يعرض 1 - 20 نتائج من 520 نتيجة بحث عن '"Balassone Giuseppina"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    المساهمون: Rispoli, Concetta, Montesano, Giovanna, Verde, Maria, Balassone, Giuseppina, Columbu, Stefano, De Bonis, Alberto, Di Benedetto, Claudia, D’Uva, Francesco, Esposito, Renata, Graziano, Sossio Fabio, Mercurio, Mariano, Morra, Vincenzo, Cappelletti, Piergiulio

    Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001139779500001; volume:411; journal:CONSTRUCTION AND BUILDING MATERIALS; https://hdl.handle.net/11588/948794

  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المساهمون: Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 26, Napoli 80126, Italy, CSIRO Mineral Resources, Kensington, WA 6151, Australia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia, British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK

    وصف الملف: application/pdf

    Relation: Ore Geology Reviews; /152 (2023); Agenzia Spaziale Italiana (ASI) (2020) PRISMA Products Specification Document Issue 2.1 Date 12/02/2020. Al Ganad, I., Lagny, P., Lescuyer, J.L., Ramboz, C., Touray, J.C., 1994. Jabali, a Zn-Pb- (Ag) carbonate-hosted deposit associated with Late Jurassic rifting in Yemen. Miner. Depos. 29 (1), 44–56. Amato, U., Antoniadis, A., Carfora, M.F., Colandrea, P., Cuomo, V., Franzese, M., Pignatti, S., Serio, C., 2013. Statistical classification for assessing PRISMA hyperspectral potential for agricultural land use. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6 (2), 615–625. As-Saruri, M.A., Sorkhabi, R., Baraba, R., 2010. Sedimentary basins of Yemen: their tectonic development and lithostratigraphic cover. Arab. J. Geosci. 3 (4), 515–527. Bedini, E., 2017. The use of hyperspectral remote sensing for mineral exploration: a review. J. Hypersp. Remote Sens. 7, 189–211. https://doi.org/10.29150/jhrs.v7.4. p189-211. Bedini, E., Chen, J., 2020. Application of PRISMA satellite hyperspectral imagery to mineral alteration mapping at Cuprite, Nevada, USA. J. Hyperspec. Remote Sens. 10, 87–94. Bish, D.L., Post, J.E., 1993. Quantitative mineralogical analysis using the Rietveld fullpattern fitting method. Am. Mineral. 78, 932–940. Bishop, J.L., Murad, E., 2005. The visible and infrared spectral properties of jarosite and alunite. Am. Mineral. 90, 1100–1107. https://doi.org/10.2138/am.2005.1700. Boni, M., Mondillo, N., Balassone, G., 2011. Zincian dolomite: a peculiar dedolomitization case? Geology 39, 183–186. https://doi.org/10.1130/G31486.1. Casa R, Pignatti S, Pascucci S, et al (2020) Assessment of PRISMA imaging spectrometer data for the estimation of topsoil properties of agronomic interest at the field scale. 6728. https://doi.org/10.5194/egusphere-egu2020-6728. Christmann P, Lagny P, Lescuyer J-L, Sharaf Ad Din A (1989) Discovery of the Jabali deposit (Zn-Pb-Ag) in the Jurassic cover of the Yemen Arab Republic. Chronique de la recherche mini`ere 43–52. Chung, F.H., 1974a. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Cryst. 7, 519–525. https://doi.org/10.1107/S0021889874010375. Chung, F.H., 1974b. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Cryst 7, 526–531. https://doi.org/10.1107/S0021889874010387. Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., Vergo, N., 1990. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 95 (B8), 12653. Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A., P´erez-Lopez, ´ S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T.P.F., Giardino, C., Colombo, R., 2021. The PRISMA imaging spectroscopy mission: overview and first performance analysis. Remote Sens. Environ. 262 https://doi.org/10.1016/j.rse.2021.112499. Crowley, J.K., 1986. Visible and near-infrared spectra of carbonate rocks: Reflectance variations related to petrographic texture and impurities. J. Geophys. Res. Solid Earth 91, 5001–5012. https://doi.org/10.1029/JB091iB05p05001. Crowley, J.K., 1991. Visible and near-infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals. J. Geophys. Res. Solid Earth 96, 16231–16240. https://doi.org/ 10.1029/91JB01714. R. Chirico et al. Ore Geology Reviews 152 (2023) 105244 23 Crowley, J.K., Brickey, D.W., Rowan, L.C., 1989. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sens. Environ. 29, 121–134. https://doi.org/10.1016/ 0034-4257(89)90021-7. Crowley, J.K., Williams, D.E., Hammarstrom, J.M., et al., 2003. Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphatehydrate minerals associated with sulphide-bearing mine wastes. Geochemi. Explor. Environ. Anal. 3, 219–228. https://doi.org/10.1144/1467-7873/03-001. Cudahy, T., Jones, M., Thomas, M., Laukamp, C., Caccetta, M., Hewson, R., Rodger, A., Verrall, M., 2008. Next Generation Mineral Mapping: Queensland airborne HyMap and satellite ASTER surveys 2006–2008. Cudahy, T., Ramanaidou, E.R., 1997. Measurement of the hematite:goethite ratio using field visible and near-infrared reflectance spectrometry in channel iron deposits, Western Australia. Aust. J. Earth Sci. 44, 411–420. https://doi.org/10.1080/ 08120099708728322. Curtiss, B., 1985. Evaluation of the Physical Properties of Naturally Occurring Iron (III) Oxyhydroxides on Rock Surfaces in Arid and Semi-arid Regions Using Visible and Near Infrared Reflectance Spectroscopy. Davies, G.R., Smith Jr, L.B., 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bull. 90, 1641–1690. https://doi.org/10.1306/ 05220605164. De Bonis R, Laneve G, Palombo A, et al (2015) The potential impact of the next hyperspectral prisma mission on the natural and anthropogenic hazards management. In: 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). pp 1643–1646. Deroin, J.-P., T´ereygeol, F., Heckes, J., 2011. Evaluation of very high to medium resolution multispectral satellite imagery for geoarchaeology in arid regions – Case study from Jabali, Yemen. J. Archaeol. Sci. 38, 101–114. https://doi.org/10.1016/j. jas.2010.08.015. Deroin, J.-P., T´ereygeol, F., Heckes, J., 2012. Remote Sensing Study of the Ancient Jabali Silver Mines (Yemen): From Past to Present. In: Lasaponara, R., Masini, N. (Eds.), SAtellite Remote Sensing: A New Tool for ArchAeology. Springer, Netherlands, Dordrecht, pp. 231–245. European Space Agency, 2015. Sentinel-2 User Handbook. ESA Standard Document Date 1, 1–64. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D., 2007. The Shuttle radar topography mission. Rev. Geophys. 45 (2) https://doi.org/10.1029/2005RG000183. Gaffey, S.J., 1985. Reflectance spectroscopy in the visible and near-infrared (0.35–2.55 µm): applications in carbonate petrology. Geology 13, 270–273. https://doi.org/ 10.1130/0091-7613(1985)132.0.CO;2. Gaffey, S.J., 1986. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns); calcite, aragonite, and dolomite. Am. Mineral. 71, 151–162. Giardino, C., Bresciani, M., Braga, F., Fabbretto, A., Ghirardi, N., Pepe, M., Gianinetto, M., Colombo, R., Cogliati, S., Ghebrehiwot, S., Laanen, M., Peters, S., Schroeder, T., Concha, J.A., Brando, V.E., 2020. First Evaluation of PRISMA Level 1 data for water applications. Sensors 20 (16), 4553. Green, D., Schodlok, M., 2016. Characterisation of carbonate minerals from hyperspectral TIR scanning using features at 14 000 and 11 300 nm. Aust. J. Earth Sci. 63, 951–957. https://doi.org/10.1080/08120099.2016.1225601. Gualtieri, A.F., 2000. Accuracy of XRPD QPA using the combined Rietveld–RIR method. J Appl Cryst 33, 267–278. https://doi.org/10.1107/S002188989901643X. Gualtieri, A., Norby, P., Hanson, J., Hriljac, J., 1996. Rietveld refinement using synchrotron X-ray powder diffraction data collected in transmission geometry using an imaging-plate detector: application to standard m-ZrO2. J Appl Cryst 29, 707–713. https://doi.org/10.1107/S0021889896008199. Guanter, L., Irakulis-Loitxate, I., Gorrono, ˜ J., S´ anchez-García, E., Cusworth, D.H., Varon, D.J., Cogliati, S., Colombo, R., 2021. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sens. Environ. 265 https:// doi.org/10.1016/j.rse.2021.112671. Haest, M., Cudahy, T., Laukamp, C., Gregory, S., 2012a. Quantitative Mineralogy from Infrared Spectroscopic Data. I. Validation of mineral abundance and composition scripts at the rocklea channel iron deposit in Western Australia. Econ. Geol. 107, 209–228. https://doi.org/10.2113/econgeo.107.2.209. Haest, M., Cudahy, T., Laukamp, C., Gregory, S., 2012b. Quantitative mineralogy from infrared spectroscopic data. II. Three-dimensional mineralogical characterization of the rocklea channel iron deposit, Western Australia. Econ. Geol. 107, 229–249. https://doi.org/10.2113/econgeo.107.2.229. Heller Pearlshtien, D., Pignatti, S., Greisman-Ran, U., Ben-Dor, E., 2021. PRISMA sensor evaluation: a case study of mineral mapping performance over Makhtesh Ramon, Israel. Int. J. Remote Sens. 42, 5882–5914. https://doi.org/10.1080/ 01431161.2021.1931541. Hitzman, M.W., Reynolds, N.A., Sangster, D.F., Allen, C.R., Carman, C.E., 2003. Classification, genesis, and exploration guides for nonsulfide zinc deposits. Econ. Geol. 98 (4), 685–714. Hunt, G.R., 1971. Visible and near-infrared spectra of minerals and rocks: III. Oxides and hydro-oxides. Modern Geology 2, 195–205. Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501–513. https://doi.org/10.1190/1.1440721. Hunt, G.R., Ashley, R.P., 1979. Spectra of altered rocks in the visible and near infrared. Econ. Geol. 74, 1613–1629. https://doi.org/10.2113/gsecongeo.74.7.1613. Hunt, G.R., Salisbury, J.W., 1971. Visible and near infrared spectra of minerals and rocks II. Carbonates. Modern Geol. 2, 23–30. Kale, K.V., Solankar, M.M., Nalawade, D.B., Dhumal, R.K., Gite, H.R., 2017. A research review on hyperspectral data processing and analysis algorithms. Proc Natl Acad Sci, India, Sect A Phys Sci 87 (4), 541–555. Kurz, T.H., Dewit, JULIE, Buckley, S.J., Thurmond, J.B., Hunt, D.W., Swennen, RUDY, 2012. Hyperspectral image analysis of different carbonate lithologies (limestone, karst and hydrothermal dolomites): the Pozalagua Quarry case study (Cantabria, North-west Spain). Sedimentology 59 (2), 623–645. Lampinen, H.M., Laukamp, C., Occhipinti, S.A., Metelka, V., Spinks, S.C., 2017. Delineating alteration footprints from field and ASTER SWIR spectra, geochemistry, and gamma-ray spectrometry above Regolith-covered base metal deposits—An example from abra, Western Australia. Econ. Geol. 112 (8), 1977–2003. Lampinen, H.M., Laukamp, C., Occhipinti, S.A., Hardy, L., 2019. Mineral footprints of the paleoproterozoic sediment-hosted abra pb-Zn-Cu-Au deposit Capricorn Orogen, Western Australia. Ore Geol. Rev. 104, 436–461. https://doi.org/10.1016/j. oregeorev.2018.11.004. Laukamp, C., Cudahy, T., Thomas, M., Jones, M., Cleverley, J.S., Oliver, N.H.S., 2011. Hydrothermal mineral alteration patterns in the Mount Isa Inlier revealed by airborne hyperspectral data. Aust. J. Earth Sci. 58 (8), 917–936. Laukamp, C., Termin, K.A., Pejcic, B., Haest, M., Cudahy, T., 2012. Vibrational spectroscopy of calcic amphiboles – applications for exploration and mining. Eur. J. Mineral. 24 (5), 863–878. Laukamp, C., Rodger, A., LeGras, M., Lampinen, H., Lau, I.C., Pejcic, B., Stromberg, J., Francis, N., Ramanaidou, E., 2021. Mineral physicochemistry underlying featurebased extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra. Minerals 11 (4), 347. Laukamp, C., LeGras, M., Montenegro, V., Windle, S., McFarlane, A., 2022. Granditebased resource characterization of the skarn-hosted Cu-Zn-Mo deposit of Antamina, Peru. Miner Depos. 57 (1), 107–128. Laukamp, C., 2022. Geological Mapping using mineral absorption feature-guided bandratios applied to PRISMA satellite hyperspectral level 2D imagery IGARSS 2022 2022 Kuala Lumpur, Malaysia 17.-22.07.22. Leach DL, Sangster DF, Kelley KD, et al (2005). Sediment-Hosted Lead-Zinc Deposits: A Global Perspective, in: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), One Hundredth Anniversary Volume. Society of Economic Geologists, p. 0. https://doi.org/10.5382/AV100.18. Loizzo R, Guarini R, Longo F, et al (2018) Prisma: The Italian Hyperspectral Mission. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. pp 175–178. Malvern Panalytical. https://www.malvernpanalytical.com/ (accessed 26 May 2022). McCombe, D., Fernette, G., Aalawi, A., 1994. The geological and mineral resources of Yemenf Ministry of oil and Mineral Resources, Geological Survey of Yemen 1994 Sana’a. Yemen. McConachy, T.F., Yang, K., Boni, M., Evans, N.J., 2007. Spectral reflectance: preliminary data on a new technique with potential for non-sulphide base metal exploration. Geochem. Explor. Environ, Anal. 7, 139–151. https://doi.org/10.1144/1467-7873/ 07-129. Mondillo, N., Boni, M., Balassone, G., Grist, B., 2011. In search of the lost zinc: a lesson from the Jabali (Yemen) nonsulfide zinc deposit. J. Geochem. Explor. 108, 209–219. https://doi.org/10.1016/j.gexplo.2011.02.010. Mondillo, N., Boni, M., Balassone, G., Joachimski, M., Mormone, A., 2014. The Jabali nonsulfide Zn–Pb–Ag deposit, western Yemen. Ore Geol. Rev. 61, 248–267. NASA JPL (2013) NASA Shuttle Radar Topography Mission Global 1 arc second. Niroumand-Jadidi, M., Bovolo, F., Bruzzone, L., 2020. Water quality retrieval from PRISMA hyperspectral images: first experience in a Turbid Lake and comparison with sentinel-2. Remote Sens. (Basel) 12, 3984. https://doi.org/10.3390/ rs12233984. Ostendorf, J., Henjes-Kunst, F., Mondillo, N., et al., 2015. Formation of Mississippi Valley–type deposits linked to hydrocarbon generation in extensional tectonic settings: Evidence from the Jabali Zn-Pb-(Ag) deposit (Yemen). Geology 43, 1055–1058. https://doi.org/10.1130/G37112.1. Pepe, M., Pompilio, L., Gioli, B., Busetto, L., Boschetti, M., 2020. Detection and classification of non-photosynthetic vegetation from PRISMA hyperspectral data in croplands. Remote Sens. (Basel) 12 (23), 3903. Peyghambari, S., Zhang, Y., 2021. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. JARS 15, 031501. https://doi.org/10.1117/1.JRS.15.031501. Pignatti, S., Palombo, A., Pascucci, S., et al., 2013. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring. In: In: 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS, pp. 4558–4561. Romaniello, V., Spinetti, C., Silvestri, M., Buongiorno, M.F., 2021. A Methodology for CO2 retrieval applied to hyperspectral PRISMA data. Remote Sens. (Basel) 13, 4502. https://doi.org/10.3390/rs13224502. Romaniello, V., Buongiorno, M.F., Spinetti, C., Silvestri, M., 2022. Analysis of volcanic carbon dioxide emissions by means of prisma hyperspectral data and in situ measurements. In: In: IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 7268–7271. Santoro, L., Putzolu, F., Mondillo, N., Herrington, R., Najorka, J., Boni, M., Balassone, G., 2021. Quantitative mineralogical evaluation of Ni-Co laterite ores through XRPDQPA-and automated SEM-based approaches: The Wingellina (Western Australia) case study. J. Geochem. Explor. 223, 106695. Santoro, L., Rollinson, G.K., Boni, M., Mondillo, N., 2015. Automated scanning electron microscopy (QEMSCAN®)-based mineral identification and quantification of the Jabali Zn-Pb-Ag nonsulfide deposit (Yemen). Econ. Geol. 110, 1083–1099. https:// doi.org/10.2113/econgeo.110.4.1083. R. Chirico et al. Ore Geology Reviews 152 (2023) 105244 24 Savitzky, A., Golay, M.J., 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36 (8), 1627–1639. Scheinost, A.C., Schulze, D.G., Schwertmann, U., 1999. Diffuse reflectance spectra of A1 substituted goethite: a ligand field approach. Clay Clay Miner. 47, 156–164. Sonntag, I., Laukamp, C., Hagemann, S.G., 2012. Low potassium hydrothermal alteration in low sulfidation epithermal systems as detected by IRS and XRD: An example from the Co–O mine, Eastern Mindanao, Philippines. Ore Geol. Rev. 45, 47–60. https:// doi.org/10.1016/j.oregeorev.2011.08.001. SRK Consulting, 2005. Jabali feasibility study, geology and resources. Unpublished report, ZincOx Resources plc., p. 45. Taylor, R. (Ed.), 2011. Gossans and Leached Cappings. Springer Berlin Heidelberg, Berlin, Heidelberg. The Spectral Geologist (TSG™) https://research.csiro.au/thespectralgeologist (accessed 25 November 2021). Van der Meer, F.D., 1995. Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: Quantitative analysis techniques for application in remote sensing. Remote Sens. Rev. 13, 67–94. https://doi.org/10.1080/ 02757259509532297. Van der Meer, F.D., 2004. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs. 5, 55–68. https://doi.org/10.1016/j. jag.2003.09.001. Van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J.B.d., Woldai, T., 2012. Multi- and hyperspectral geologic remote sensing: a review. Int. J. Appl. Earth Obs. Geoinf. 14 (1), 112–128. Vangi, E., D’Amico, G., Francini, S., Giannetti, F., Lasserre, B., Marchetti, M., Chirici, G., 2021. The new hyperspectral satellite PRISMA: imagery for forest types discrimination. Sensors 21 (4), 1182. Vedder, W., 1964. Correlations between infrared spectrum and chemical composition of mica. Am. Mineral. 49, 736–768. Vedder, W., McDonald, R.S., 1963. Vibrations of the OH Ions in Muscovite. J Chem Phys 38, 1583–1590. https://doi.org/10.1063/1.1776925. Windeler, D.S., Lyon, R.J., 1991. Discriminating dolomitization of marble in the Ludwig Skarn near Yerington, Nevada using high-resolution airborne infrared imagery. Photogramm Eng Remote Sensing 57 (9), 1171–1177. Youssef, E.S.A.A., 1998. Sequence stratigraphy of the upper jurassic evaporite-carbonate: sequence at the western area of Wadi Al-Jawf-Marib basin, Yemen. Carbonates Evaporites 13, 168–173. https://doi.org/10.1007/BF03176590. Zaini, N., Van der Meer, F., Van der Werff, H., 2012. Effect of grain size and mineral mixing on carbonate absorption features in the SWIR and TIR wavelength regions. Remote Sens. 4 (4), 987–1003.

  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المؤلفون: Pellino, Annamaria1 (AUTHOR), Balassone, Giuseppina1,2,3 (AUTHOR) balasson@unina.it, Abad, Isabel4 (AUTHOR), Altomare, Angela5 (AUTHOR), Bellatreccia, Fabio6 (AUTHOR), Cappelletti, Piergiulio1,2,7 (AUTHOR), Falcicchio, Aurelia5 (AUTHOR), Mondillo, Nicola1,8 (AUTHOR), Herrington, Richard8 (AUTHOR), Isé, Cristiana1 (AUTHOR), Petti, Carmela7 (AUTHOR), Rumsey, Mike9 (AUTHOR)

    المصدر: American Mineralogist. Sep2024, Vol. 109 Issue 9, p1626-1645. 20p.

    مصطلحات موضوعية: *COPPER, *MICROSCOPY, *INCRUSTATIONS, *NINETEENTH century, *TUNGSTATES

  8. 8
    Academic Journal

    المساهمون: Balassone, Giuseppina, Panikorovskii, Taras L., Pellino, Annamaria, Bazai, Ayya V., Bocharov, Vladimir N., Goychuk, Olga F., Avdontseva, Evgenia Yu., Yakovenchuk, Victor N., Krivovichev, Sergey V., Petti, Carmela, Cappelletti, Piergiulio, Mondillo, Nicola, Moliterni, Anna, Altomare, Angela, Izzo, Francesco

    Relation: firstpage:1; lastpage:34; numberofpages:34; journal:MINERALOGICAL MAGAZINE; https://hdl.handle.net/11588/959197; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85186196091

  9. 9
    Academic Journal
  10. 10
  11. 11
  12. 12
    Academic Journal
  13. 13
    Book

    المساهمون: Pagano, Sabrina, Balassone, Giuseppina, Germinario, Chiara, Grifa, Celestino, Izzo, Francesco, Leone, Marcella, Mercurio, Mariano, Munzi, Priscilla, Pappalardo, Lucia, Spagnoli, Emanuela, Verde, Maria, De Bonis, Alberto

    مصطلحات موضوعية: Cuma, monete, Roma imperiale, archeometria, analisi non distruttive

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-88-7478-085-3; ispartofbook:Archeo.Metalli (Ag, Pb, Cu). Materiali e tecniche di analisi per l'archeologia e la numismatica. Ricerche in corso: strumenti, schede e documenti; https://hdl.handle.net/11573/1700452

  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
  17. 17
    Academic Journal
  18. 18
    Academic Journal

    المؤلفون: Balassone, Giuseppina1,2,3 (AUTHOR) balasson@unina.it, Schingaro, Emanuela4 (AUTHOR), Lacalamita, Maria4 (AUTHOR), Mesto, Ernesto4 (AUTHOR), Mormone, Angela2 (AUTHOR), Piochi, Monica2 (AUTHOR), Guarino, Vincenza1 (AUTHOR), Pellino, Annamaria1 (AUTHOR), D'Orazio, Loredana3 (AUTHOR)

    المصدر: American Mineralogist. Mar2024, Vol. 109 Issue 3, p556-573. 18p.

    مصطلحات جغرافية: ITALY, VESUVIUS (Italy)

  19. 19
    Conference

    المساهمون: Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Università degli Studi di Roma "La Sapienza" = Sapienza University Rome (UNIROMA), Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), University of Naples Federico II = Università degli studi di Napoli Federico II, Center for Research on Archaeometry and Conservation Science (CRACS ), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Napoli (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Centre Jean Berard (CJB), Ecole française de Rome (EFR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Emanuela Spagnoli, Stefano Nisi

    المصدر: Archeo.Metalli (Ag, Pb, Cu). Materiali e tecniche di analisi per l'archeologia e la numismatica. Ricerche in corso: strumenti, schede e documenti ; https://hal.science/hal-04407667 ; Archeo.Metalli (Ag, Pb, Cu). Materiali e tecniche di analisi per l'archeologia e la numismatica. Ricerche in corso: strumenti, schede e documenti, Emanuela Spagnoli; Stefano Nisi, Sep 2023, Napoli - Assergi, Italy

    جغرافية الموضوع: Napoli - Assergi, Italy

    Relation: hal-04407667; https://hal.science/hal-04407667

  20. 20
    Book

    المساهمون: Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Università degli Studi di Roma "La Sapienza" = Sapienza University Rome (UNIROMA), Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), University of Naples Federico II = Università degli studi di Napoli Federico II, Center for Research on Archaeometry and Conservation Science (CRACS ), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Napoli (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Centre Jean Berard (CJB), Ecole française de Rome (EFR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Stefano Nisi, Emanuela Spagnoli

    المصدر: Archeo.Metalli (Ag, Pb, Cu). Materiali e tecniche di analisi per l'archeologia e la numismatica. Ricerche in corso: strumenti, schede e documenti ; https://hal.science/hal-04209219 ; Stefano Nisi; Emanuela Spagnoli. Archeo.Metalli (Ag, Pb, Cu). Materiali e tecniche di analisi per l'archeologia e la numismatica. Ricerche in corso: strumenti, schede e documenti, Naus Editoria, 2023, 978-88-7478-085-3

    Relation: hal-04209219; https://hal.science/hal-04209219