يعرض 1 - 20 نتائج من 59 نتيجة بحث عن '"Austemperado"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: BRAZILIAN JOURNAL OF SCIENCE, TECHNOLOGY AND INNOVATION; Vol. 5 No. 2 (2020): Julho/Dezembro; 156-167 ; REVISTA BRASILEÑA DE CIENCIA, TECNOLOGÍA E INNOVACIÓN; Vol. 5 Núm. 2 (2020): Julho/Dezembro; 156-167 ; Revista Brasileira de Ciência, Tecnologia e Inovação; v. 5 n. 2 (2020): Julho/Dezembro; 156-167 ; 2359-4748

    مصطلحات موضوعية: ausferrita, austêmpera, ferro fundido nodular austemperado

    وصف الملف: application/pdf

  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Academic Journal
  10. 10
    Academic Journal
  11. 11
  12. 12
    Conference
  13. 13
    Dissertation/ Thesis
  14. 14
    Dissertation/ Thesis

    المؤلفون: Ortiz Godoy, Nicolás

    المساهمون: Ortiz Godoy, Nicolás, Análisis de falla, integridad y superficies AFIS, 0000000344684603, Nicolas Ortiz Godoy

    وصف الملف: xviii, 95 páginas; application/pdf

    Relation: [1] A. Muñoz Mizuno and M. Plaza Vega, “Estado actual de la corrosión en Colombia,” Barranquilla, 2015.; [2] M. Schlesinger and M. Paunovic, Modern electro-plating, vol. 5, no. 4. 2010. doi:10.1016/s0016-0032(24)90740-x.; [3] P. B. Chikali and V. D. Shinde, “Analysis of machinability in ductile iron casting,” Mater Today Proc, vol. 27, pp. 584–588, 2019, doi:10.1016/j.matpr.2019.12.064.; [4] L. Collini and A. Pirondi, “Microstructure-based RVE modeling of the failure behavior and LCF resistance of ductile cast iron,” Procedia Structural Integrity, vol. 24, no. 2019, pp. 324–336, 2019, doi:10.1016/j.prostr.2020.02.030.; [5] J. Lacaze, J. Sertucha, and L. Magnusson Åberg, “Microstructure of as-cast ferritic-pearlitic nodular cast irons,” ISIJ International, vol. 56, no. 9, pp. 1606–1615, 2016, doi:10.2355/isijinternational.ISIJINT-2016-108.; [6] American Society for Testing And Materials, “ASTM A536 Ductile Iron Castings,” vol. 84, no. Reapproved. pp. 1–5, 1999.; [7] F. Concli, “Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior,” Procedia Structural Integrity, vol. 8, pp. 14–23, 2018.; [8] D. Eraslan et al., “Machinability evaluations of austempered ductile iron and cast steel with similar mechanical properties under eco-friendly milling conditions,” Journal of Materials Research and Technology, vol. 11, no. 2238–7854, pp. 1443–1456, 2021, doi:10.1016/j.jmrt.2021.01.123.; [9] Y. J. Kim, H. Shin, H. Park, and J. D. Lim, “Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperature,” Mater Lett, vol. 62, no. 3, pp. 357–360, 2008, doi:10.1016/j.matlet.2007.05.028.; [10] G. Vidyathee and K. K. Singh, “Thin Wall Austempered Ductile Iron: A Best Replaceable Material To Steel And Aluminum,” International Journal of Mechanical Engineering and Robotics Research, vol. 3, no. 3, pp. 465–473, 2014.; [11] C. H. Hsu and M. L. Chen, “Corrosion behavior of nickel alloyed and austempered ductile irons in 3.5% sodium chloride,” Corros Sci, vol. 52, no. 9, pp. 2945–2949, 2010, doi:10.1016/j.corsci.2010.05.006.; [12] O. J. Akinribide, S. O. Akinwamide, O. O. Ajibola, B. A. Obadele, S. O. oluwagbenga Olusunle, and P. A. Olubambi, “Corrosion behavior of ductile and austempered ductile cast iron in 0.01M and 0.05M NaCl Environments.,” Procedia Manuf, vol. 30, pp. 167–172, 2019, doi:10.1016/j.promfg.2019.02.024.; [13] A. Thakur, S. Gharde, and B. Kandasubramanian, “Electroless nickel fabrication on surface modified magnesium substrates,” Defence Technology, vol. 15, no. 4, pp. 636–644, 2019, doi:10.1016/j.dt.2019.04.006.; [14] R. Parkinson, “Properties and applications of electroless nickel,” 2001.; [15] D. G. Agredo Diaz et al., “Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution,” Mater Lett, vol. 275, p. 128159, 2020, doi:10.1016/j.matlet.2020.128159.; [16] N. Biswas, R. K. Baranwal, G. Majumdar, and D. Brabazon, “Review of duplex electroless coatings and their properties,” Advances in Materials and Processing Technologies, vol. 4, no. 3, pp. 448–465, 2018, doi:10.1080/2374068X.2018.1457298.; [17] C. H. Hsu, J. K. Lu, and R. J. Tsai, “Effects of low-temperature coating process on mechanical behaviors of ADI,” Materials Science and Engineering A, vol. 398, no. 1–2, pp. 282–290, 2005, doi:10.1016/j.msea.2005.03.092.; [18] P. Sahoo and S. Kalyan Das, “Tribology of electroless nickel coatings - A review,” Mater Des, vol. 32, no. 4, pp. 1760–1775, 2011, doi:10.1016/j.matdes.2010.11.013.; [19] J. N. Balaraju, T. S. N. Sankara, and S. K. Seshadri, “Electroless Ni–P composite coatings,” J Appl Electrochem, vol. 33, no. 9, pp. 807–816, 2003, doi:10.1023/A:1025572410205.; [20] S. Jothi, R. Muraliraja, T. R. Tamilarasan, S. Udayakumar, and A. Selvakumar, “Electroless Composite Coatings,” in Electroless Nickel Plating, 2019, pp. 359–409. doi:10.1201/9780429466274-9.; [21] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. December 2018, pp. 42–49, 2019, doi:10.1016/j.surfcoat.2019.01.046.; [22] D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, “Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding,” Opt Laser Technol, vol. 68, no. Complete, pp. 191–201, 2015, doi:10.1016/j.optlastec.2014.12.005.; [23] T. E. Abioye, P. K. Farayibi, D. G. McCartney, and A. T. Clare, “Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating,” J Mater Process Technol, vol. 231, pp. 89–99, 2016, doi:10.1016/j.jmatprotec.2015.12.023.; [24] G. Herranz, A. Romero, V. de Castro, and G. P. Rodríguez, “Processing of AISI M2 high speed steel reinforced with vanadium carbide by solar sintering,” Mater Des, vol. 54, pp. 934–946, 2014, doi:10.1016/j.matdes.2013.09.027.; [25] Z. Zhang, T. Yu, and R. Kovacevic, “Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC,” Appl Surf Sci, vol. 410, pp. 225–240, 2017, doi:10.1016/j.apsusc.2017.03.137.; [26] Q. Wu, W. Li, N. Zhong, W. Gang, and W. Haishan, “Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate,” Mater Des, vol. 49, pp. 10–18, 2013, doi:10.1016/j.matdes.2013.01.067.; [27] F. Ye et al., “Microstructure, microhardness and wear resistance of VC p /Fe surface composites fabricated in situ,” Appl Surf Sci, vol. 280, pp. 297–303, 2013, doi:10.1016/j.apsusc.2013.04.152.; [28] A. Brenner and G. Riddell, “Nickel plating on steel by chemical reduction,” J Res Natl Bur Stand (1934), pp. 31–34, 1946, [Online]. Available: http://dx.doi.org/10.6028/jres.037.019; [29] Y. Shacham-Diamand, T. Osaka, Y. Okinaka, A. Sugiyama, and V. Dubin, “30 Years of electroless plating for semiconductor and polymer micro-systems,” Microelectron Eng, vol. 132, pp. 35–45, 2015, doi:10.1016/j.mee.2014.09.003.; [30] J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J Alloys Compd, vol. 571, pp. 183–204, 2013, doi:10.1016/j.jallcom.2013.03.107.; [31] P. L. Berrío Herrera y Cairo, “Desarrollo y caracterización de un recubrimiento por niquelado químico sobre aluminio Paula Lidia Berrio Herrera y Cairo,” UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, 2017.; [32] R. Tenno, K. Kantola, and H. Koivo, “ELECTROLESS NICKEL PLATING: BATH CONTROL,” IFAC-Papers OnLine, no. 1, p. 6, 2004.; [33] P. Sahoo, “Friction performance optimization of electroless Ni-P coatings using the Taguchi method,” J Phys D Appl Phys, vol. 41, no. 9, 2008, doi:10.1088/0022-3727/41/9/095305.; [34] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi:10.1016/j.ces.2019.07.048.; [35] I. Ohno, “Electrochemistry of electroless plating,” Materials Science and Engineering A, vol. 146, no. 1–2, pp. 33–49, 1991, doi:10.1016/0921-5093(91)90266-P.; [36] J. A. Morales Soto, J. C. Rosas Islas, and E. Suarez Juarez, “Obtención y caracterización de sistemas proyección térmica níquel químico sobre aceros de bajo carbono,” Universidad Autónoma de México, 2013. doi:10.1017/CBO9781107415324.004.; [37] V. F. Makarov, Y. v. Prusov, and I. O. Lebedeva, “Electroless deposition of nickel coatings with high phosphorus content,” Russian Journal of Applied Chemistry, vol. 78, no. 1, pp. 82–84, 2005, doi:10.1007/s11167-005-0235-x.; [38] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi:10.1016/j.surfcoat.2004.10.014.; [39] C. A. Loto, “Electroless Niquel Plating,” in Electroless Nickel Plating - A Review, 2016, pp. 177–186.; [40] O. S. I. Fayomi, I. G. Akande, and A. A. Sode, “Corrosion Prevention of Metals via Electroless Nickel Coating: A review,” J Phys Conf Ser, vol. 1378, no. 2, 2019, doi:10.1088/1742-6596/1378/2/022063.; [41] ASTM, “Standard specification for autocatalytic (electroless) nickel-phosphorus coatings on metal,” Annual Book of ASTM Standards, pp. 1–14, 2015, doi:10.1520/B0733-15.2.; [42] I. C. Park and S. J. Kim, “Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating,” Appl Surf Sci, vol. 483, no. March, pp. 194–204, 2019, doi:10.1016/j.apsusc.2019.03.277.; [43] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi:10.1016/j.ces.2019.07.048.; [44] M. Meng, A. Leech, and H. Le, “Mechanical properties and tribological behaviour of electroless Ni–P–Cu coatings on corrosion-resistant alloys under ultrahigh contact stress with sprayed nanoparticles,” Tribol Int, vol. 139, no. April, pp. 59–66, 2019, doi:10.1016/j.triboint.2019.06.031.; [45] B. Panja and P. Sahoo, “Wear Behavior of Electroless Ni-P Coatings in Brine Solution and Optimization of Coating Parameters,” Procedia Technology, vol. 14, pp. 173–180, 2014, doi:10.1016/j.protcy.2014.08.023.; [46] L. L. Lobanova, E. v. Batalova, and Yu. P. Khranilov, “Reagent techniques for nickel recovery from spent electroless nickel-plating solutions,” Russian Journal of Applied Chemistry, vol. 81, no. 2, pp. 202–206, 2008, doi:10.1134/s1070427208020080.; [47] L. Bonin, V. Vitry, and F. Delaunois, “The tin stabilization effect on the microstructure, corrosion and wear resistance of electroless NiB coatings,” Surf Coat Technol, vol. 357, no. August 2018, pp. 353–363, 2019, doi:10.1016/j.surfcoat.2018.10.011.; [48] M. Palaniappa and S. K. Seshadri, “Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings,” Wear, vol. 265, no. 5–6, pp. 735–740, 2008, doi:10.1016/j.wear.2008.01.002.; [49] Z. Huang, T. T. Nguyen, Y. Zhou, and G. Qi, “A low temperature electroless nickel plating chemistry,” Surf Coat Technol, vol. 372, no. May, pp. 160–165, 2019, doi:10.1016/j.surfcoat.2019.05.019.; [50] D. Mohanty, T. K. Barman, and P. Sahoo, “Characterisation and corrosion study of electroless Nickel-Boron coating reinforced with alumina nanoparticles,” Mater Today Proc, no. xxxx, pp. 1–5, 2019, doi:10.1016/j.matpr.2019.07.216.; [51] A. Akyol, H. Algul, M. Uysal, H. Akbulut, and A. Alp, “A novel approach for wear and corrosion resistance in the electroless Ni-P-W alloy with CNFs co-depositions,” Appl Surf Sci, vol. 453, no. December 2017, pp. 482–492, 2018, doi:10.1016/j.apsusc.2018.05.152.; [52] D. Dong, X. H. Chen, W. T. Xiao, G. B. Yang, and P. Y. Zhang, “Preparation and properties of electroless Ni-P-SiO 2 composite coatings,” Appl Surf Sci, vol. 255, no. 15, pp. 7051–7055, 2009, doi:10.1016/j.apsusc.2009.03.039.; [53] J. Li, D. Wang, H. Cai, A. Wang, and J. Zhang, “Competitive deposition of electroless Ni-W-P coatings on mild steel via a dual-complexant plating bath composed of sodium citrate and lactic acid,” Surf Coat Technol, vol. 279, no. 5, pp. 9–15, 2015, doi:10.1016/j.surfcoat.2015.08.017.; [54] L. Zhong, X. Zhang, S. Chen, Y. Xu, H. Wu, and J. Wang, “Fe-W-C thermodynamics and in situ preparation of tungsten carbide-reinforced iron-based surface composites by solid-phase diffusion,” Int J Refract Metals Hard Mater, vol. 57, pp. 42–49, 2016, doi:10.1016/j.ijrmhm.2016.02.001.; [55] H. L. Wang, L. Y. Liu, Y. Dou, W. Z. Zhang, and W. F. Jiang, “Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy,” Appl Surf Sci, vol. 286, pp. 319–327, 2013, doi:10.1016/j.apsusc.2013.09.079.; [56] G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Aplications. Orlando: American Electroplaters and Surface Finishers Society, 1990.; [57] D. R. Dhakal, G. Gyawali, Y. K. Kshetri, J. H. Choi, and S. W. Lee, “Microstructural and electrochemical corrosion properties of electroless Ni-P-TaC composite coating,” Surf Coat Technol, vol. 381, no. November 2019, p. 125135, 2020, doi:10.1016/j.surfcoat.2019.125135.; [58] Y. Jin et al., “Structural and phase transformation behaviour of electroless Ni-W-Cr-P alloy coatings on stainless steel,” Inorganic Materials, vol. 46, no. 6, pp. 631–638, 2010, doi:10.1134/S0020168510060130.; [59] E. Valova et al., “Electroless deposited Ni-Re-P, Ni-W-P and Ni-Re-W-P alloys,” J Appl Electrochem, vol. 31, no. 12, pp. 1367–1372, 2001, doi:10.1023/A:1013862729960.; [60] S. Tian, W. Sun, Y. Liu, Y. Jia, and Y. Xiao, “Effect of Na2WO4 Concentration on the Microstructure and Corrosion Behavior of Ni-W-P Ternary Alloy Coatings,” Materials Research, vol. 24, no. 4, 2021, doi:10.1590/1980-5373-mr-2020-0580.; [61] N. Guglielmi, “Kinetics of the deposition of inert particles from electrolytic baths,” J Electrochem Soc, vol. 119, p. 1009, 1972.; [62] P. Liu and Y. Zhu, “Interaction Between Fine Diamond Particles in Electroless Nickel Solutions,” J Dispers Sci Technol, vol. 36, no. 8, pp. 1170–1177, 2015, doi:10.1080/01932691.2014.960525.; [63] V. Krishnakumar and R. Elansezhian, “Dispersion stability of zinc oxide nanoparticles in an electroless bath with various surfactants,” Mater Today Proc, no. xxxx, pp. 1–5, 2021, doi:10.1016/j.matpr.2021.05.467.; [64] P. Liu, Y. Zhu, G. Zhong, X. Zhao, S. Wang, and S. Yang, “Influence of inorganic coating over diamond particles on interaction force and dispersability in electroless solution,” Powder Technol, vol. 342, pp. 899–906, 2019, doi:10.1016/j.powtec.2018.10.059.; [65] S. Kundu, S. K. Das, and P. Sahoo, “Friction and wear behavior of electroless Ni-P-W coating exposed to elevated temperature,” Surfaces and Interfaces, vol. 14, no. December 2018, pp. 192–207, 2019, doi:10.1016/j.surfin.2018.12.007.; [66] D. Ahmadkhaniha, F. Eriksson, P. Leisner, and C. Zanella, “Effect of SiC particle size and heat-treatment on microhardness and corrosion resistance of NiP electrodeposited coatings,” J Alloys Compd, vol. 769, pp. 1080–1087, 2018, doi: https://doi.org/10.1016/j.jallcom.2018.08.013.; [67] C. Falton, Iron casting handbook. Iron Casting Society, 1981.; [68] S. K. Allen, C. S. Barrett, A. O. Benscoter, and M. B. Bever, ASM Handbook Volume 9 Metallography and Microstructures, vol. 2. 2001. doi:10.1016/S0026-0576(03)90166-8.; [69] G. Castro, “Fundiciones,” Facultad de Ingeniería Universidad de Buenos Aires, Buenos Aires, 2009.; [70] K. Y. Benyounis, O. M. A. Fakron, J. H. Abboud, A. G. Olabi, and M. J. S. Hashmi, “Surface melting of nodular cast iron by Nd-YAG laser and TIG,” J Mater Process Technol, vol. 170, no. 1–2, pp. 127–132, 2005, doi:10.1016/j.jmatprotec.2005.04.108.; [71] K. F. Alabeedi, J. H. Abboud, and K. Y. Benyounis, “Microstructure and erosion resistance enhancement of nodular cast iron by laser melting,” Wear, vol. 266, no. 9–10, pp. 925–933, 2009, doi:10.1016/j.wear.2008.12.015.; [72] H. Yan, A. Wang, Z. Xiong, K. Xu, and Z. Huang, “Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying,” Appl Surf Sci, vol. 256, no. 23, pp. 7001–7009, 2010, doi:10.1016/j.apsusc.2010.05.015.; [73] F. J. Rodríguez, P. M. Dardati, L. A. Godoy, and D. J. Celentano, “Evaluación de propiedades elásticas de la fundición nodular empleando micromecánica computacional,” Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, vol. 31, no. 2, pp. 91–105, 2015, doi:10.1016/j.rimni.2014.01.003.; [74] J. M. Velez Restrepo, “Austemperado de la fundición nodular: fundamentos y tecnología,” Universidad Nacional de Colombia sede Medellín, 2001.; [75] H. Sierra Restrepo and J. Ortega González, “Temperatura de transición de la fundición nodular austemperada no aleada,” Revista Universidad EAFIT, vol. 40, no. 134, pp. 80–89, 2004.; [76] ASTM, Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, pp. 4–9. doi:10.1520/A0897.; [77] B. Wang, G. C. Barber, F. Qiu, Q. Zou, and H. Yang, “A review: Phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons,” Journal of Materials Research and Technology, vol. 9, no. 1, pp. 1054–1069, 2020, doi:10.1016/j.jmrt.2019.10.074.; [78] Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, p. 8.; [79] M. Bahmani, R. Elliott, and N. Varahram, “Austempered ductile iron: a competitive alternative for forged induction-hardened steel crankshafts,” International Journal of Cast Metals Research, vol. 9, no. 5, pp. 249–257, Jan. 1997, doi:10.1080/13640461.1997.11819666.; [80] J. Lefevre and K. L. Hayrynen, “Austempered materials for powertrain applications,” J Mater Eng Perform, vol. 22, no. 7, pp. 1914–1922, 2013, doi:10.1007/s11665-013-0557-4.; [81] L. H. Larumbe, E. H. Delgado, M. Alvarez-Vera, and P. P. Villanueva, “Forming process using austempered ductile iron (ADI) in an automotive Pitman arm,” International Journal of Advanced Manufacturing Technology, vol. 91, no. 1–4, pp. 569–575, 2017, doi:10.1007/s00170-016-9771-1.; [82] Y. Du, X. Gao, X. Wang, X. Wang, Y. Ge, and B. Jiang, “Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures,” Wear, vol. 456–457, no. April, p. 203396, 2020, doi:10.1016/j.wear.2020.203396.; [83] R. Upadhyaya, K. K. Singh, R. Kumar, and M. S. Chandran, “Study on the Effect of Austempering Temperature on the Structure-Properties of Thin Wall Austempered Ductile Iron,” Mater Today Proc, vol. 5, no. 5, pp. 13472–13477, 2018, doi:10.1016/j.matpr.2018.02.342.; [84] J. R. Keough, “Austempered Ductile Iron (ADI) – A Green Alternative,” American Foundry Society, vol. 119, no. 11–126, pp. 591–599, 2011.; [85] C. H. Hsu, K. L. Chen, and J. H. Lu, “Effects of electroless nickel interlayer on surface properties of CrN arc-coated austempered ductile iron,” Surf Coat Technol, vol. 203, no. 5–7, pp. 868–871, 2008, doi:10.1016/j.surfcoat.2008.05.031.; [86] C. H. Hsu, K. H. Huang, Y. T. Chen, and W. Y. Ho, “The effect of electroless Ni-P interlayer on corrosion behavior of TiN-coated austempered ductile iron,” Thin Solid Films, vol. 529, pp. 34–38, 2013, doi:10.1016/j.tsf.2012.05.050.; [87] O. O. Ige, O. J. Olawale, K. M. Oluwasegun, S. Aribo, B. A. Obadele, and P. A. Olubambi, “Corrosion Behaviour of Austempered Ductile Iron Produced by Forced Air Quenching Method in a Simulated Mine Water,” Procedia Manuf, vol. 7, pp. 579–583, 2017, doi:10.1016/j.promfg.2016.12.084.; [88] M. Pooja, V. Vijeesh, A. O. Surendranathan, K. R. Udupa, and K. G. Samuel, “Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry,” International Journal of Engineering, Science and Technology, vol. 8, no. 3, p. 7, 2016, doi:10.4314/ijest.v8i3.2.; [89] A. D. Sosa, C. S. Rosales, R. E. Boeri, and S. N. Simison, “Corrosion mechanisms in ADI parts,” International Journal of Cast Metals Research, vol. 29, no. 1–2, pp. 106–111, 2016, doi:10.1080/13640461.2015.1106784.; [90] C. E. Arroyave, “La corrosión de las economías,” EL TIEMPO, pp. 1–6, 1991.; [91] L. Pereira, M. R. Belle, W. M. Pasini, and V. K. de Barcellos, “Determination of the process window of Austemper treatment to obtain ADI through neural network simulation,” pp. 1547–1553, 2018, doi:10.5151/1516-392x-31701.; [92] J. F. Janowak and R. B. Gundlach, “Development of a ductile iron for a commercial Austempering,” Trans Am Foundrymen’s Soc, vol. 91, p. 377, 1983.; [93] D. Moore, T. N. Rouns, and K. B. Roundman, “Structure and properties of Austempered ductile iron,” Trans Am Foundrymen’s Soc, vol. 93, p. 705, 1985.; [94] S. Sarkar, R. K. Baranwal, C. Biswas, G. Majumdar, and J. Haider, “Optimization of process parameters for electroless Ni-Co-P coating deposition to maximize micro-hardness,” Mater Res Express, vol. 6, no. 4, 2019, doi:10.1088/2053-1591/aafc47.; [95] F. E. Mariani, G. S. Takeya, A. N. Lombardi, C. A. Picone, and L. C. Casteletti, “Wear and corrosion resistance of Nb-V carbide layers produced in vermicular cast iron using TRD treatments,” Surf Coat Technol, vol. 397, p. 126050, 2020, doi:10.1016/j.surfcoat.2020.126050.; [96] M. Peet and H. K. D. H. Bhadeshia, “https://www.factsage.com/,” Department of Materials Science and Metallurgy.; [97] N. Ortiz, G. Agredo, A. Barba, J. J. Olaya, R. Valdez, and R. González, “Estudio Microestructural de Fundiciones Nodulares Sometidas a Tratamiento de Austempering.”; [98] Z. H. Huang, Y. J. Zhou, and T. T. Nguyen, “Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB 2 , ZrB 2 and TiC particles for improved wear and corrosion resistance,” Surf Coat Technol, vol. 364, no. August 2018, pp. 323–329, 2019, doi:10.1016/j.surfcoat.2019.01.060.; [99] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. November 2018, pp. 42–49, 2019, doi:10.1016/j.surfcoat.2019.01.046.; [100] A. Sharma and A. K. Singh, “Electroless Ni-P and Ni-P-Al2O3 nanocomposite coatings and their corrosion and wear resistance,” J Mater Eng Perform, vol. 22, no. 1, pp. 176–183, 2013, doi:10.1007/s11665-012-0224-1.; [101] H. Macías, “Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo,” 2020.; [102] J. Epp, “X-ray diffraction (XRD) techniques for materials characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016, pp. 81–124.; [103] W. Conshohocken, “G99 Standard Test Method for Wear Testing with a Pin-on-Disk,” in ASTM, vol. v, pp. 1–5.; [104] M. Hanief and M. S. Charoo, “Archard ’ s wear law revisited to measure accurate wear coefficient considering actual sliding velocity,” Mater Today Proc, vol. 47, pp. 5598–5600, 2021.; [105] H. Ju, S. He, L. Yu, I. Asempah, and J. Xu, “The improvement of oxidation resistance , mechanical and tribological properties of W 2 N films by doping silicon,” Surf Coat Technol, vol. 317, pp. 158–165, 2017.; [106] ASM Metals, Handbook Volume 13, Corrosion. 1992.; [107] U. P. Morales, E. V. López, and C. O. Otálora, “Aspectos básicos en la interpretación de diagramas de impedancia electroquímica,” Revista de ingeniería DYNA, vol. 162, pp. 13–19, 2010.; [108] ASTM International, “Standard Specification for Ductile Iron Castings,” Current, vol. 83, no. Reapproved. pp. 4–9, 2019. doi:10.1520/A0842-11A.2.; [109] J. Zhang, N. Zhang, M. Zhang, D. Zeng, Q. Song, and L. Lu, “Microstructure and mechanical properties of austempered ductile iron with different strength grades,” Material Letters, vol. 119, pp. 47–50, 2014, doi: http://dx.doi.org/10.1016/j.matlet.2013.12.086.; [110] A. Ramalho and J. C. Miranda, “Friction and wear of electroless NiP and NiP + PTFE coatings,” Wear, vol. 259, no. 7–12, pp. 828–834, 2005, doi:10.1016/j.wear.2005.02.052.; [111] C. Hernández, H. Francisco, and U. Ordoñes, “Rolling contact fatigue wear of nitriding austempered ductile rolling contact fatigue wear of nitriding austempered ductile iron ( ADI ) -ADI discs,” Conference: Congresso Brasileiro de Engenharia Mecânica, no. November 2001, p. 9, 2001.; [112] G. T. Sudha, B. Stalin, B. Ravichandran, and M. Balasubramanian, “Mechanical Properties, Characterization and Wear Behavior of Powder Metallurgy Composites - A Review,” Mater Today Proc, 2020.; [113] Z. hou LI, Z. yong CHEN, S. sha LIU, F. ZHENG, and A. gan DAI, “Corrosion and wear properties of electroless Ni-P plating layer on AZ91D magnesium alloy,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 18, no. 4, pp. 819–824, 2008, doi:10.1016/S1003-6326(08)60142-9.; [114] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi:10.1016/j.surfcoat.2004.10.014.; https://repositorio.unal.edu.co/handle/unal/82975; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
  19. 19
    Dissertation/ Thesis
  20. 20
    Dissertation/ Thesis

    المؤلفون: Vargas Rendón, Laura Isabel

    المساهمون: Serna Giraldo, Claudia Patricia, Ríos Díez, Oscar Eduardo

    مصطلحات موضوعية: Maquinas térmicas, Heat-engines, Acero, Steel, Carbono, Carbon, Austemperado

    وصف الملف: application/pdf