يعرض 1 - 20 نتائج من 114 نتيجة بحث عن '"Becerra-Moreno, Dorance"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    Academic Journal

    وصف الملف: application/pdf

    Relation: LaReferencia; (Ene.-Jun., 2024) e2253; 27; Revista U.D.C.A Actualidad & Divulgación Científica; Becerra-Moreno, D., Soto-Verjel, J., Soto-Vergel, Ángelo, Machuca-Martínez, F., & Ramírez-Ríos, L. (2024). Modelo estadístico de la descontaminación de aguas residuales que contienen Carbendazim mediante foto-Fenton. Revista U.D.C.A Actualidad & Divulgación Científica, 27(1). https://doi.org/10.31910/rudca.v27.n1.2024.2253; https://repository.udca.edu.co/handle/11158/5714; https://doi.org/10.31910/rudca.v27.n1.2024.2253; Universidad de Ciencias Aplicadas y Ambientales; UDCA; https://repository.udca.edu.co/

  2. 2
    Book
  3. 3
    Academic Journal

    وصف الملف: 17 Páginas; application/pdf

    Relation: Ingeniería y Competitividad, 2023 vol 25(4) e-30211626 / Sept-dic; Vol.25 No.4 (2023); 17; 4 (2023); 25; D. Becerra Moreno, Y. M. Rubio-Gomez, A. F. Barajas-Solano, L. F. Ramírez Ríos, y F. Machuca-Martínez, «Una revisión sobre el tratamiento para lixiviados de rellenos sanitarios mediante el acople de procesos avanzados de oxidación y biológicos», inycomp, vol. 25, n.º Suplemento, p. e–30211626, sep. 2023.; https://repositorio.ufps.edu.co/handle/ufps/6951

  4. 4
    Academic Journal

    مصطلحات موضوعية: disposition, education, habit, problem-solving

    وصف الملف: 10 Páginas; application/pdf

    Relation: HUNAN DAXUE XUEBAO JOURNAL OF HUNAN UNIVERSITY NATURAL SCIENCES ISSN: 1674-2974, 2023 vol:50 fasc: 7 págs: 189 - 198, DOI:10.55463/issn.1674-2974.50.7.18; Vol.50 No.7 (2023); 10; 7 (2023); 50; https://repositorio.ufps.edu.co/handle/ufps/6954

  5. 5
    Academic Journal

    وصف الملف: 10 Páginas; application/pdf

    Relation: D. Becerra Moreno, F. Machuca-Martínez, A. Maturana, S. E. Villamizar Mosquera, J. W. Soto Verjel, and Ángelo J. Soto Vergel, “Leachate Treatment via TiO2/UV Heterogeneous Photocatalysis: A Multiple Polynomial Regression Model”, Ing. Inv., vol. 43, no. 3, p. e101497, Aug. 2023.; Vol.43 N° 3. (2023); 10; 3 (2023); 43; https://repositorio.ufps.edu.co/handle/ufps/6746; https://doi.org/10.15446/ing.investig.101497

  6. 6
    Academic Journal
  7. 7
    Book
  8. 8
    Academic Journal

    وصف الملف: 11 Páginas; application/pdf

    Relation: Water 2022, 14, 558. https://doi.org/10.3390/w14040558; Vol.14 No.558 (2022); 11; 558 (2022); 14; Castellanos-Estupiñan, M.A.; Carrillo-Botello, A.M.; Rozo-Granados, L.S.; Becerra-Moreno, D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; LópezBarrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water 2022, 14, 558. https://doi.org/ 10.3390/w14040558; https://repositorio.ufps.edu.co/handle/ufps/6968

  9. 9
    Academic Journal

    وصف الملف: 13 Páginas; application/pdf

    Relation: Ingeniería Y Competitividad ISSN: 2027-8284, 2022 vol:24 fasc: 2 págs: 1 - 13, DOI:10.25100/iyc.v24i2.11264; Vol.24 No.2 (2022); 13; 2 (2022); 24; RamírezLF,BecerraD,MoraCH.HuellahídricaverdeyazuldelaproduccióndecañadeazúcarorgánicaenlazonacentrodelValledelCauca.INGENIERÍAYCOMPETITIVIDAD,2022;e20411264.https://doi.org/10.25100/iyc.v24i2.11264EstetrabajoestálicenciadobajounaLicenciaInternacionalCreativeCommons Reconocimiento–NoComercial–CompartirIgual4.0Vol. 24No.2-2022–DOI; https://repositorio.ufps.edu.co/handle/ufps/6962

  10. 10
    Academic Journal

    المصدر: Revista Ing-Nova; Vol. 1 No. 2 (2022); 215-226 ; Revista Ing-Nova; Vol. 1 Núm. 2 (2022); 215-226 ; 2805-9182 ; 10.32997/rin-2022

    وصف الملف: application/pdf

    Relation: https://revistas.unicartagena.edu.co/index.php/ing-nova/article/view/4006/3233; A. Bdour, M. Hamdi and Z. Tarawneh, "Perspectives on sustainable wastewater treatment technologies and reuse options in the urban areas of the Mediterranean region". Desalination, núm. 237, pp. 162-17, 2009.; E. Foresti, "Anaerobic treatment of domestic sewage: stablished technologies and perspectives", Water Science and Technology, vol. 45, núm. 10, pp. 181-186, 2002.; A. Van haandel, M. Kato, P. Cavalcanti and L. Florencio, "Anaerobic reactor design concepts for the treatment of domestic wastewater", Reviews in Environmental Science and Bio/Technology, vol. 5, pp. 21-38, 2006.; A. Álvarez-Contreras, J.H. Suárez-Gélvez, "Tratamientos Biológicos de Lixiviados en Rellenos Sanitarios", Revista respuestas. Año 11, No.1, julio 2006.; M. Bakraoui, F. Karouach, B. Ouhammou, H. El Bari, "Biogas production from recycled paper mill wastewater by UASB digester: Optimal and mesophilic conditions", Biotechnology Reports. dec, 2019.; J.Y. Jeong, S.M. Son, J.H. Pyon, J.Y. Park, "Adsorption of remazol blue RR from textile effluents using Azadirachta indica leaf powder as an alternative adsorbent", Adsorption Science & Technology, 2014. [7] R.I. Méndez-Novelo, E. Cachón-Sandoval, M. R. Saurí-Riancho, E.R. Castillo-Borges, "Influencia del material de cubierta en la composición de los lixiviados de un relleno sanitario", 2002.; A.G. Martinez-Lopez, "Alternativas actuales del manejo de lixiviados", Avances en Química. 9(1), 37-47. 2014.; P. Torres-Lozada, "Impacto de la incorporación de lixiviados en el arranque de reactores anaerobios al tratar aguas residuales domésticas", Ing. Univ. [online], vol.14, n.2, pp.313-326. 2010, Available from: . ISSN 0123-2126.; S. Renou, J. Givaudan, S. Poulain, F. Dirassouyan y P. Moulin, "Landfill leachate treatment: review and opportunity". Journal of Hazardous Materials, núm. 150, pp. 468-493, 2008.; X. Wang, S. Chen, X. Gu, y K. Wang, "Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter", Waste Management, 29(4):1354-8, April 2009.; Canadian Council of Ministers of the Environment (CCME), "Review of the state knowledge of municipal effluent science and research. Review of existing and emerging technologies-review of wastewater treatment best management practices", January 2006.; J. Berrueta y L. Castrillón. "Efecto del N-NH4+ sobre el tratamiento anaerobio de lixiviados de vertederos", Ingeniería Química, núm. 336, pp. 121-125, 1997.; G. D. Jojoa-Unigarro, H.L. Rodríguez-Zambrano, S. Cardona-Gallo, Rev.EIA. "Caracterización y modelación del comportamiento hidráulico de un reactor uasb", V.22, dec, 2014.; S. Idrus. "Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters", 2012.; A. Pellón. "Tecnología para el tratamiento de lixiviados provenientes de vertederos de residuos sólidos urbanos", 2009.; I. Rodríguez-Pimentel, R. I., & Suyén, "Methane production as from the mixture of the urban solid waste lixiviate and municipal wastewater". Rev. Cubana Quím, 27(3), 2224–5421. 2015. http://ojs.uo.edu.cu/index.php/cq; P. Sertorio, "Operation of trickling filters post-UASB reactors without the secondary sedimentation stage", 2016.; J. D. Muñoz, "Comparative performance of upflow anaerobic sludge blanket reactor and anaerobic membrane bioreactor treating phenolic wastewater: Overcoming", 2019.; P. Torres-Lozada, “Impact of leachate incorporation on an anaerobic reactor startup in domestic sewage treatment”, IyU, vol. 14, no. 2, p. 313, Mar. 2011; A. MORAN, & J. NARVÁEZ, "Evaluación de un sistema anaerobio tipo UASB para el tratamiento de los Lixiviados", Universidad del Valle, 2002.; D. Araujo, S. Rocha, M. Cammarota, A. Xavier, A. & V. Cardoso, "Anaerobic treatment of wastewater from the household and personal products industry in a hybrid bioreactor". Brazilian Journal of Chemical Engineering, 2008, 25. 10.1590/S0104-66322008000300002.; J. Schultz, "Tratabilidade do lodo biológico têxtil e produção de biogás em reator UASB em diferentes temperaturas" 2016.; Y.A. Caldera, P.I. Madueño, A.G. Griborio, E.C. Gutiérrez y N.M. Fernández, "Efecto del tiempo de retención hidráulica en el funcionamiento de un reactor UASB tratando efluentes cárnicos", Multiciencias [en línea]. 3(1), 2003. [Fecha de consulta: 22 de noviembre de 2017]. Disponible en: http://www.redalyc.org/articulo.oa?id=90430105; J. Berruela, & L. Castrillon, "Efecto del N-NH4, sobre el tratamiento anaerobio de lixiviados de vertederos", Ingeniería Química, Nº 336, p. 121-125, junio, 1997.; C. Zavala, "Remoción anaerobia del colorante azul directo brl en Reactor Anaerobio de Flujo Ascendente UASB (Upflow Anaerobic Sludge Blanket) con carbón activado", 2016.; L. W. Rogério Moreira, "Digestão anaeróbia mesofílica de lodo adensado de estação de tratamento de esgoto". 142f. Dissertação (Mestrado), Programa de Pós-graduação em Engenharia, 2011.; D.H. Kim, W.T. Lim, M.K. Lee, M.S. Kim, "Effect of temperature on continuous fermentative lactic acid (LA) production andbacterial community, and development of LA-producing UASB reactor". Bioresource Technology, 2012.; B. Lew, I. Lustig, M. Beliavski, S. Tarre, M. Green, "An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates". Bioresource Technology, 2011.; R. Gebauer, B. Eikebrokk, "Mesophilic anaerobic treatment of sludge from salmon smolt hatching. Bioresource Technology", 2006.; B.L. McDermott, A.D. Chalmers, J.A. Goodwin, "Ultrasonication as a pre-treatment method for the enhancement of the psychrophilic anaerobic digestion of aquaculture effluents", Environmental Technology, 2001.; M. Halalsheh, "Effect of SRT and temperature on biological conversions and the related scum-forming potential". Water Research, 2005.; J. Solarte, "Evaluación de la digestión y co-digestión anaerobia de residuos de comida y de poda en biorreactores a escala laboratorio" 2017.; F. Hamerski. "Partida de um reator anaeróbio de fluxo ascendente com manta de lodo (UASB) no tratamento de efluentes provenientes de uma indústria de laticínios". Processos, Universidade Federal de Santa Maria, Santa Maria. 2012.; N. Mirzoyan, S. Parnes, A. Singer, Y. Tal, K. Sowers, A. Gross, "Quality of brackish aquaculture sludge and its suitability", 2008.; P. Torres, "Perspectivas del tratamiento anaerobio de aguas residuales domésticas en países en desarrollo", Revista EIA, 9(8), pp. 115-129, 2012.; J. Pérez, G. Aldana, M. Useche, N. Rincón, N. Bracho, y J. Mesa, J, "Evaluación del modelo de dispersión axial de un reactor anaerobio de flujo ascendente (RAFA) a escala de laboratorio". Revista Técnica de la Facultad de Ingeniería, Universidad del Zulia, 33(3), pp.213-223, 2010.; N. Rincón, I Cabrera, N. Fernández, E. Chacín y A. Díaz, "Tratamiento anaerobio de proteína mediante un reactor UASB". Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 23(2), pp. 141-149, 2000.; A.I. Cervantes-Zepeda, M.R. Cruz-Colín, R. Aguilar-Corona, P. Castilla-Hernández, y M. Meraz-Rodríguez, "Caracterización fisicoquímica y microbiológica del agua tratada en un reactor UASB escala piloto". Revista Mexicana de Ingeniería Química, 10(1), pp. 67- 77, 2010.; F. Morgan-Sagastume, J.M. Morgan-Sagastume, y A. Noyola-Robles, "Aplicabilidad de la digestión anaerobia para el tratamiento de aguas residuales municipales", en Congreso Interamericano de Ingeniería Sanitaria y Ambiental (AIDIS), pp. 1-8, 1996.; N. Mirzoyan, & A. Gross, "Use of UASB reactors for brackish aquaculture sludge digestion under different conditions". Water research, 47(8), 2843-2850. 2013.; P. Anggy, "Propuesta de parámetros de diseño de un reactor UASB para el tratamiento de aguas residuales porcinas", 2018.; R. Méndez, "Evaluación de un reactor UASB para aguas porcinas inoculado con líquido ruminal" 2013.; N.N. Valentine, M. Marika, "Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate, Bioresour". Technol. 128, 2013.; N. Jeong-Geol, L. Mo-Kwon, Y. Yeo-Myeong, M. Chungman, K. Mi-Sun, K. Dong-Hoon, "Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing", Biochem. Eng. J. 2016.; C. Chen, J. Liang, B.A. Yoza, Q.X. Li, Y. Zhan, Q. Wang, "Evaluation of an up-flowanaerobic sludge bed (UASB) reactor containing diatomite and maifanite for the improved treatment of petroleum wastewater", Bioresour. Technol. 2017.; L. Heng, H. Kezeng, L. Zhipeng, Z. Jinfeng, L. Hua, H. Yaohua, S. Liang, L. Qingbiao, W. Yuanpeng, "Performance, granule conductivity and microbial community analysis of upflow anaerobic sludge blanket (UASB) reactors from mesophilic to thermophilic operation", Biochem. Eng. J. 2018.; Anaerobic treatment of methanol condensate from pulp mill compared with anaerobic treatment of methanol using mesophilic UASB reactors, Bioresour. Technol. 125 (M. Badshah, W. Parawira, B. Mattiasson, 2012).; L.S. Rodrigues, I.J. Silva, M.C.O. Zocrato, D.N. Papa, M. Von Sperling, P.R. Oliveira, "Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent". Bioresource, 2010.; B. Zhang, L.L. Zhang, S.C. Zhang, H.Z. Shi; W.M. Cai, “The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion”, Environmental Technology, 26, 329-339, 2004.; O. Stabnikova, L. Xue-Yan, W. Jing-Yuan, “Anaerobic digestion of food waste in a hybrid anaerobic solid-liquid system with leachate recirculation in an acidogenic reactor”, Biochem. Eng. J., 41(2), 198-201. 2008.; T. Tervahauta. "Improved Energy Recovery by Anaerobic Grey Water SludgeTreatment with Black Water", 2014.; https://revistas.unicartagena.edu.co/index.php/ing-nova/article/view/4006

  11. 11
    Academic Journal

    المصدر: Revista Ing-Nova; Vol. 1 No. 2 (2022); 205-214 ; Revista Ing-Nova; Vol. 1 Núm. 2 (2022); 205-214 ; 2805-9182 ; 10.32997/rin-2022

    وصف الملف: application/pdf

    Relation: https://revistas.unicartagena.edu.co/index.php/ing-nova/article/view/4005/3232; P. Asaithambi, R. Govindarajan, M. B. Yesuf, and E. Alemayehu, “Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes,” Sep. Purif. Technol., vol. 233, no. August 2019, p. 115935, 2020, doi:10.1016/j.seppur.2019.115935.; C. Qi, J. Huang, B. Wang, S. Deng, Y. Wang, and G. Yu, “Contaminants of emerging concern in landfill leachate in China: A review,” Emerg. Contam., vol. 4, no. 1, pp. 1–10, 2018, doi:10.1016/j.emcon.2018.06.001.; M. S. Mahtab, D. T. Islam, and I. H. Farooqi, “Optimization of the process variables for landfill leachate treatment using Fenton based advanced oxidation technique,” Eng. Sci. Technol. an Int. J., vol. 24, no. 2, pp. 428–435, 2021, doi:10.1016/j.jestch.2020.08.013.; S. S. Abu Amr, A. F. M. Alkarkhi, T. M. Alslaibi, and M. S. S. Abujazar, “Performance of combined persulfate/aluminum sulfate for landfill leachate treatment,” Data Br., vol. 19, pp. 951–958, 2018, doi:10.1016/j.dib.2018.05.111.; O. I. Popoola and O. A. Adenuga, “Determination of leachate curtailment capacity of selected dumpsites in Ogun State southwestern Nigeria using integrated geophysical methods,” Sci. African, vol. 6, 2019, doi:10.1016/j.sciaf.2019.e00208.; J. Antony, S. V. Niveditha, R. Gandhimathi, S. T. Ramesh, and P. V. Nidheesh, “Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process,” Waste Manag., vol. 106, pp. 1–11, 2020, doi:10.1016/j.wasman.2020.03.005.; S. Feng, S. Hou, X. Huang, Z. Fang, Y. Tong, and H. Yang, “Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge,” Electron. J. Biotechnol., vol. 39, pp. 98–106, 2019, doi:10.1016/j.ejbt.2019.04.001.; E. Can-güven, S. Y. Guvenc, and G. Varank, “Journal of Water Process Engineering Sequential coagulation and heat activated persulfate-peroxide binary oxidation process for landfill leachate treatment,” J. Water Process Eng., vol. 42, no. July, p. 102202, 2021, doi:10.1016/j.jwpe.2021.102202.; J. Tejera et al., “Treatment of mature landfill leachate by electrocoagulation followed by Fenton or UVA-LED photo-Fenton processes,” J. Taiwan Inst. Chem. Eng., vol. 119, pp. 33–44, 2021, doi:10.1016/j.jtice.2021.02.018.; M. Chen, Y. He, and Z. Gu, “Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor,” Sep. Purif. Technol., vol. 250, no. March, p. 117111, 2020, doi:10.1016/j.seppur.2020.117111.; S. M. Iskander et al., “A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment,” Water Res., vol. 145, pp. 297–311, 2018, doi:10.1016/j.watres.2018.08.035.; B. K. Tripathy, G. Ramesh, A. Debnath, and M. Kumar, “Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters,” Ultrason. Sonochem., vol. 54, no. January, pp. 210–219, 2019, doi:10.1016/j.ultsonch.2019.01.036.; P. Gautam, S. Kumar, and S. Lokhandwala, “Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review,” J. Clean. Prod., vol. 237, p. 117639, 2019, doi:10.1016/j.jclepro.2019.117639.; H. Feng, W. Mao, Y. Li, X. Wang, and S. Chen, “Characterization of dissolved organic matter during the O3-based advanced oxidation of mature landfill leachate with and without biological pre-treatment and operating cost analysis,” Chemosphere, vol. 271, p. 129810, 2021, doi:10.1016/j.chemosphere.2021.129810.; H. Ateş and M. E. Argun, “Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products,” J. Hazard. Mater., vol. 413, no. April 2020, 2021, doi:10.1016/j.jhazmat.2021.125326.; R. Poblete, I. Oller, M. I. Maldonado, and E. Cortes, “Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes,” J. Environ. Manage., vol. 232, no. August 2018, pp. 45–51, 2019, doi:10.1016/j.jenvman.2018.11.030.; Y. Wang et al., “Treatment of high-ammonia-nitrogen landfill leachate nanofiltration concentrate using an Fe-loaded Ni-foam-based electro-Fenton cathode,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104243, 2020, doi:10.1016/j.jece.2020.104243.; Y. Liu, Y. Chen, J. Deng, and J. Wang, “N-doped aluminum-graphite (Al-Gr-N) composite for enhancing in-situ production and activation of hydrogen peroxide to treat landfill leachate,” Appl. Catal. B Environ., vol. 297, no. May, p. 120407, 2021, doi:10.1016/j.apcatb.2021.120407.; E. Domingues, F. Rodrigues, J. Gomes, M. J. Quina, S. Castro-Silva, and R. C. Martins, “Screening of low-cost materials as heterogeneous catalysts for olive mill wastewater Fenton’s peroxidation,” Energy Reports, vol. 6, pp. 161–167, 2020, doi:10.1016/j.egyr.2020.11.095.; Y. Deng and J. D. Englehardt, “Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate,” J. Hazard. Mater., vol. 153, no. 1–2, pp. 293–299, 2008, doi:10.1016/j.jhazmat.2007.08.049.; J. Hou, Z. Xu, J. Ji, Y. Zhao, M. Gao, and C. Jin, “Enhanced in-situ electro-generation of H2O2 using PTFE and NH4HCO3 modified C/PTFE electrode for treatment of landfill leachate,” J. Environ. Manage., vol. 295, no. May, p. 112933, 2021, doi:10.1016/j.jenvman.2021.112933.; F. Wang, Y. Huang, P. Wen, and Q. Li, “Transformation mechanisms of refractory organic matter in mature landfill leachate treated using an Fe0-participated O3/H2O2 process,” Chemosphere, vol. 263, p. 128198, 2021, doi:10.1016/j.chemosphere.2020.128198.; M. Bourgin et al., “Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water,” Water Res., vol. 122, pp. 234–245, 2017, doi:10.1016/j.watres.2017.05.018.; Q. Xu, G. Siracusa, S. Di Gregorio, and Q. Yuan, “COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs),” Process Saf. Environ. Prot., vol. 120, pp. 278–285, 2018, doi:10.1016/j.psep.2018.09.014.; M. Usman, S. A. Cheema, and M. Farooq, “Heterogeneous Fenton and persulfate oxidation for treatment of landfill leachate: A review supplement,” J. Clean. Prod., vol. 256, 2020, doi:10.1016/j.jclepro.2020.120448.; A. Kwarciak-Kozłowska and K. L. Fijałkowski, “Efficiency assessment of municipal landfill leachate treatment during advanced oxidation process (AOP) with biochar adsorption (BC),” J. Environ. Manage., vol. 287, no. November 2020, 2021, doi:10.1016/j.jenvman.2021.112309.; C. Wu, W. Chen, Z. Gu, and Q. Li, “A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment,” Sci. Total Environ., vol. 762, p. 143131, 2021, doi:10.1016/j.scitotenv.2020.143131.; N. Biglarijoo, S. A. Mirbagheri, M. Ehteshami, and S. M. Ghaznavi, “Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment,” Process Saf. Environ. Prot., vol. 104, pp. 150–160, 2016, doi:10.1016/j.psep.2016.08.019.; M. S. Lucas and J. A. Peres, “Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study,” J. Hazard. Mater., vol. 168, no. 2–3, pp. 1253–1259, 2009, doi:10.1016/j.jhazmat.2009.03.002.; E. E. Ebrahiem, M. N. Al-Maghrabi, and A. R. Mobarki, “Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology,” Arab. J. Chem., vol. 10, pp. S1674–S1679, 2017, doi:10.1016/j.arabjc.2013.06.012.; W. Chen, F. Wang, C. He, and Q. Li, “Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate,” J. Hazard. Mater., vol. 397, no. January, p. 122785, 2020, doi:10.1016/j.jhazmat.2020.122785.; I. El Mrabet, M. Benzina, H. Valdés, and H. Zaitan, “Treatment of landfill leachates from Fez city (Morocco) using a sequence of aerobic and Fenton processes,” Sci. African, vol. 8, p. e00434, 2020, doi:10.1016/j.sciaf.2020.e00434.; E. Kattel, M. Trapido, and N. Dulova, “Treatment of landfill leachate by continuously reused ferric oxyhydroxide sludge-activated hydrogen peroxide,” Chem. Eng. J., vol. 304, pp. 646–654, 2016, doi:10.1016/j.cej.2016.06.135.; L. Li et al., “Process parameters study and organic evolution of old landfill leachate treatment using photo-Fenton-like systems: Cu2+ vs Fe2+ as catalysts,” Sep. Purif. Technol., vol. 211, no. November 2018, pp. 972–982, 2019, doi:10.1016/j.seppur.2018.10.063.; A. I. Gomes et al., “Multistage treatment technology for leachate from mature urban landfill: Full scale operation performance and challenges,” Chem. Eng. J., vol. 376, no. December 2018, p. 120573, 2019, doi:10.1016/j.cej.2018.12.033.; K. O’Dowd and S. C. Pillai, “Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104063, 2020, doi:10.1016/j.jece.2020.104063.; J. Díaz-Angulo et al., “A tube-in-tube membrane microreactor for tertiary treatment of urban wastewaters by photo-Fenton at neutral pH: A proof of concept,” Chemosphere, vol. 263, p. 128049, 2021, doi:10.1016/j.chemosphere.2020.128049.; C. Amor et al., “Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes,” J. Hazard. Mater., vol. 286, pp. 261–268, 2015, doi:10.1016/j.jhazmat.2014.12.036.; T. F. C. V. Silva, A. Fonseca, I. Saraiva, R. A. R. Boaventura, and V. J. P. Vilar, “Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment,” Chem. Eng. J., vol. 283, pp. 76–88, 2016, doi:10.1016/j.cej.2015.07.063.; L. Manrique-Losada, C. Quimbaya-Ñañez, E. A. Serna-Galvis, I. Oller, and R. A. Torres-Palma, “Enhanced solar photo-electro-Fenton by Theobroma grandiflorum addition during pharmaceuticals elimination in municipal wastewater: Action routes, process improvement, and biodegradability of the treated water,” J. Environ. Chem. Eng., p. 107489, 2022, doi:10.1016/j.jece.2022.107489.; A. I. Gomes, B. M. Souza-Chaves, M. Park, T. F. C. V. Silva, R. A. R. Boaventura, and V. J. P. Vilar, “How does the pre-treatment of landfill leachate impact the performance of O3 and O3/UVC processes?,” Chemosphere, vol. 278, 2021, doi:10.1016/j.chemosphere.2021.130389.; J. Ding, M. Jiang, G. Zhao, L. Wei, S. Wang, and Q. Zhao, “Treatment of leachate concentrate by electrocoagulation coupled with electro-Fenton-like process: Efficacy and mechanism,” Sep. Purif. Technol., vol. 255, no. June 2020, p. 117668, 2021, doi:10.1016/j.seppur.2020.117668.; G. Khajouei, S. Mortazavian, A. Saber, N. Zamani Meymian, and H. Hasheminejad, “Treatment of composting leachate using electro-Fenton process with scrap iron plates as electrodes,” Int. J. Environ. Sci. Technol., vol. 16, no. 8, pp. 4133–4142, 2019, doi:10.1007/s13762-018-2057-4.; A. Jawad, Z. Chen, and G. Yin, “Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment,” Cuihua Xuebao/Chinese J. Catal., vol. 37, no. 6, pp. 810–825, 2016, doi:10.1016/S1872-2067(15)61100-7.; H. Pan, Y. Gao, N. Li, Y. Zhou, Q. Lin, and J. Jiang, “Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment,” Chem. Eng. J., vol. 408, no. August 2020, p. 127332, 2021, doi:10.1016/j.cej.2020.127332.; D. E. Richardson, C. A. S. Regino, H. Yao, and J. V Johnson, “Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide,” Free Radic. Biol. Med., vol. 35, no. 12, pp. 1538–1550, 2003, doi: https://doi.org/10.1016/j.freeradbiomed.2003.08.019.; O. Augusto, M. G. Bonini, A. M. Amanso, E. Linares, C. C. X. Santos, and S. L. De Menezes, “Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology,” Free Radic. Biol. Med., vol. 32, no. 9, pp. 841–859, 2002, doi: https://doi.org/10.1016/S0891-5849(02)00786-4.; J. Li, Q. Li, C. Lu, L. Zhao, and J. M. Lin, “Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II),” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 78, no. 2, pp. 700–705, 2011, doi:10.1016/j.saa.2010.11.052.; K. Staninski, M. Kaczmarek, and M. Elbanowski, “Kinetic and spectral aspects in chemiluminescence system Eu(III)/HCO3−/H2O2,” J. Alloys Compd., vol. 380, no. 1, pp. 177–180, 2004, doi: https://doi.org/10.1016/j.jallcom.2004.03.027.; H. L. Otálvaro-Marín, F. González-Caicedo, A. Arce-Sarria, M. A. Mueses, J. C. Crittenden, and F. Machuca-Martinez, “Scaling-up a heterogeneous H2O2/TiO2/solar-radiation system using the DamkÖhler number,” Chem. Eng. J., vol. 364, no. September 2018, pp. 244–256, 2019, doi:10.1016/j.cej.2019.01.141.; https://revistas.unicartagena.edu.co/index.php/ing-nova/article/view/4005

  12. 12
    Book
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    وصف الملف: 8 Páginas; application/pdf

    Relation: JOURNAL OF PHYSICS CONFERENCE SERIES ISSN: 1742-6596, 2022 vol:2073 fasc: N/A págs: 1 - 7, DOI:10.1088/1742-6596/2073/1/012017; Vol.2073 No. (2021); (2021); 2073; N J Cely-Calixto et al 2021 J. Phys.: Conf. Ser. 2073 012017; https://repositorio.ufps.edu.co/handle/ufps/6957

  16. 16
    Academic Journal
  17. 17
    Academic Journal

    وصف الملف: 1 recurso en línea (11 páginas); application/pdf

    Relation: Ingeniería y Competitividad, Vol. 23 (2), 2021; 11; 23; Ingeniería y Competitividad; https://hdl.handle.net/10893/21391

  18. 18
    Academic Journal

    وصف الملف: 11 páginas; application/pdf

    Relation: Revista Ingeniería Y Competitividad ISSN: 2027-8284, 2021 vol:23 fasc: 2 págs: 1 - 11, DOI:10.25100/iyc.23i2.9700; Vol. 23, No. 2 (2021); 11; 2 (2021); 23; J. G. Popayan Hernandez, D. Becerra Moreno, y O. Zuñiga Escobar, «Estimación del índice de flujo de CO2 en la isla de San Andrés utilizando lógica difusa», inycomp, vol. 23, n.º 2, p. e2039700, jul. 2021.; Ingeniería Y Competitividad; http://repositorio.ufps.edu.co/handle/ufps/320

  19. 19
    Academic Journal

    المساهمون: Ingeniería Y Competitividad

    جغرافية الموضوع: Municipio de Cúcuta, Norte de Santander

    وصف الملف: 13 páginas; application/pdf

    Relation: Revista Ingeniería Y Competitividad ISSN: 2027-8284, 2021 vol:23 fasc: N/A págs: 1 - 13, DOI:10.25100/iyc.23i2.9698; Vol. 23, No. 2 (2021); 13; 2 (2021); 23; Becerra D, Ramírez LF, Niño MV, Oviedo CH, Plaza LH. Relación entre la Calidad del Aire y la Incidencia de Enfermedades Respiratorias en el Municipio de San José de Cúcuta, Norte de Santander. INGENIERÍA Y COMPETITIVIDAD. 2021;23(2):e2029698. https://doi.org/10.25100/iyc.v23i2.9698.; Revista Ingeniería Y Competitividad; http://repositorio.ufps.edu.co/handle/ufps/317

  20. 20
    Academic Journal

    Alternate Title: Potencial de aprovechamiento del gas metano generado en el relleno sanitario del municipio de Villavicencio, Colombia.

    المؤلفون: Ramírez-Ríos, Luisa F.1 lfernandaramirez@unillanos.edu.co, Becerra-Moreno, Dorance2, Yamile Ortega-Contreras, Judith2

    المصدر: Ingeniería y Competitividad. may-aug2024, Vol. 26 Issue 2, p1-18. 18p.