-
1Academic Journal
المؤلفون: Bourakhouadar, Hicham
المصدر: Revista de Química; Vol. 37 Núm. 2 (2023); 2-10 ; 2518-2803 ; 1012-3946
مصطلحات موضوعية: Carbodiimides, cyanamides, Li-Ion & Na-Ion batteries, Light emitting diodes, photoluminescence, Carbodiimidas, cianamidas, baterías ion litio, diodos LED, fotoluminiscencia
وصف الملف: application/pdf
Relation: http://revistas.pucp.edu.pe/index.php/quimica/article/view/27598/25727; http://revistas.pucp.edu.pe/index.php/quimica/article/view/27598
-
2Academic Journal
المؤلفون: Barberón, Agustín
المصدر: Ciencia, Tecnología y Política; Vol. 5 Núm. 9 (2022): Ciencia, Tecnología y Política; 081 ; Science, Technology & Policy; Vol. 5 No. 9 (2022): Ciencia, Tecnología y Política; 081 ; Science, technologie et politique; Vol. 5 No. 9 (2022): Ciencia, Tecnología y Política; 081 ; Ciência, tecnologia e política; v. 5 n. 9 (2022): Ciencia, Tecnología y Política; 081 ; 2618-3188 ; 2618-2483
مصطلحات موضوعية: litio, baterías ion-litio, ciencia y tecnología, Argentina, lithium, li-ion batteries, science and technology, lítio, baterias de lítio-íon, ciência e tecnologia
وصف الملف: application/pdf; application/zip; text/html
-
3Academic Journal
المؤلفون: Barberón, Agustín
مصطلحات موضوعية: Ciencias Sociales, litio, baterías ion-litio, Ciencia, tecnología, Argentina, lithium, li-ion batteries, science and technology, baterias de lítio-íon, ciência e tecnologia
وصف الملف: application/pdf
-
4Academic Journal
المؤلفون: Agustín Barberón
المصدر: Ciencia, Tecnología y Política, Vol 5, Iss 9 (2022)
مصطلحات موضوعية: litio, baterías ion-litio, ciencia y tecnología, Argentina, Technology (General), T1-995, Political science (General), JA1-92
Relation: https://revistas.unlp.edu.ar/CTyP/article/view/14478; https://doaj.org/toc/2618-2483; https://doaj.org/toc/2618-3188; https://doaj.org/article/16db7c27b9f04aa09be72684445244fb
-
5Academic Journal
المؤلفون: Estrada Ramírez, Natalia
المساهمون: Ocampo Carmona, Luz Marina, Márquez Godoy, Marco Antonio, Universidad Nacional de Colombia - Sede Medellín, Ciencia y Tecnología de Materiales
مصطلحات موضوعية: 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas, baterías ion-litio, cobalto, ácido biogénico, biolixiviación, electroobtención, Acidithiobacillus thiooxidans, material catódico, lithium-ion batteries, cobalt, biogenic acid, bioleaching, electrowinning, cathodic material
وصف الملف: application/pdf
Relation: B. Xin et al., “Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria,” Bioresour. Technol., vol. 100, no. 24, pp. 6163–6169, 2009.; C. Erüst, A. Akcil, C. S. Gahan, A. Tuncuk, and H. Deveci, “Biohydrometallurgy of secondary metal resources: A potential alternative approach for metal recovery,” J. Chem. Technol. Biotechnol., vol. 88, no. 12, pp. 2115–2132, 2013.; A. Heydarian, S. M. Mousavi, F. Vakilchap, and M. Baniasadi, “Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries,” J. Power Sources, vol. 378, no. September 2017, pp. 19–30, 2018.; D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn, and Y. H. Rhee, “Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans,” Waste Manag., vol. 28, no. 2, pp. 333–338, 2008.; G. Zeng, S. Luo, X. Deng, L. Li, and C. Au, “Influence of silver ions on bioleaching of cobalt from spent lithium batteries,” Miner. Eng., vol. 49, pp. 40–44, 2013.; L. Li, G. sheng Zeng, S. lian Luo, X. rong Deng, and Q. ji Xie, “Influences of solution pH and redox potential on the bioleaching of LiCoO2 from spent lithium-ion batteries,” J. Korean Soc. Appl. Biol. Chem., vol. 56, no. 2, pp. 187–192, 2013.; L. Huang, R. Guo, L. Jiang, X. Quan, Y. Sun, and G. Chen, “Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells,” Bioresour. Technol. J., vol. 128, pp. 539–546, 2013.; N. B. Horeh, S. M. Mousavi, and S. A. Shojaosadati, “Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger,” J. Power Sources, vol. 320, pp. 257–266, 2016.; Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin, “Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery,” J. Clean. Prod., vol. 116, pp. 249–258, 2015.; N. Bahaloo-Horeh and S. M. Mousavi, “Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger,” Waste Manag., vol. 60, pp. 666–679, 2017.; M. Hartono, M. A. Astrayudha, H. T. B. M. Petrus, W. Budhijanto, and H. Sulistyo, “Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism,” Rasayan J. Chem., vol. 10, no. 3, pp. 897–903, 2017.; P. Patnaik, S. K. Padhy, B. C. Tripathy, I. N. Bhattacharya, and R. K. Paramguru, “Electrodeposition of cobalt from aqueous sulphate solutions in the presence of tetra ethyl ammonium bromide,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 6, pp. 2047–2053, 2015.; D. A. Bertuol, F. D. R. Amado, H. Veit, J. Z. Ferreira, and A. M. Bernardes, “Recovery of Nickel and Cobalt from Spent NiMH Batteries by Electrowinning,” Chem. Eng. Technol., vol. 35, no. 12, pp. 2084–2092, 2012.; M. B. J. G. Freitas, V. G. Celante, and M. K. Pietre, “Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits,” J. Power Sources, vol. 195, no. 10, pp. 3309–3315, 2010; B. Panda, S. C. Das, and R. K. Panda, “Effect of added cobalt ion on electro-deposition of copper from sulfate bath using graphite and Pb-Sb anodes,” Hydrometallurgy, vol. 95, no. 1–2, pp. 87–91, 2009.; I. G. Sharma, P. Alex, A. C. Bidaye, and A. K. Suri, “Electrowinning of cobalt from sulphate solutions,” Hydrometallurgy, vol. 80, no. 1–2, pp. 132–138, 2005.; A. E. Elsherief, “Effects of cobalt, temperature and certain impurities upon cobalt electrowinning from sulfate solutions,” J. Appl. Electrochem., vol. 33, no. 1, pp. 43–49, 2003.; N. Pradhan, P. Singh, B. C. Tripathy, and S. C. Das, “Electrowinning of cobalt from acidic sulphate solutions-effect of chloride ion,” Miner. Eng., vol. 14, no. 7, pp. 775–783, 2001.; A. S. Pilla, M. M. E. Duarte, and C. E. Mayer, “Some aspects of removal of copper and cobalt from mixed ion dilute solutions,” J. Appl. Electrochem., vol. 30, no. 7, pp. 831–838, 2000.; J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang, “A review of processes and technologies for the recycling of lithium-ion secondary batteries,” J. Power Sources, vol. 177, no. 2, pp. 512–527, 2008.; J. Kang, J. Sohn, H. Chang, G. Senanayake, and S. M. Shin, “Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method,” Adv. Powder Technol., vol. 21, no. 2, pp. 175–179, 2010.; Y. feng SHEN, W. ying XUE, and W. yong NIU, “Recovery of Co(II) and Ni(II) from hydrochloric acid solution of alloy scrap,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 18, no. 5, pp. 1262–1268, 2008.; X. Chen, L. Cao, D. Kang, J. Li, T. Zhou, and H. Ma, “Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium,” Waste Manag., vol. 80, pp. 198–210, 2018.; K. B. Shedd, E. A. Mccullough, and D. I. Bleiwas, “Global trends affecting the supply security of cobalt,” Min. Eng. Mag., no. December, pp. 37–42, 2017.; D. R. Wilburn, “Cobalt mineral exploration and supply from 1995 through 2013,” USGS Miner. Resour. Progr., pp. 1 online resource (iii, 16 p.), 2012.; E. Sangine, “Mineral Commodity Summaries 2020,” Reston, Virginia, 2020.; C. Liu, J. Lin, H. Cao, Y. Zhang, and Z. Sun, “Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review,” J. Clean. Prod., vol. 228, no. 1, pp. 801–813, 2019.; I. Herranz-Lahuerta, S. Gassó-Domingo, and B. Amante-García, “Análisis del ciclo de vida del proceso de reciclado de una batería de ion-litio en el sector de la automoción,” Escola Técnica Superior d’Enginyeria de Camins (UPC), 2016.; F. Habashi, Principles of extractive metallurgy, 2 ED., vol. 3. JOHN WILEY & SONS , LTD, 2017.; G. J. Olson, J. A. Brierley, and C. L. Brierley, “Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries,” Appl. Microbiol. Biotechnol., vol. 63, no. 3, pp. 249–257, 2003.; V. K. Nguyen and J. U. Lee, “A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings,” Biotechnol. Bioprocess Eng., vol. 20, no. 1, pp. 91–99, 2015.; A. Uryga, Z. Sadowski, and A. Grotowski, “Bioleaching of cobalt from mineral products,” Physicochem. Probl. Miner. Process., vol. 38, pp. 291–299, 2004.; J. Ordoñez, E. J. Gago, and A. Girard, “Processes and technologies for the recycling and recovery of spent lithium-ion batteries,” Renew. Sustain. Energy Rev., vol. 60, pp. 195–205, 2016.; G. G. Khachatourians, Encyclopedia of Microbiology. 2019.; K. G. Mishra, P. Singh, and D. M. Muir, “Electrowinning of cobalt from sulphate solutions contaminated with organic impurities,” Hydrometallurgy, vol. 65, no. 2–3, pp. 97–102, 2002.; “cobalt %7C Definition & Facts %7C Britannica.” [Online]. Available: https://www.britannica.com/science/cobalt-chemical-element. [Accessed: 09-Mar-2020].; D. G. Barceloux and D. Barceloux, “Cobalt,” Clin. Toxicol., vol. 37, no. 2, pp. 201–216, 1999.; R. Lauwerys and D. Lison, “Health risks associated with cobalt exposure - an overview,” Sci. Total Environ., vol. 150, no. 1–3, pp. 1–6, 1994.; L. O. Simonsen, H. Harbak, and P. Bennekou, “Cobalt metabolism and toxicology-A brief update,” Sci. Total Environ., vol. 432, pp. 210–215, 2012.; British Geological Survey, “Cobalt,” Miner. UK, no. August, p. 18, 2009.; M. Viera, C. Pogliani, and E. Donati, “Recovery Of Zinc, Nickel, Cobalt And Other Metals By Bioleaching,” in Microbial Processing of Metal Sulfides, Dordrecht: Springer Netherlands, 2007, pp. 103–119.; “Cobalt Futures Historical Prices - Investing.com.” [Online]. Available: https://www.investing.com/commodities/cobalt-historical-data. [Accessed: 09-Mar-2020].; S. Wang, “Cobalt - Its recovery, recycling, and application,” Jom, vol. 58, no. 10, pp. 47–50, 2006.; J. Pérez-Arantegui et al., “Characterization of cobalt pigments found in traditional Valencian ceramics by means of laser ablation-inductively coupled plasma mass spectrometry and portable X-ray fluorescence spectrometry,” Talanta, vol. 74, no. 5, pp. 1271–1280, 2008.; T. P. J. Crompton, Battery Reference Book, Third. 2000.; D. Linden and T. B. Reddy, Handbook of batteries. 2002.; C. Daniel and J. O. Besenhard, Eds., Handbook of Battery Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011.; P. Díaz-Baizán, “Supercondensadores híbridos asimétricos con especies redox inorganicas,” Universidad de Oviedo, 2016.; A. Chagnes and B. Pospiech, “A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries,” J. Chem. Technol. Biotechnol., vol. 88, no. 7, pp. 1191–1199, 2013.; M. M. Wang, C. C. Zhang, and F. S. Zhang, “An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach,” Waste Manag., vol. 51, pp. 239–244, 2016.; S. Saeki, J. Lee, Q. Zhang, and F. Saito, “Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product,” Int. J. Miner. Process., vol. 74, no. SUPPL., pp. 373–378, 2004.; X. Zheng et al., “Spent lithium-ion battery recycling – Reductive ammonia leaching of metals from cathode scrap by sodium sulphite,” Waste Manag., vol. 60, pp. 680–688, 2017.; S. P. Barik, G. Prabaharan, and B. Kumar, “An innovative approach to recover the metal values from spent lithium-ion batteries,” Waste Manag., vol. 51, pp. 222–226, 2016.; L. Li et al., “Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries,” J. Power Sources, vol. 282, pp. 544–551, 2015.; X. Zeng, J. Li, and B. Shen, “Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid,” J. Hazard. Mater., vol. 295, pp. 112–118, 2015.; P. Meshram, B. D. Pandey, and T. R. Mankhand, “Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching,” Chem. Eng. J., vol. 281, pp. 418–427, 2015.; M. Jouli??, R. Laucournet, and E. Billy, “Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries,” J. Power Sources, vol. 247, pp. 551–555, 2014.; E. Gratz, Q. Sa, D. Apelian, and Y. Wang, “A closed loop process for recycling spent lithium ion batteries,” J. Power Sources, vol. 262, pp. 255–262, 2014.; S. G. Zhu, W. Z. He, G. M. Li, X. Zhou, X. J. Zhang, and J. W. Huang, “Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. 9, pp. 2274–2281, 2012.; L. Sun and K. Qiu, “Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries,” Waste Manag., vol. 32, no. 8, pp. 1575–1582, 2012.; J. Wang, M. Chen, H. Chen, T. Luo, and Z. Xu, “Leaching Study of Spent Li-ion Batteries,” Procedia Environ. Sci., vol. 16, pp. 443–450, 2012.; L. Li et al., “Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries,” J. Power Sources, vol. 218, pp. 21–27, 2012.; R. Golmohammadzadeh, F. Rashchi, and E. Vahidi, “Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects,” Waste Manag., vol. 64, pp. 244–254, 2017.; L. Li, J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu, “Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant,” J. Hazard. Mater., vol. 176, no. 1–3, pp. 288–293, 2010.; N. Vieceli, C. A. Nogueira, C. Guimarães, M. F. C. Pereira, F. O. Durão, and F. Margarido, “Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite,” Waste Manag., vol. 2014, 2017.; D. Pant and T. Dolker, “Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries,” Waste Manag., vol. 60, pp. 689–695, 2017.; E. G. Pinna, M. C. Ruiz, M. W. Ojeda, and M. H. Rodriguez, “Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors,” Hydrometallurgy, vol. 167, pp. 66–71, 2017.; G. P. Nayaka, K. V. Pai, J. Manjanna, and S. J. Keny, “Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries,” Waste Manag., vol. 51, pp. 234–238, 2016.; G. P. Nayaka, K. V. Pai, G. Santhosh, and J. Manjanna, “Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent,” J. Environ. Chem. Eng., vol. 4, no. 2, pp. 2378–2383, 2016.; G. P. Nayaka, K. V. Pai, G. Santhosh, and J. Manjanna, “Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co,” Hydrometallurgy, vol. 161, pp. 54–57, 2016.; Z. Takacova, T. Havlik, F. Kukurugya, and D. Orac, “Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach,” Hydrometallurgy, vol. 163, pp. 9–17, 2016.; L. An and P. Methods, Recycling of Spent Lithium-Ion Batteries. Cham: Springer International Publishing, 2019.; G. Zeng, X. Deng, S. Luo, X. Luo, and J. Zou, “A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries,” J. Hazard. Mater., vol. 199–200, pp. 164–169, 2012.; R. Torkaman, M. Asadollahzadeh, M. Torab-Mostaedi, and M. Ghanadi Maragheh, “Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process,” Sep. Purif. Technol., vol. 186, pp. 318–325, 2017.; D. da S. Leite, P. L. G. Carvalho, L. R. de Lemos, A. B. Mageste, and G. D. Rodrigues, “Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems,” Hydrometallurgy, vol. 169, pp. 245–252, 2017.; F. J. Albler, K. Bica, M. R. S. J. Foreman, S. Holgersson, and M. S. Tyumentsev, “A comparison of two methods of recovering cobalt from a deep eutectic solvent: Implications for battery recycling,” J. Clean. Prod., vol. 167, pp. 806–814, 2018.; C. Y. Cheng, K. R. Barnard, W. Zhang, Z. Zhu, and Y. Pranolo, “Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction,” Chinese J. Chem. Eng., vol. 24, no. 2, pp. 237–248, 2016.; P. Ashtari and P. Pourghahramani, “Hydrometallurgical recycling of cobalt from zinc plants residue,” J. Mater. Cycles Waste Manag., 2016.; F. Pagnanelli, E. Moscardini, P. Altimari, T. Abo Atia, and L. Toro, “Cobalt products from real waste fractions of end of life lithium ion batteries,” Waste Manag., vol. 51, pp. 214–221, 2016.; F. J. Alguacil, I. Garcia-Diaz, F. Lopez, and A. M. Sastre, “Cobalt(II) membrane-extraction by DP-8R/Exxsol D100 using pseudo-emulsion based hollow fiber strip dispersion (PEHFSD) processing,” Sep. Purif. Technol., vol. 80, no. 3, pp. 467–472, 2011.; B. Krause and R. F. Sandenbergh, “Optimization of cobalt removal from an aqueous sulfate zinc leach solution for zinc electrowinning,” Hydrometallurgy, vol. 155, pp. 132–140, 2015.; B. S. Boyanov, V. V. Konareva, and N. K. Kolev, “Purification of zinc sulfate solutions from cobalt and nickel through activated cementation,” Hydrometallurgy, vol. 73, no. 1–2, pp. 163–168, Apr. 2004.; M. Li, Z. Wang, and R. G. Reddy, “Cobalt electrodeposition using urea and choline chloride,” Electrochim. Acta, vol. 123, pp. 325–331, 2014.; Z. W. Zhao, Z. P. Guo, and H. K. Liu, “Non-aqueous synthesis of crystalline Co3O4 powders using alcohol and cobalt chloride as a versatile reaction system for controllable morphology,” J. Power Sources, vol. 147, no. 1–2, pp. 264–268, 2005.; A. Kwade and J. Diekmann, Recycling of Lithium-Ion Batteries. Cham: Springer International Publishing, 2018.; T. Elwert et al., “Current developments and challenges in the recycling of key components of (Hybrid) electric vehicles,” Recycling, vol. 1, no. 1, pp. 25–60, 2016.; L. Gaines, A. Burnham, L. Gaines, and A. Burnham, Paper No . 11-3891 Life-Cycle Analysis for Lithium-Ion Battery Production and Recycling By,” 90th Annu. Meet. Transp. Res. Board, no. 11, 2011.; M. J. Lain, “Recycling of lithium ion cells and batteries,” J. Power Sources, vol. 97–98, no. June 2000, pp. 736–738, Jul. 2001.; M. J. Lain, “CA2313173A1 Recycling of galvanic cells,” WO 99/34473, 1998.; J. P. Sánchez, “Análisis composicional y determinación de las etapas de conminución para un proceso de recuperación de cobalto a partir de baterías recicladas de Ion-Litio provenientes de celulares.,” p. 93401, 2015.; L. Orden, “Lineamientos Técnicos para el Manejo de Residuos de Aparatos Eléctricos y Electrónicos Ministerio de Ambiente, Vivienda y Desarrollo Territorial República de Colombia,” 2010.; “Constitución Política de Colombia,” 1991.; “Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [LEY_0253_1996],” 1992. [Online]. Available: http://www.secretariasenado.gov.co/senado/basedoc/ley_0253_1996.html. [Accessed: 26-Apr-2020].; “Ley 430 de 1998,” 16-Jan-1998. [Online]. Available: https://www.minambiente.gov.co/images/normativa/leyes/1998/ley_0430_1998.pdf. [Accessed: 26-Apr-2020].; “Ley 1252 de 2008 Nivel Nacional,” 2008. [Online]. Available: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=33965. [Accessed: 26-Apr-2020].; “DECRETO 4741 DE 2005,” 2005.; “Resolución 1362 de 2007 Ministerio de Ambiente, Vivienda y Desarrollo Territorial,” 2007. [Online]. Available: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=26053. [Accessed: 26-Apr-2020].; Ley 1672 de 2013. 2013.; “Resolución 1297 de 2010,” 18-Jul-2010. [Online]. Available: https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/Programa_posconsumo_existente/resolucion_1297_de_2010_pilas.pdf. [Accessed: 26-Apr-2020].; N. Knudsen; J.L. Fricke;, “Battery Technology Handbook. Second Edition. Chapter 19. The Disposal of Portable Batteries.” 2003.; “Lithium-based Batteries Information – Battery University.” [Online]. Available: https://batteryuniversity.com/learn/article/lithium_based_batteries. [Accessed: 09-Mar-2020].; L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, and Y. Zhang, “Process for the recovery of cobalt oxalate from spent lithium-ion batteries,” Hydrometallurgy, vol. 108, no. 1–2, pp. 80–86, 2011.; B. Isidor, “Types of Lithium-ion Batteries – Battery University,” Cadex Electronics Inc., 2017. [Online]. Available: https://batteryuniversity.com/learn/article/types_of_lithium_ion. [Accessed: 11-Feb-2020].; Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. O’Keefe, “Atomic resolution of lithium ions in LiCoO2,” Nat. Mater., vol. 2, no. 7, pp. 464–467, 2003.; O. Jankovský, J. Kovařík, J. Leitner, K. Růžička, and D. Sedmidubský, “Thermodynamic properties of stoichiometric lithium cobaltite LiCoO2,” Thermochim. Acta, vol. 634, pp. 26–30, 2016.; M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, P. G. Bruce, and J. B. Goodenough, “Electrochemical extraction of lithium from LiMn2O4,” Mater. Res. Bull., vol. 19, pp. 179–187, 1984.; M. M. Thackeray et al., “Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/LixMn2O4 Cells,” Electrochem. Solid-State Lett., vol. 1, no. 1, pp. 7–9, 1998.; X. L. Wang et al., “Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction,” Sci. Rep., vol. 2, pp. 1–7, 2012.; H. Sun and K. Zhao, “Electronic Structure and Comparative Properties of LiNixMnyCozO2 Cathode Materials,” J. Phys. Chem. C, vol. 121, no. 11, pp. 6002–6010, 2017.; J. Kim, K. Y. Park, I. Park, J. K. Yoo, J. Hong, and K. Kang, “Thermal stability of Fe-Mn binary olivine cathodes for Li rechargeable batteries,” J. Mater. Chem., vol. 22, no. 24, pp. 11964–11970, 2012.; J. Wang and X. Sun, “Olivine LiFePO4: The remaining challenges for future energy storage,” Energy Environ. Sci., vol. 8, no. 4, pp. 1110–1138, 2015.; B. Wu, Y. Ren, and N. Li, “LiFePO4 Cathode Material,” in Electric Vehicles The Benefits and Barriers, September,., vol. 18, no. 5, D. S. Soylu, Ed. Shanghai, China: InTech, 2011, pp. 199–216.; Christian Julien, “Wie finde ich die richtige Weiterbildung? Qualitätskriterien, Tipps und Adressen,” Inorganics, vol. 2, pp. 132–154, 2014.; C. S. Yudha, S. U. Muzayanha, H. Widiyandari, F. Iskandar, W. Sutopo, and A. Purwanto, “Synthesis of LiNi0.85Co0.14Al0.01O2 Cathode Material and its Performance in an NCA Graphite Full-Battery,” Energies, vol. 12, p. 1886, 2019.; L. Zhang, J. Fu, and C. Zhang, “Mechanical composite of Lini0.8Co0.15Al0.05O2/carbon nanotubes with enhanced electrochemical performance for lithium-ion batteries,” Nanoscale Res. Lett., vol. 12, pp. 1–7, 2017.; Y. Makimura et al., “Factors affecting cycling life of LiNi 0.8 Co 0.15 Al 0.05 O 2 for lithium-ion batteries,” J. Mater. Chem. A, vol. 4, no. 21, pp. 8350–8358, 2016.; N. V. Tarakina et al., “Defect crystal structure of new TiO(OH) 2 hydroxide and related lithium salt Li 2 TiO 3,” Dalt. Trans., vol. 39, no. 35, pp. 8168–8176, 2010.; T. Zhang, Y. He, F. Wang, L. Ge, X. Zhu, and H. Li, “Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques,” Waste Manag., vol. 34, no. 6, pp. 1051–1058, 2014.; J. P. Sánchez-echeverri, J. F. Betancur-pulgarín, and L. M. Ocampo-carmona, “Conminución y análisis granulométrico para un proceso de recuperación de cobalto a partir de baterías de teléfonos móviles,” Gestión y Ambient., vol. 19, no. 2, pp. 240–251, 2016.; D. Quintero-Almanza et al., “Recovery of cobalt from spent lithium-ion mobile phone batteries using liquid–liquid extraction,” Batteries, vol. 5, no. 2, 2019.; Universitat Autònoma de Barcelona, “ICPs %7C Servei d’Anàlisi Química,” 2016. [Online]. Available: http://sct.uab.cat/saq/es/content/icps. [Accessed: 17-Feb-2020].; “ESPECTROSCOPÍA DE EMISIÓN POR PLASMA DE ACOPLAMIENTO INDUCTIVO. Servicios Técnicos de Investigación.” [Online]. Available: https://sstti.ua.es/es/instrumentacion-cientifica/unidad-de-analisis/espectroscopia-de-emision-por-plasma-de-acoplamiento-inductivo.html. [Accessed: 23-Apr-2020].; “Unidad de Difracción de Rx.” [Online]. Available: http://www.scai.uma.es/areas/aqcm/drx/drx.html. [Accessed: 11-Feb-2020].; “NMC Powder Cathode for Batteries (LiNiMnCoO2) %7C Targray.” [Online]. Available: https://www.targray.com/li-ion-battery/cathode-materials/nmc. [Accessed: 17-Feb-2020].; “NMC Linimncoo2 Powder For Lithium Battery - Company Activity - News - Xiamen TOB New Energy Technology Co.,Ltd.” [Online]. Available: https://www.amoytob.com/news/nmc-linimncoo2-powder-for-lithium-battery-19422077.html. [Accessed: 17-Feb-2020].; S. Chakrabarti, “Biomining a promising ecofriendly technology,” Int. J. Recent Sci. Res., vol. 9, no. 2, pp. 24034–24038, 2018, doi:10.24327/IJRSR.; B. Xin et al., “Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria,” Bioresour. Technol., vol. 100, no. 24, pp. 6163–6169, 2009, doi:10.1016/j.biortech.2009.06.086.; J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang, “A review of processes and technologies for the recycling of lithium-ion secondary batteries,” J. Power Sources, vol. 177, no. 2, pp. 512–527, 2008, doi:10.1016/j.jpowsour.2007.11.074.; S. Ilyas and J. Lee, “Biometallurgical Recovery of Metals from Waste Electrical and Electronic Equipment: a Review,” ChemBioEng Rev., vol. 1, no. 4, pp. 148–169, 2014, doi:10.1002/cben.201400001.; G. Zeng, S. Luo, X. Deng, L. Li, and C. Au, “Influence of silver ions on bioleaching of cobalt from spent lithium batteries,” Miner. Eng., vol. 49, pp. 40–44, 2013, doi:10.1016/j.mineng.2013.04.021.; G. Zeng, X. Deng, S. Luo, X. Luo, and J. Zou, “A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries,” J. Hazard. Mater., vol. 199–200, pp. 164–169, 2012, doi:10.1016/j.jhazmat.2011.10.063.; M. Hartono, M. A. Astrayudha, H. T. B. M. Petrus, W. Budhijanto, and H. Sulistyo, “Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism,” Rasayan J. Chem., vol. 10, no. 3, pp. 897–903, 2017, doi:10.7324/RJC.2017.1031767.; J. Ordoñez, E. J. Gago, and A. Girard, “Processes and technologies for the recycling and recovery of spent lithium-ion batteries,” Renew. Sustain. Energy Rev., vol. 60, pp. 195–205, 2016, doi:10.1016/j.rser.2015.12.363.; J. Acevedo, F., Gentina, “Fundamentos y Perspectivas de las Tecnologías Biomineras,” Arch. Ing. Bioquímica, pp. 3–24, 2005, [Online]. Available: www.euv.cl.; C. Erüst, A. Akcil, C. S. Gahan, A. Tuncuk, and H. Deveci, “Biohydrometallurgy of secondary metal resources: A potential alternative approach for metal recovery,” J. Chem. Technol. Biotechnol., vol. 88, no. 12, pp. 2115–2132, 2013, doi:10.1002/jctb.4164.; N. Bahaloo-Horeh and S. M. Mousavi, “Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger,” Waste Manag., vol. 60, pp. 666–679, 2017, doi:10.1016/j.wasman.2016.10.034.; N. B. Horeh, S. M. Mousavi, and S. A. Shojaosadati, “Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger,” J. Power Sources, vol. 320, pp. 257–266, 2016, doi:10.1016/j.jpowsour.2016.04.104.; L. Li, G. sheng Zeng, S. lian Luo, X. rong Deng, and Q. ji Xie, “Influences of solution pH and redox potential on the bioleaching of LiCoO2 from spent lithium-ion batteries,” J. Korean Soc. Appl. Biol. Chem., vol. 56, no. 2, pp. 187–192, 2013, doi:10.1007/s13765-013-3016-x.; A. Heydarian, S. M. Mousavi, F. Vakilchap, and M. Baniasadi, “Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries,” J. Power Sources, vol. 378, no. September 2017, pp. 19–30, 2018, doi:10.1016/j.jpowsour.2017.12.009.; R. T. Espejo and P. Romero, “Growth of Thiobacillus ferrooxidans on Elemental Sulfur,” Appl. Environ. Microbiol., vol. 53, no. 8, pp. 1907–1912, 1987, doi:10.1128/aem.53.8.1907-1912.1987.; D. Pradhan, D.-J. Kim, J.-G. Ahn, K.-H. Park, and S.-W. Lee, “Waste Recycling Through Biological Route,” J. Korean Inst. Resour. Recycl., vol. 17, no. 2, pp. 3–15, 2008, [Online]. Available: http://www.koreascience.or.kr/article/JAKO200821036730723.page.; D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn, and Y. H. Rhee, “Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans,” Waste Manag., vol. 28, no. 2, pp. 333–338, 2008, doi:10.1016/j.wasman.2007.01.010.; D. E. Rawlings, H. Tributsch, and G. S. Hansford, “Reasons why ’Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores,” Microbiology, vol. 145, no. 1, pp. 5–13, 1999, doi:10.1099/13500872-145-1-5.; Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin, “Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery,” J. Clean. Prod., vol. 116, pp. 249–258, 2015, doi:10.1016/j.jclepro.2016.01.001.; L. Huang, R. Guo, L. Jiang, X. Quan, Y. Sun, and G. Chen, “Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells,” Bioresour. Technol. J., vol. 128, pp. 539–546, 2013, doi:10.1016/j.biortech.2012.11.011.; T. Huang, L. Liu, and S. Zhang, “Recovery of cobalt, lithium, and manganese from the cathode active materials of spent lithium-ion batteries in a bio-electro-hydrometallurgical process,” Hydrometallurgy, vol. 188, no. February, pp. 101–111, 2019, doi:10.1016/j.hydromet.2019.06.011.; “ATCC Bacterial Products.” https://www.atcc.org/en/Products/Cells_and_Microorganisms/Bacteria.aspx (accessed Apr. 24, 2020).; “German Collection of Microorganisms and Cell Cultures GmbH: Culture Technology.” https://www.dsmz.de/collection/catalogue/microorganisms/culture-technology (accessed Apr. 24, 2020).; M. P. Silverman and D. G. Lundgren, “Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields.,” J. Bacteriol., vol. 77, no. 5, pp. 642–647, 1959, [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC290434/pdf/jbacter00502-0140.pdf.; O. H. Tuovinen and D. P. Kelly, “Studies on the growth ofThiobacillus ferrooxidans,” Arch. Microbiol., vol. 95, no. 1, pp. 165–180, 1974, doi:10.1007/bf02451758.; M. Echeverry, “Tratamiento de minerales de fósforo a partir de ácido biogénico producido por A. thiooxidans,” Universidad Nacional de Colombia - Sede Medellín, 2018.; P. G. Duarte Briceño, “Evaluación de diferentes medios de cultivo en un proceso de biodesulfurización de carbón mediado por bacterias acidófilas,” Universidad Nacional de Colombia - Sede Medellín, 2015.; “HQ40D Multimedidor digital de dos canales %7C Hach España - Aspectos Generales %7C Hach.” https://es.hach.com/hq40d-multimedidor-digital-de-dos-canales/product?id=26096933367# (accessed Apr. 25, 2020).; “Electrodo de pH Intellical PHC301 para laboratorio, multiuso, rellenable, cable de 1 metro %7C Hach España - Aspectos Generales %7C Hach.” https://es.hach.com/electrodo-de-ph-intellical-phc301-para-laboratorio-multiuso-rellenable-cable-de-1-metro/product?id=24930083856&callback=qs (accessed Apr. 25, 2020).; “Electrodo de ORP/RedOx Intellical MTC301 para laboratorio, multiuso, rellenable, cable de 1 metro %7C Hach España - Aspectos Generales %7C Hach.” https://es.hach.com/electrodo-de-orp-redox-intellical-mtc301-para-laboratorio-multiuso-rellenable-cable-de-1-metro/product?id=25116715766&callback=qs (accessed Apr. 25, 2020).; “CX31 %7C Olympus Life Science.” https://www.olympus-lifescience.com/es/microscopes/upright/cx31/ (accessed Apr. 25, 2020).; Boeco Germany, “Boeco blood counting chambers.”.; BRAND, “Cámaras de recuento. Laboratorio clínico,” pp. 253–256, 2018, [Online]. Available: www.brand.de.; “ASTM D516 - 16 Standard Test Method for Sulfate Ion in Water.” https://www.astm.org/Standards/D516.htm (accessed Mar. 04, 2020).; R. S. Young and A. J. Hall, “Colorimetric Determination of Cobalt with Ammonium Thiocyanate,” Ind. Eng. Chem. - Anal. Ed., vol. 18, no. 4, pp. 264–266, 1946, doi:10.1021/i560152a014.; E. Vargas, Á. H. Álvarez, and C. Cervantes, “Sistemas bacterianos de expulsion de metales toxicos,” Rev. Latinoam. Microbiol., vol. 40, no. 1–2, pp. 53–71, 1998, Accessed: Feb. 26, 2020. [Online]. Available: https://books.google.com.co/books?id=mjaaAAAAIAAJ&printsec=frontcover#v=onepage&q&f=false.; O. H. Tuovinen, S. I. Niemelä, and H. G. Gyllenberg, “Tolerance of Thiobacillus ferrooxidans to some metals,” Antonie Van Leeuwenhoek, vol. 37, no. 1, pp. 489–496, 1971, doi:10.1007/BF02218519.; M. Boon, H. J. Brasser, G. S. Hansford, and J. J. Heijnen, “Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans,” Hydrometallurgy, vol. 53, no. 1, pp. 57–72, 1999, doi:10.1016/S0304-386X(99)00037-7.; T. Fenchel, G. M. King, and T. H. Blackburn, Bacterial Metabolism. 2012.; D. W. Blowes, C. J. Ptacek, J. L. Jambor, and C. G. Weisener, “The Geochemistry of Acid Mine Drainage,” in Treatise on Geochemistry, vol. 9–9, 2003, pp. 149–204.; R. Wang et al., “Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp.,” Front. Microbiol., vol. 10, no. JAN, pp. 1–20, 2019, doi:10.3389/fmicb.2018.03290.; S. M. Calle Castañeda, “Evaluación de la acidulación de roca fosfórica empleando la bacteria acidófila Acidithiobacillus thiooxidans,” Universidad Nacional de Colombia - Sede Medellín, 2016.; N. Pradhan, P. Singh, B. C. Tripathy, and S. C. Das, “Electrowinning of cobalt from acidic sulphate solutions-effect of chloride ion,” Miner. Eng., vol. 14, no. 7, pp. 775–783, 2001, doi:10.1016/S0892-6875(01)00072-3.; I. G. Sharma, P. Alex, A. C. Bidaye, and A. K. Suri, “Electrowinning of cobalt from sulphate solutions,” Hydrometallurgy, vol. 80, no. 1–2, pp. 132–138, 2005, doi:10.1016/j.hydromet.2005.08.003.; P. Patnaik, S. K. Padhy, B. C. Tripathy, I. N. Bhattacharya, and R. K. Paramguru, “Electrodeposition of cobalt from aqueous sulphate solutions in the presence of tetra ethyl ammonium bromide,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 6, pp. 2047–2053, 2015, doi:10.1016/S1003-6326(15)63814-6.; M. Li, Z. Wang, and R. G. Reddy, “Cobalt electrodeposition using urea and choline chloride,” Electrochim. Acta, vol. 123, pp. 325–331, 2014, doi:10.1016/j.electacta.2014.01.052.; D. A. Bertuol, F. D. R. Amado, H. Veit, J. Z. Ferreira, and A. M. Bernardes, “Recovery of Nickel and Cobalt from Spent NiMH Batteries by Electrowinning,” Chem. Eng. Technol., vol. 35, no. 12, pp. 2084–2092, 2012, doi:10.1002/ceat.201200283.; G. Prabaharan and B. M. Trivedi, “Effect of sulfurdioxide on cobalt electrowinning,” Hydrometallurgy, vol. 127–128, pp. 39–42, 2012, doi:10.1016/j.hydromet.2012.06.016.; M. B. J. G. Freitas, V. G. Celante, and M. K. Pietre, “Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits,” J. Power Sources, vol. 195, no. 10, pp. 3309–3315, 2010, doi:10.1016/j.jpowsour.2009.11.131.; B. Panda, S. C. Das, and R. K. Panda, “Effect of added cobalt ion on electro-deposition of copper from sulfate bath using graphite and Pb-Sb anodes,” Hydrometallurgy, vol. 95, no. 1–2, pp. 87–91, 2009, doi:10.1016/j.hydromet.2008.04.018.; A. E. Elsherief, “Effects of cobalt, temperature and certain impurities upon cobalt electrowinning from sulfate solutions,” J. Appl. Electrochem., vol. 33, no. 1, pp. 43–49, 2003, doi:10.1023/A:1022938824111.; A. S. Pilla, M. M. E. Duarte, and C. E. Mayer, “Some aspects of removal of copper and cobalt from mixed ion dilute solutions,” J. Appl. Electrochem., vol. 30, no. 7, pp. 831–838, 2000, doi:10.1023/A:1003910830855.; “Model 1550, Switching DC Bench Power Supply with USB Charger Output 1-36V, 0-3A - B&K Precision.” https://www.bkprecision.com/products/power-supplies/1550-switching-dc-bench-power-supply-with-usb-charger-output-1-36v-0-3a.html (accessed Apr. 25, 2020).; FactSage, “F*A*C*T - EpH-Web.” http://www.crct.polymtl.ca/ephweb.php (accessed Aug. 25, 2020).; C. L. Mantell, Ingeniería electro-química, En español. Barcelona: Editorial Reverté S.A., 1980.; N. Estrada-Ramírez, «Recuperación de cobalto a partir del reciclaje de baterías ion-litio mediante el uso de biolixiviación y electroobtención,» Universidad Nacional de Colombia, Medellín, 2020; https://repositorio.unal.edu.co/handle/unal/78292
-
6Academic Journal
المؤلفون: Kazimierski, Martín Ariel
مصطلحات موضوعية: ALMACENAMIENTO ENERGÉTICO, BATERÍAS ION-LITIO, ENERGÍAS RENOVABLES, SUDAMÉRICA, TRANSICIÓN ENERGÉTICA
وصف الملف: p. 108-132; application/pdf
Relation: Kazimierski, Martín Ariel. 2018. Almacenamiento energético frente al inminente paradigma renovable: el rol de las baterías ion-litio y las perspectivas sudamericanas o Energy storage towards the imminent renewable paradigm: the role of ion- lithium batteries and South American perspectives. Letras Verdes. Revista Latinoamericana de Estudios Socioambientales Flacso - Ecuador, 23:108-132.; e-ISSN 1390-6631; http://hdl.handle.net/10469/16152
الاتاحة: http://hdl.handle.net/10469/16152
-
7Academic Journal
مصطلحات موضوعية: Química, Electrodeposición de estaño, Polipirrol, Baterías ión-litio
وصف الملف: application/pdf
-
8Dissertation/ Thesis
المؤلفون: Dubois, Franco
المساهمون: Sambeth, Jorge Enrique, Peluso, Miguel Andrés
مصطلحات موضوعية: Química, Baterías Ión Litio, Catálisis, Pirólisis, Reformado de Metano, Economía Circular, Revalorización
وصف الملف: application/pdf
-
9Dissertation/ Thesis
المؤلفون: Hernández-Rentero, C.
المساهمون: Caballero Amores, Álvaro, Benítez de la Torre, A.
مصطلحات موضوعية: Carbón, Materiales carbonosos, Energías renovables, Almacenamiento energético, Baterías ion-litio, Baterías litio-azufre, Electroquímica
وصف الملف: application/pdf
Relation: Gobierno de España. MAT2014-55907-R; Gobierno de España. FPU16/03718; Gobierno de España. MAT2017-87541-R; Junta de Andalucía. FQM-175; http://hdl.handle.net/10396/24656
الاتاحة: http://hdl.handle.net/10396/24656
-
10Dissertation/ Thesis
المؤلفون: Mañay Bermeo, Ana Lucia, Reyes Tapia, Pablo Andrés
المساهمون: Masache Almeida, Paul Andres
مصطلحات موضوعية: FLUJOS DE POTENCIA, CARGABILIDAD, LÍNEAS DE DISTRIBUCIÓN, MODELAMIENTO DE BATERÍAS ION-LITIO
Relation: Mañay Bermeo, Ana Lucia. Reyes Tapia, Pablo Andrés (2023). Cargabilidad de las líneas de distribución ante la integración masiva de vehículos eléctricos al sistema de potencia. Carrera de Ingeniería en Electromecánica. Universidad de las Fuerzas Armadas ESPE. Sede Latacunga.; EMI-0461; http://repositorio.espe.edu.ec/handle/21000/36953
-
11Academic Journal
المؤلفون: Sánchez-Echeverri, Juan Pablo, Betancur-Pulgarín, Juan Fernando, Ocampo-Carmona, Luz Marina
المصدر: Gestión y Ambiente; Vol. 19 Núm. 2 (2016); 240-251 ; Gestión y Ambiente; Vol. 19 No. 2 (2016); 240-251 ; 2357-5905 ; 0124-177X
مصطلحات موضوعية: Spent lithium-ion batteries, metal recovering, mechanical process, crushing E-waste, recycling, TN1-997, TD1-1066, Technology, Reciclaje de baterías Ion-Litio, conminución, análisis granulométrico, análisis composicional, TN275-325, TD172-193.5, Tecnología
وصف الملف: text/html; application/pdf; application/epub+zip
Relation: https://revistas.unal.edu.co/index.php/gestion/article/view/58492/60350; https://revistas.unal.edu.co/index.php/gestion/article/view/58492/61120; https://revistas.unal.edu.co/index.php/gestion/article/view/58492/60351; Congreso de la República de Colombia. 2013. Ley 1672 de 19 de Julio de 2013 “Por la cual se establecen los lineamientos para la adopción de una política pública de gestión integral de residuos de aparatos eléctricos y electrónicos (RAEE), y se dictan otras disposiciones”. Bogotá.; Freitas, M., Celante, V., Pietre, M., 2010. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. J. Power Sources 195, 3309-3315. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.jpowsour.2009.11.131" 10.1016/j.jpowsour.2009.11.131 /a; García, E., 2011. Manual molino o pulverizador de disco. Departamento de Ingeniería Metalúrgica y de Materiales - Universidad de Antioquia, Medellín, Colombia.; Ghosh, B., Ghosh, M., Parhi, P., Mukherjee, P., Mishra, B., 2015. Waste printed circuit boards recycling: an extensive assessment of current status. J. Clean. Prod. 94, 5-19. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.jclepro.2015.02.024" 10.1016/j.jclepro.2015.02.024 /a; Kang, H.-Y., Schoenung, J., 2005. Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour. Conserv. Recycl. 45, 368-400. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.resconrec.2005.06.001" 10.1016/j.resconrec.2005.06.001 /a; Kaya, M. 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage. 57, 64-90. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.wasman.2016.08.004" 10.1016/j.wasman.2016.08.004 /a; Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia (MAVDT). 2010a. Lineamientos técnicos para el manejo de residuos de aparatos eléctricos y electrónicos. Bogotá. 100 p. Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia (MAVDT). 2010b. Resolución 1297 de 8 julio de 2010 "Por la cual se establecen los Sistemas de Recolección Selectiva y Gestión Ambiental de Residuos de Pilas y/o Acumuladores y se adoptan otras disposiciones". Bogotá.; Osorio, A., Restrepo, G., Marín, J., 2013. Operaciones de reducción de tamaño: trituración primaria y secundaria. Departamento de Ingeniería Química - Universidad de Antioquia, Medellín, Colombia. 1-5 pp.; Revelo, R. 2008a. Manual de la trituradora de cuchillas. Departamento de Ingeniería Metalúrgica y de Materiales - Universidad de Antioquia, Medellín, Colombia.; Revelo, R. 2008b. Manual de la trituradora de rodillos. Departamento de Ingeniería Metalúrgica y de Materiales - Universidad de Antioquia, Medellín, Colombia.; Richa, K., Babbitt, C., Gaustad, G., Wang, X., 2014. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 83, 63-76. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.resconrec.2013.11.008" 10.1016/j.resconrec.2013.11.008 /a; Ruan, J., Xu, Z., 2016. Constructing environment-friendly return road of metals from e-waste: Combination of physical separation technologies. Renew. Sustain. Energy Rev. 54, 745-760. DOI 10.1016/j.rser.2015.10.114 /p; Thompson, S. 2011. Large format EV battery recycling: challenges and opportunities. En: 4th U.S.-China Electric Vehicle and Battery Technology Workshop. US Department of Energy; China Ministry of Science and Technology; Argonne National Laboratory, Argonne, IL.; Wang, M.-M., Zhang, C.-C., Zhang, F.-S. 2016. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Manage. 51, 239-244. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.wasman.2016.03.006" 10.1016/j.wasman.2016.03.006 /a; Zeng, X., Li, J., Singh, N., 2014. Recycling of spent lithium-ion battery: a critical review. Crit. Rev. Environ. Sci. Technol. 44, 1129-1165. DOI: a target="_blank" href="http://dx.doi.org/10.1080/10643389.2013.763578" 10.1080/10643389.2013.763578 /a; Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., Li, H. 2014. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manage. 34, 1051-1058. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.wasman.2014.01.002" 10.1016/j.wasman.2014.01.002 /a; Zhang, L., Xu, Z., 2016. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 127, 19-36. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.jclepro.2016.04.004" 10.1016/j.jclepro.2016.04.004 /a; https://revistas.unal.edu.co/index.php/gestion/article/view/58492
-
12Academic Journal
المؤلفون: Sánchez-Echeverri, Juan Pablo, Betancur-Pulgarín, Juan Fernando, Ocampo-Carmona, Luz Marina
مصطلحات موضوعية: 62 Ingeniería y operaciones afines / Engineering, Spent lithium-ion batteries, metal recovering, mechanical process, crushing E-waste, recycling, Reciclaje de baterías Ion-Litio, conminución, análisis granulométrico, análisis composicional
وصف الملف: application/pdf
Relation: https://revistas.unal.edu.co/index.php/gestion/article/view/58492; Universidad Nacional de Colombia Revistas electrónicas UN Gestión y Ambiente; Gestión y Ambiente; Sánchez-Echeverri, Juan Pablo and Betancur-Pulgarín, Juan Fernando and Ocampo-Carmona, Luz Marina (2016) Conminución y análisis para un proceso de recuperación de cobalto de baterías recicladas de celulares. Gestión y Ambiente, 19 (2). pp. 240-251. ISSN 2357-5905; https://repositorio.unal.edu.co/handle/unal/64546; http://bdigital.unal.edu.co/65474/
-
13Academic Journal
المصدر: Gestión y Ambiente, Vol 19, Iss 2, Pp 240-251 (2016)
مصطلحات موضوعية: Reciclaje de baterías Ion-Litio, conminución, análisis granulométrico, análisis composicional, Geography. Anthropology. Recreation, Environmental sciences, GE1-350
-
14Dissertation/ Thesis
المؤلفون: Criado Delgado, Ana Elisa
المساهمون: Lavela Cabello, Pedro, Pérez-Vicente, C.
مصطلحات موضوعية: Almacenamiento energético, Celda galvánica, Baterías ion-litio, Baterías de ion-sodio, Electrodos positivos, Estructura NASICON, Electroquímica
وصف الملف: application/pdf
Relation: http://hdl.handle.net/10396/22449
الاتاحة: http://hdl.handle.net/10396/22449
-
15Dissertation/ Thesis
المؤلفون: Paccha Herrera, Edwin Bladimir
المساهمون: Calderón Muñoz, Williams, Valencia Musalem, Álvaro, Ihle Bascuñán, Christian, Díaz Olivares, Gerardo, Pérez Mora, Amaris
مصطلحات موضوعية: Celdas de Ión-litio, Baterías ión-litio, Baterías eléctricas, Celdas cilíndricas, Rendimiento térmico, Comportamiento térmico
وصف الملف: application/pdf
-
16Dissertation/ Thesis
المؤلفون: Giraldo Montoya, Sara
المساهمون: Calderón Gutiérrez, Jorge Andrés
مصطلحات موضوعية: Baterías, Batteries, Electrolitos, Electrolitos - conductividad, Baterías Ion Litio, Baterías de estado sólido, Electrolitos sólidos tipo sulfuro
وصف الملف: application/pdf
Relation: https://hdl.handle.net/10495/30040
الاتاحة: https://hdl.handle.net/10495/30040
-
17Dissertation/ Thesis
المؤلفون: Farré Delgado, Emma
المساهمون: Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC, Guimerà Villalba, Xavier, Garcia Saez, Lídia
مصطلحات موضوعية: Àrees temàtiques de la UPC::Enginyeria mecànica::Automoció, Electric vehicles, Baterías ion litio, metales valiosos, cátodo, recuperación de metales, cambio climático, emisiones de dióxido de carbono, vehículos eléctricos, Vehicles elèctrics
وصف الملف: application/pdf
Relation: http://hdl.handle.net/2117/372782; PRISMA-172346
الاتاحة: http://hdl.handle.net/2117/372782
-
18Dissertation/ Thesis
المؤلفون: Alia De Maria, Jose Vicente
مصطلحات موضوعية: Energía solar fotovoltaica, módulos bifaciales, baterías ion litio
Relation: https://hdl.handle.net/10115/34450
الاتاحة: https://hdl.handle.net/10115/34450
-
19Dissertation/ Thesis
المؤلفون: Sanchez Mateu, Marc
المساهمون: Fuster Roig, Vicente Luis, Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
مصطلحات موضوعية: Sistemas de almacenamiento con baterías, Simulación baterías ion-litio, Voltaje, Temperatura de trabajo, Sistemes d'emmagatzematge amb bateries, Simulació bateries ion-liti, Voltatge, Temperatura de treball, Battery storage systems, Lithium-ion battery simulation, Voltage, Working temperature, INGENIERIA ELECTRICA, Máster Universitario en Ingeniería Industrial (Acceso desde Grado I. Eléctrica)-Màster Universitari en Enginyeria Industrial (Accés des de Grau I. Elèctrica)
Relation: http://hdl.handle.net/10251/202693
الاتاحة: http://hdl.handle.net/10251/202693
-
20Academic Journal
المؤلفون: Sánchez Granados, Luis, Morales Palomino, Julián
المصدر: Boletín TR-UCO (1), 9 (2011)
مصطلحات موضوعية: Baterías ion-litio
وصف الملف: application/pdf
Relation: http://hdl.handle.net/10396/4920
الاتاحة: http://hdl.handle.net/10396/4920