI Consolidados”, 2023.; [29] M. F. Ashby, Materials selection in mechanical design. Butterworth-Heinemann, 2011.; [30] S. C. Dexter, HANDBOOK OF OCEANOGRAPHIC ENGINEERING, 1a ed., vol. 1. Massachusetts, 1972.; [31] M. R. A. Wijaya, R. Adiputra, A. R. Prabowo, T. Putranto, y D. F. Smaradhana, “Characterization of the applied materials for floating offshore wind turbine members: A review on the current state”, en Procedia Structural Integrity, Elsevier B.V., 2023, pp. 41–49. doi:10.1016/j.prostr.2023.07.108.; [32] S. M. Elsouk N y S. A. Cruz, “Review on the characterization and selection of the advanced materials for tidal turbine blades”.; [33] S. Musabikha, H. Pratikno, I. K. A. P. Utama, y Mukhtasor, “Material Selection for Vertical Axis Tidal Current Turbine using Multiple Attribute Decision Making (MADM)”, IOP Conf Ser Mater Sci Eng, vol. 1158, núm. 1, p. 012001, jun. 2021, doi:10.1088/1757-899x/1158/1/012001.; [34] S. M. Elsouk N y S. A. Cruz, “Review on the characterization and selection of the advanced materials for tidal turbine blades”.; [35] M. González-Montijo, P. Murdy, C. Candon, R. Beach, C. Nichols, y P. Barden, “Additive Manufacturing for Powering the Blue Economy Applications: A Tidal Turbine Blade Case Study: Preprint”, 2023. [En línea]. Disponible en: www.nrel.gov/publications.; [36] B. Rossi, “Discussion on the use of stainless steel in constructions in view of sustainability”, Thin-Walled Structures, vol. 83, pp. 182–189, 2014, doi:10.1016/j.tws.2014.01.021.; [37] A. Rashedi, T. Khanam, B. Jeong, y M. Hussain, “Evaluation of environmental sustainability matrix of Deepgen tidal turbine”, Ocean Engineering, vol. 266, dic. 2022, doi:10.1016/j.oceaneng.2022.113031.; [38] M. F. Ashby, “Eco-data”, en Materials and the Environment, Elsevier, 2021, pp. 107–147. doi:10.1016/b978-0-12-821521-0.00006-2.; [39] Ansys, “Introduction to CFD Methodology”, 2010.; [40] MR CF, “Introdution to CFD”. Consultado: el 2 de diciembre de 2023. [En línea]. Disponible en: https://www.mr-cfd.com/category/cfd/; [41] Planas Oriol, “Las aristas en en geometría”, Solar Energy. Consultado: el 2 de diciembre de 2023. [En línea]. Disponible en: https://solar-energia.net/geometria/conceptos-basicos/aristas?locale=es; [42] Nick Connor, “Qué es el volumen de control – Análisis de volumen de control”, Thermal Engineering. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://www.thermal-engineering.org/es/que-es-el-volumen-de-control-analisis-de-volumen-de-control-definicion/?locale=es; [43] “The Importance of Meshing in CFD and Structural FEA %7C System Analysis Blog %7C Cadence”. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://resources.system-analysis.cadence.com/blog/msa2022-the-importance-of-meshing-in-cfd-and-structural-fea?locale=es; [44] “Customer Training Material”, 2010.; [45] Ansys, “Module 08: Turbulence ANSYS Fluent Getting Started-Part 2”, 2023.; [46] “ANSYS FLUENT 12.0 Theory Guide - 4.1 Introduction”. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node43.htm; [47] S. Thabet y T. H. Thabit, “CFD Simulation of the Air Flow around a Car Model (Ahmed Body)”, International Journal of Scientific and Research Publications (IJSRP), vol. 8, núm. 7, jul. 2018, doi:10.29322/ijsrp.8.7.2018.p7979.; [48] D. H. J. Willemsen, “CFD-based aerodynamic optimisation of a 2D race car diffuser”.; [49] E. F. Barrera, F. A. Aguirre, S. Vargas, y E. D. Martínez, “Influence of y plus on the value of the wall shear stress and the total drag coefficient through computational fluid dynamics simulations”, Informacion Tecnologica, vol. 29, núm. 4, pp. 291–303, ago. 2018, doi:10.4067/s0718-07642018000400291.; [50] “ANSYS FLUENT 12.0 Tutorial Guide - Step 8: Solution: Transient Flow and Heat Transfer”. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://www.afs.enea.it/project/neptunius/docs/fluent/html/tg/node369.htm?locale=es; [51] “CFD Online”. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://www.cfd-online.com/?locale=es; [52] “Guía completa de análisis de elementos finitos con Ansys”. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://duinto.com/guia-completa-de-analisis-de-elementos-finitos-con-ansys/?locale=es; [53] R. A. Serway, J. W. Jewett, y R. A. Serway, Physics for Scientists and Engineers, 6.a. Brooks/Cole, 2004. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://archive.org/details/physicssciengv2p00serw; [54] “Mecanica_de_Materiales_5ta_Ed_Beer_Johns”.; [55] L. Vanegas Useche, “Unidad 1 Teorías de falla estática Contenido”, Pereira, 2021. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://classroom.google.com/w/MzE5Nzg1NzQ1ODkx/t/all; [56] L. Vanegas Useche, “Teorías de falla por fatiga”, Pereira, 2021. Consultado: el 3 de diciembre de 2023. [En línea]. Disponible en: https://drive.google.com/file/d/1S9bxThezyx8uLC2sSvdQx4LpP2Jw-vQF/view; https://hdl.handle.net/11059/15438; Universidad Tecnológica de Pereira; Repositorio Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home

  10. 10
    Academic Journal

    المصدر: Agronomía Colombiana; Vol. 36 Núm. 3 (2018); 201-209 ; Agronomía Colombiana; Vol. 36 No. 3 (2018); 201-209 ; Agronomía Colombiana; v. 36 n. 3 (2018); 201-209 ; 2357-3732 ; 0120-9965

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/agrocol/article/view/73108/69732; Amiri, S., S. Kazemitabaar, G. Ranjbar, and M. Azadbakht. 2010. The effect of trifluralin and colchicine treatments on morphological characteristics of Jimsonweed (Datura stramonium L.). Trakia J. Sci. 8, 47-61.; Ari, E., T. Yildirim, N. Mutlu, S. Buyukalaca, U. Gokmen, and E. Akman. 2016. Comparison of different androgenesis protocols for doubled haploid plant production in ornamental pepper (Capsicum annuum L.). Turk. J. Biol. 40, 944-954. Doi:10.3906/biy-1509-36; Baez, P., M. Riveros, and C. Lehnebach. 2002. Viability and longevity of pollen of Nothofagus species in south Chile. New Zeal. J. Bot. 40, 671-678. Doi:10.1080/0028825X.2002.9512822; Burun, B. and U. Emiroğlu. 2008. A comparative study on colchicine application methods in obtaining doubled haploids of tobacco (Nicotiana tabacum L.). Turk. J. Biol. 32, 105-111.; Chauvin, J., C. Souchet, J. Dantec, and D. Ellisseche. 2003. Chromosome doubling of 2x Solanum species by oryzalin: Method development and comparison with spontaneous chromosome doubling in vitro. Plant Cell Tissue Organ Cult. 73, 65-73. Doi:10.1023/A:1022663816052; Cheniclet, C., W.Y. Rong, M. Causse, N. Frangne, L. Bolling, J.P. Carde, and J.P. Renaudin. 2005. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol. 139, 1984-1994. Doi:10.1104/pp.105.068767; Delgado-Paredes, G., C. Rojas-Idrogo, J. Chaname-Cespedes, E. Floh, and W. Handro. 2017. Development and agronomic evaluation of in vitro somaclonal variation in sweet potato plants from direct organogenesis in roots. Asian J. Agric. Res. 7, 39-48.; Diaz, D., D. Gonzalez, L. Rache, and J. Pacheco. 2008. Efecto citogenetico de la colchicina sobre yemas vegetativas de Physalis peruviana L. Prospect. Cientif. 4, 27-40.; Edwald, D., K. Ulrich, G. Naujoks, and M. Schroder. 2009. Induction of tetraploid poplar and black locust plants using colchicine: Chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tissue Organ Cult. 99, 353-357. Doi:10.1007/s11240-009-9601-3; Franco, C.V. 2012. Efecto de la colchicina sobre el numero cromosomico, numero de cloroplastos y caracteristicas morfológicas del fruto en ecotipos de uchuva (Physalis peruviana L.) Colombia, Kenia y Peru. Trabajo de grado. Universidad Francisco de Paula Santander. San Jose de Cucuta, Colombia.; Grisales, N., O. Trillos, J. Cotes, and L. Orozco. 2010. Estudios de fertilidad de polen en accesiones de uchuva (Physalis peruviana L.). Rev. Fac. Ciencias Basicas 6, 42-51.; Kermani, M.J., V. Sarasan, A.V. Roberts, K. Yokoya, J. Wentworth, and V.K. Sieber. 2003. Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor. Appl. Genet. 107, 1195-1200. Doi:10.1007/s00122-003-1374-1; Koornneef, M., J.A.M. Van Diepen, C.J. Hanhart, A.C.K. Waart, and L. Martinelli, 1989. Chromosomal instability in cell- and tissue cultures of tomato haploids and diploids. Euphytica 43, 179-186. Doi:10.1007/BF00037911; Liberato, S., E. Sanchez-Betancourt, J. Arguelles, C. Gonzalez, V. Nunez, and L.S. Barrero. 2015. Cytogenetics of Physalis peruviana L., and Physalis floridana Rydb. genotypes with differential response to Fusarium oxysporum. Corpoica Cienc. Tecnol. Agropecu. 15, 51-61. Doi:10.21930/rcta.vol15_num1_art:396; Ligarreto, G., M. Lobo, and A. Correa. 2005. Recursos geneticos del genero Physalis en Colombia. pp. 329-338. In: Fischer G., D.; Miranda, W. Piedrahita, and J. Romero (eds.). Avances en cultivo, poscosecha y exportacion de la uchuva Physalis peruviana L. en Colombia. Universidad Nacional de Colombia, Bogota.; Murashige, T. and R. Nakano. 1966. Tissue culture as a potential tool in obtaining polyploid plants. J. Hered. 57, 115. Doi:10.1093/oxfordjournals.jhered.a107486; Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi:10.1111/j.1399-3054.1962.tb08052.x; Murovec, J. and B. Bohanec. 2012. Haploids and doubled haploids in plant breeding. pp. 87-106. In: Abdurakhmonov, I. (ed.). Plant Breeding. IntechOpen, Rijeka, Croatia, Doi:10.5772/29982; Nattaporn, K. and T. Sompong. 2012. Effects of Colchicine on survival rate, morphological, physiological and cytological characters of Chang Daeng orchid (Rhynchostylis gigantean var. rubrum Sagarik) In Vitro. J. Agric. Technol. 8, 1451-1460.; Novakova, L., K. Kovacovicova, and T.Q. Dang-Nguyen. 2016. A Balance between nuclear and cytoplasmic volumes controls spindle length. PLoS One 1-11. Doi:10.1371/journal.pone.0149535; Ojiewo, C., S. Agong, K. Murakami, and M. Masuda. 2006. Chromosome duplication and ploidy level determination in African nightshade Solanum villosum Miller. J. Hortic. Sci. Biotechnol. 81, 183 188. Doi:10.1080/14620316.2006.11512048; Olmstead, R.G. 2013. Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: A comparison of continental and intercontinental diversification patterns. Bot. J. 80-102. Doi:10.1111/j.1095-8339.2012.01306.x; Patino, D., E. Garcia, E. Barrera, O. Quejada, H.D. Rodriguez, and I. Arroyave. 2014. Manual tecnico uchuva bajo buenas practicas agricolas. SENA, Medellin, Colombia.; Qin, X. and L. Rotino. 1995. Chloroplast number in guard cells as ploidy indicator of in vitro-grown androgenic pepper BF00051583; Rodriguez, N. and M. Bueno. 2006. Study of the cytogenetic diversity of Physalis peruviana L. (Solanaceae). Acta Biol. Colomb. 11, 75-85.; Sanchez, E. 2014. Nivel de ploidia de plantas de uchuva provenientes de cultivo de anteras. MSc thesis. Universidad Nacional de Colombia. Bogota.; Sari, N., K. Abak, and M. Pitrat. 1999. Comparison of ploidy level screening methods in watermelon: Citrullus lanatus (Thunb.) Matsum. and Nakai. Sci. Hortic. 82, 265-277. Doi:10.1016/S0304-4238(99)00077-1; Segui-Simarro, J.M. and F. Nuez. 2008. Pathways to doubled haploidy: Chromosome doubling during androgenesis. Cytogenet. Genome Res. 120, 358-369. Doi:10.1159/000121085; Shao, J., C. Chen, and X. Deng. 2003. In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tissue Organ Cult. 75, 241-246. Doi:10.1023/A:1025871810813; Smykalova, I., M. Větrovcova, M. Klima, I. Machačkova, and M. Griga. 2006. Efficiency of microspore culture for doubled haploid production in the breeding project “Czech Winter Rape.” Czech J. Genet. Plant Breed. 42, 58-71. Doi:10.17221/3655-CJGPB; Suescun, L., E. Sanchez, M. Gomez, F.L. Garcia-Arias, and V.M. Nunez Zarantes. 2011. Produccion de plantas genéticamente puras de Uchuva. Editorial Kimpres Ltda., Bogota.; Weber, S., F. Unker, and W. Friedt. 2005. Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breed. 124, 511-513. Doi:10.1111/j.1439-0523.2005.01114.x; Wenzel, W. 1973. A cytological study of colchiploid cape gooseberry (Physalis peruviana L.). Agroplantae 5, 79-84.; Wu, S., J.Y. Tsai, S.P. Chang, D.L. Lin, S.S. Wang, S.N. Huang, and L.T. Ng. (2006). Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana. J. Ethnopharmacol. 108, 407-413. Doi:10.1016/j.jep.2006.05.027; Zamani, I., E. Gouli-Vavdinoudi, G. Kovacs, I. Xynias, D. Roupakias, and B. Barnabas. 2003. Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids. Plant Breed. 122, 314-317. Doi:10.1046/j.1439-0523.2003.00866.x; https://revistas.unal.edu.co/index.php/agrocol/article/view/73108

  11. 11
    Academic Journal

    Alternate Title: Interacción genotipo por ambiente y selección de genotipos superiores de Physalis peruviana L. (Spanish)

    المصدر: Revista Colombiana de Ciencias Hortícolas; Sep-Dec2023, Vol. 17 Issue 3, p1-12, 12p

    مصطلحات جغرافية: COLOMBIA

  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المصدر: Temas agrarios, ISSN 0122-7610, Vol. 27, Nº. 1, 2022 (Ejemplar dedicado a: Continuous publication - Volume 27(1) of 2022), pags. 231-244

    وصف الملف: application/pdf

    Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9422240; (Revista) ISSN 0122-7610

  14. 14
    Academic Journal
  15. 15
    Electronic Resource
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20