يعرض 1 - 20 نتائج من 56 نتيجة بحث عن '"Arturo-Terranova, Daniela"', وقت الاستعلام: 0.55s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal

    المصدر: Revista Med; Vol. 29 No. 2 (2021): july - december; 93-106 ; Revista Med; Vol. 29 Núm. 2 (2021): julio - diciembre; 93-106 ; 1909-7700 ; 0121-5256

    وصف الملف: application/pdf; text/xml

    Relation: https://revistas.unimilitar.edu.co/index.php/rmed/article/view/5706/5203; https://revistas.unimilitar.edu.co/index.php/rmed/article/view/5706/5291; Bruce CM. Embriología humana y biología del desarrollo. 5 ed. Filadelfia: Elsevier Saunders; 2014.; Cameron AC, Widmer RP. Manual de odontología pediátrica. 3 ed. En: Tratamiento del labio leporino y el paladar hendido. Barcelona: Elsevier Mosby; 2010. p. 379-399.; Silva DP da, Dornelle S, Paniagua LM, Costa SS da, Collares MVM. Aspectos patofisiológicos do esfíncter velofaríngeo nasfissuras palatinas. Arq int otorrinolaringol. 2008:12:426-435. https://www.researchgate.net/publication/26849750_Aspectos_patofisiologicos_do_esfincter_velofaringeo_nas_fissuras_palatinas; Saldarriaga W, Isaza C, Ramírez Cheyne J. Embriolo- gía humana integrada. 2 ed. Santiago de Cali: U. del Valle; 2019.; Rivera CA, Arenas MJ. Bases ambientales y gené- ticas de las fisuras orofaciales: revisión. J Oral Res. 2013; 2(1):35-41. DOI: https://doi.org/10.17126/joralres.2013.008; Pérez AC, Duque EA. Incidencia y/o prevalencia del LPH en el continente europeo. Pap Knowl Towar a Media Hist Doc. 2019.; Serrano C, Ruiz J, Quinceno L, Rodríguez M. Labio y/o paladar hendido: una revisión*. Ustasalud. 2009; 8:44- 52. DOI: https://doi.org/10.15332/us.v8i1.1180; Plasencia-Dueñas EA, Díaz-Vélez C, Dueñas-Roque MM. Factores asociados a la presencia de fisura labio- palatina en recién nacidos en un hospital peruano de tercer nivel de atención. Un estudio de casos y controles. Acta méd. Perú 2020; 37(3):304-311. DOI: https://doi.org/10.35663/amp.2020.373.942; Sánchez LR. Prevalencia de pacientes con fisuras oro- faciales y factores familiares asociados en el Hospital Regional Docente Las Mercedes Chiclayo 2016. Rev Cient Epistemia. 2018;2. http://revistas.uss.edu.pe/index.php/EPT/article/view/799/680 DOI: https://doi. org/10.26495/re.v2i1.799; Berryhill W. Otologic Concerns for Cleft Lip and Pa- late Patient. Oral Maxillofac Surg Clin North Am. 2016; 28(2):177-179. DOI: https://doi.org/10.1016/j.coms.2015.12.001; Palmero-Picazo J, Rodríguez MF, Martínez-Gutiérrez, M. Labio y paladar hendido. Conceptos actuales. Rev Mex Anestesiol. 2019:33 (SUPPL.1): 372-379. https://www.medigraphic.com/pdfs/actmed/am-2019/am194j.pdf; Leslie EJ, Mansilla MA, Biggs LC, Schuette K, Bullard S, Cooper M, et al. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22. Birth Defects Res A Clin Mol Teratol. 2012; 94(11):934-942. DOI: https://doi.org/10.1002/bdra.23076; Niemann S, Zhao C, Pascu F, Zhao Ch, Pascu F, Sta- hl U, Aulepp U, Niswander L, Weber JL, et al. Homozygous WNT3 Mutation Causes Tetra-Amelia in a Large Consanguineous Family. Am J Hum Genet. 2004; (14872406): 558-563. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182269/ DOI: https://doi.org/10.1086/382196; Estudio nacional de Salud Bucal ENSAB IV. [Internet] Bogotá: Ministerio de Salud y Protección social de Colombia; 2014 Disponible en: http://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB-IV-Situacion-Bucal-Actual.pdf; Escobar LM, Prada-Arismendy J, Téllez C, Caste- llanos J. Bases genéticas de la formación de fisuras labiales y/o palatinas en humanos. CES Odontology, 2013;26(1):57-67. Retrieved March 23, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttex-t&pid=S0120-971X2013000100006&lng=en&tlng=es; Isaza C, Manrique LA. Anomalías y síndromes asociados con labio y/o paladar hendido. Colomb Med. 1991;20:55-61.; Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011 Mar; 12(3):167- 78. DOI: https://doi.org/10.1038/nrg2933; Fogh-Andersen P. Epidemiology and etiology of clefts. Birth Defects Orig Artic Ser. 1972 Jun; 7(7):50-3. PMID: 5173241.; Marazita ML, Spence MA, Melnick M. Genetic analysis of cleft lip with or without cleft palate in Danish kindreds. Am J Med Genet. 1984; 19(1):9-18. DOI: https://doi.org/10.1002/ajmg.1320190104; Mitchell LE. Mode of inheritance of oral clefts. En: Wyszyski DF, editor. Cleft Lip and Palate: From Origin to Treatment. Oxford University Press; 2002. p. 234- 239.; Little J, Cardy A, Munger RG. Tobacco smoking and oral clefts: a meta-analysis. Bull World Health Organ. 2004 Mar; 82(3):213-8.; Van-Rooij IA, Wegerif MJ, Roelofs HM, Peters WH, Kuijpers-Jagtman AM, Zielhuis GA, Merkus HM, Steegers-Theunissen RP. Smoking, genetic polymorphisms in biotransformation enzymes, and nonsyndromic oral clefting: a gene-environment interaction. Epidemiology. 2001 Sep; 12(5):502-7. DOI: https://doi.org/10.1097/00001648-200109000-00007; Beaty TH, Hetmanski JB, Zeiger JS, Fan YT, Liang KY, VanderKolk CA, McIntosh I. Testing candidate genes for non-syndromic oral clefts using a case-parent trio design. Genet Epidemiol. 2002 Jan; 22(1):1-11. DOI: https://doi.org/10.1002/gepi.1039; Munger RG, Romitti PA, Daack-Hir- sch S, Burns TL, Murray JC, Hanson J. Maternal alcohol use and risk of orofacial cleft birth defects. Teratology. 1996 Jul; 54(1):27-33.; Safra MJ, Oakley GP Jr. Association between cleft lip with or without cleft palate and prenatal exposure to diazepam. Lancet. 1975 Sep 13; 2(7933):478-80. DOI: https://doi.org/10.1016/S0140-6736(75)90548-6; Czeizel A, Kiss R, Rackz K, Mohori K, Glaz E. Case-control cytogenetic study in offspring of mothers treated with bromocriptine during early pregnancy. Mutation Research. January 1989; 210(1):23-27. DOI: https://doi.org/10.1016/0027-5107(89)90040-7; Phan M, Conte F, Khandelwal KD, Ockeloen CW, Bartzela T, Kleefstra T, et al. Tooth agenesis and orofacial clefting: genetic brothers in arms Hum Genet. 2016; 135:1299-1327. DOI: https://doi.org/10.1007/s00439-016-1733-z; Ramírez D, Saldarriaga W, Pachajoa H, Isaza C. Síndrome de Apert, una aproximación para un diagnóstico clínico. Reporte de caso. Revista Salud Uninorte. 2010; 26(1):165-169. Retrieved March 22, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-55522010000100016&lng=en&tlng=es; Carré A, Hamza RT, Kariyawasam D, Guillot L, Teis- sier R, Tron E, Castanet M, Dupuy C, El Kholy M, Polak M. A novel FOXE1 mutation (R73S) in Bamforth-Lazarus syndrome causing increased thyroidal gene expression. Thyroid: official journal of the American Thyroid Association. 2016; 24(4):649-654. DOI: https://doi.org/10.1089/thy.2013.0417; Ercoli G, Mazzitelli N, Rittler M. Síndrome de Bartsocas-Papas y secuencia de bridas amnióticas: semejanzas clínicas sugieren un factor etiopatogénico común. Archivos de Pediatría del Uruguay. 2017; 88(1):24- 31. Recuperado en 22 de marzo de 2021, de http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-12492017000100006&lng=es&tlng=es; Milunsky JM, Maher TA, Zhao G, Roberts AE, Stalker HJ, Zori RT, Burch MN, Clemens M, Mulliken JB, Smith R, Lin AE. TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum Genet. 2008 May;82(5):1171-7. Erratum in: Am J Hum Genet. 2009 Feb;84(2):301. PMID: 18423521; PMCID: PMC2427243. DOI: https://doi.org/10.1016/j.ajhg.2008.03.005; Vissers LE, Van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, Schoenmakers EF, Brunner HG, Veltman JA, Van Kessel AG. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004; 36(9):955-957. DOI: https://doi.org/10.1038/ng1407; Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. American journal of medical genetic. Part A. 2010; 152A(3):674-686. DOI: https://doi.org/10.1002/ajmg.a.33323; Avila JR, Jezewski PA, Vieira AR, Orioli IM, Castilla EE, Christensen K, Daack-Hirsch S, Romitti PA, Murray JC. PVRL1 variants contribute to non-syndromic cleft lip and palate in multiple populations. American journal of medical genetics. Part A, 2006; 140(23):2562- 2570. DOI: https://doi.org/10.1002/ajmg.a.31367; Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet. 2004; 36(6):631-635. DOI: https://doi.org/10.1038/ng1364; Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet. 2004; 36(6):636-641. DOI: https://doi.org/10.1038/ ng1363; Luna-Peláez N, March-Díaz R, Ceballos-Chávez M. Guerrero-Martínez JA, Grazioli P, García-Gutié- rrez P, et al. The Cornelia de Lange Syndrome-associated factor NIPBL interacts with BRD4 ET domain for transcription control of a common set of genes. Cell Death Dis 2019; 10(8):548. DOI: https://doi.org/10.1038/s41419-019-1792-x; Gorry MC, Preston RA, White GJ, Zhang Y, Singhal VK, Losken HW, Parker MG, Nwokoro NA, Post JC, Ehrlich GD. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet. 1995 Aug; 4(8):1387-90. DOI: https://doi.org/10.1093/hmg/4.8.1387; Lin Y, Gao H, Ai S, Eswarakumar J, Zhu Y, Chen C, Li T, Liu B, Jiang H, Liu Y, Li Y, Wu Q, Li H, Liang X, Jin C, Huang X, Lin L. FGFR2 mutations and associated clinical observations in two Chinese patients with Crouzon syndrome. Molecular medicine reports. 2017; 16(5):5841-5846. DOI: https://doi.org/10.3892/mmr.2017.7397; Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet. 2003; 12 (Spec n.° 1):R37-44. DOI: https://doi.org/10.1093/hmg/ddg077; Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994; 372(6506):525-530. DOI: https://doi.org/10.1038/372525a0; Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994; 79(6):1111-1120. DOI: https://doi.org/10.1016/0092-8674(94)90041-8; Unger S, Scherer G, Superti-Furga A. Campomelic Dysplasia. 2008 Jul 31 [Updated 2021 Mar 18]. En: Adam MP, Ardinger HH, Pagon RA, et al. Editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1760/; Murata Y, Kurosaka H, Ohata Y, Aikawa T, Takahata S, Fujii K, et al. A novel PTCH1 mutation in basal cell nevus syndrome with rare craniofacial features. Hum Genome Var. 2019; 6(16). DOI: https://doi.org/10.1038/s41439-019-0047-9; McGrath JA, Duijf PH, Doetsch V, Irvine AD, de Waal R, Vanmolkot KR, Wessagowit V, Kelly A, Atherton DJ, Griffiths WA, Orlow SJ, van Haeringen A, Au- sems MG, Yang A, McKeon F, Bamshad MA, Brunner HG, Hamel BC, van Bokhoven H. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet. 2001 Feb 1; 10(3):221-9. DOI: https://doi.org/10.1093/hmg/10.3.221; Roessler E, Belloni E, Gaudenz K, Jay P, Ber- ta P, Scherer SW, Tsui LC, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996; 14(3):357-360. DOI: https://doi.org/10.1038/ng1196-357; Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen-Kaesbach G, Roeder ER, Ming JE, Ruiz i Altaba A, Muenke M. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci USA. 2003; 100(23):13424-13429. DOI: https://doi.org/10.1073/pnas.2235734100; Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, Gillessen-Kaesbach G, Zackai EH,Rommens J, Muenke M. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet. 1999; 22(2):196-198. DOI: https://doi.org/10.1038/9718; Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, Maystadt I, Dallapiccola B, Verellen-Dumoulin C. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012; 90(1):119-124. DOI: https://doi.org/10.1016/j.ajhg.2011.11.021; Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010; 42(9):790-793. DOI: https://doi.org/10.1038/ng.646; Sarfati J, Bouvattier C, Bry-Gauillard H, Cartes A, Bouligand J, Young, J. Kallmann syndrome with FGFR1 and KAL1 mutations detected during fetal life. Orphanet journal of rare diseases. 2015; 10(71). DOI: https://doi.org/10.1186/s13023-015-0287-9; Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005; 37(3):275-281. DOI: https://doi.org/10.1038/ng1511; Acosta-Aragón MA, Sierra-Zúñiga MF. Síndrome de loeys Dietz, una mutación en el gen TGFBR2, primer reporte en el suroccidente colombiano. Medicina y laboratorio. 2017; 23:187-194. DOI: https://doi.org/10.36384/01232576.53; Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, Hadley DW, Tifft C, Zhang L, Wilkie AO, van der Smagt JJ, Gorlin RJ, Burgess SM, Bardwell VJ, Black GC, Biesecker LG. Oculofaciocardio dental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet. 2004; 36(4):411-416. DOI: https://doi.org/10.1038/ng1321; Tiol MA, Maldonado ZN, Tiol CA, Esparza RN, Gar- cía RE. Reporte de dos casos del síndrome óculo-facio-cardio-dental (OFCD) en madre e hija. Rev Mex Cir Bucal Maxilofacial. 2017; 13(1):20-24.; Fontanella B, Russolillo G, Meroni G. MID1 mutations in patients with X-linked Opitz G/BBB syndrome. Hum Mutat. 2008 May;29(5):584-94. DOI: https://doi.org/10.1002/humu.20706; AlKattan WM, Al-Qattan MM, Bafaqeeh SA. The pathogenesis of the clinical features of oral-facial-digital syndrome type I. Saudi medical journal. 2015;36(11):1277-1284. DOI: https://doi.org/10.15537/smj.2015.11.12446; Braybrook C, Doudney K, Marcano AC, Arnason A, Bjornsson A, Patton MA, Goodfellow PJ, Moore GE, Stanier P. The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet. 2001;29(2):179-183. DOI: https://doi.org/10.1038/ng730; Selvi R, Mukunda-Priyanka A. Role of SOX9 in the Etiology of Pierre-Robin Syndrome. Iranian journal of basic medical sciences. 2013;16(5):700-4.; Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, de Lima RL, Daack-Hir- sch S, Sander A, McDonald-McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richie- ri-Costa A, Dixon MJ, Murray JC. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet. 2002;32(2):285-289. DOI: https://doi.org/10.1038/ng985; Kanno K, Suzuki Y, Yamada A, Aoki Y, Kure S, Matsubara Y. Association between nonsyndromic cleft lip with or without cleft palate and the glutamic acid decarboxylase 67 gene in the Japanese population. AJMG. 2004;127A (1):11-16. DOI: https://doi.org/10.1002/ajmg.a.20649; Inoue H, Kayano S, Aoki Y, Kure S, Yamada A, Hata A, Matsubara Y, Suzuki Y. Association of the GABRB3 gene with nonsyndromic oral clefts. Cleft Palate Craniofac J. 2008 May; 45(3):261-6. DOI: https://doi.org/10.1597/06-142; Suazo J, Santos JL, Scapoli L, Jara L, Blanco R. Association between TGFB3 and nonsyndromic cleft lip with or without cleft palate in a Chilean population. Cleft Palate Craniofac J. 2010 Sep; 47(5):513-7. DOI: https://doi.org/10.1597/09-015; Piceci F, Morlino S, Castori M, Buffone E, De Luca A, Grammatico P, Guida V. Identification of a second HOXA2 nonsense mutation in a family with autosomal dominant non-syndromic microtia and distinctive ear morphology. Clin Genet. 2017 May; 91(5):774-779. DOI: https://doi.org/10.1111/cge.12845; Saleem K, Zaib T, Sunab W, Fu S. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Cellpress. 2019; 5(12). DOI: https://doi.org/10.1016/j.heliyon.2019.e03019; Cesario JM, Landin-Malt A, Deacon LJ, Sandberg M, Vogt D, Tang Z, Zhao Y, Brown S, Rubenstein JL, Jeong J. Lhx6 and Lhx8 promote palate development through negative regulation of a cell cycle inhibitor gene, p57Kip2. Human molecular genetics. 2015; 24(17): 5024-5039. DOI: https://doi.org/10.1093/hmg/ddv223; Jezewski PA, Vieira AR, Nishimura C, Ludwig B, Jo- hnson M, O’Brien SE, Daack-Hirsch S, Schultz RE, Weber A, Nepomucena B, Romitti PA, Christensen K, Orioli IM, Castilla EE, Machida J, Natsume N, Murray JC. Complete sequencing shows a role for MSX1 in non-syndromic cleft lip and palate. Journal of medical genetics. 2003; 40(6):399-407. DOI: https://doi.org/10.1136/jmg.40.6.399; Funato N, Nakamura M, Richardson JA, Srivastava D, Yanagisawa H. Tbx1 regulates oral epithelial adhesion and palatal development. Human molecular genetics. 2012; 21(11):2524-2537. DOI: https://doi.org/10.1093/hmg/dds071; Maili L, Letra A, Silva R, Buchanan E, Mulliken JB, Greives MR, Teichgraeber JF, et al. PBX‐WNT‐P63‐ IRF6 pathway in nonsyndromic cleft lip and palate. Birth Defect Research. 2019; 112(3):234-244. DOI: https://doi.org/10.1002/bdr2.1630; Lee JK, Park JW, Kim YH, Baek SH. Association between PAX9 single-nucleotide polymorphisms and nonsyndromic cleft lip with or without cleft palate. J Craniofac Surg. 2012 Sep; 23(5):1262-6. DOI: https://doi.org/10.1097/SCS.0b013e31824e27c7; Greene ND, Stanier P, Moore GE. Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Human Molecular Genetics. 2004 April; 13(1):R73-R81. DOI: https://doi.org/10.1093/hmg/ddh052; https://revistas.unimilitar.edu.co/index.php/rmed/article/view/5706; http://hdl.handle.net/10654/43531

  6. 6
  7. 7
    Academic Journal

    المصدر: Revista Med; Vol. 29 No. 2 (2021): july - december; 93-106 ; Revista Med; Vol. 29 Núm. 2 (2021): julio - diciembre; 93-106 ; 1909-7700 ; 0121-5256

    وصف الملف: application/pdf; text/xml

    Relation: http://revistas.unimilitar.edu.co/index.php/rmed/article/view/5706/5203; http://revistas.unimilitar.edu.co/index.php/rmed/article/view/5706/5291; Bruce CM. Embriología humana y biología del desarrollo. 5 ed. Filadelfia: Elsevier Saunders; 2014.; Cameron AC, Widmer RP. Manual de odontología pediátrica. 3 ed. En: Tratamiento del labio leporino y el paladar hendido. Barcelona: Elsevier Mosby; 2010. p. 379-399.; Silva DP da, Dornelle S, Paniagua LM, Costa SS da, Collares MVM. Aspectos patofisiológicos do esfíncter velofaríngeo nasfissuras palatinas. Arq int otorrinolaringol. 2008:12:426-435. https://www.researchgate.net/publication/26849750_Aspectos_patofisiologicos_do_esfincter_velofaringeo_nas_fissuras_palatinas; Saldarriaga W, Isaza C, Ramírez Cheyne J. Embriolo- gía humana integrada. 2 ed. Santiago de Cali: U. del Valle; 2019.; Rivera CA, Arenas MJ. Bases ambientales y gené- ticas de las fisuras orofaciales: revisión. J Oral Res. 2013; 2(1):35-41. DOI: https://doi.org/10.17126/joralres.2013.008; Pérez AC, Duque EA. Incidencia y/o prevalencia del LPH en el continente europeo. Pap Knowl Towar a Media Hist Doc. 2019.; Serrano C, Ruiz J, Quinceno L, Rodríguez M. Labio y/o paladar hendido: una revisión*. Ustasalud. 2009; 8:44- 52. DOI: https://doi.org/10.15332/us.v8i1.1180; Plasencia-Dueñas EA, Díaz-Vélez C, Dueñas-Roque MM. Factores asociados a la presencia de fisura labio- palatina en recién nacidos en un hospital peruano de tercer nivel de atención. Un estudio de casos y controles. Acta méd. Perú 2020; 37(3):304-311. DOI: https://doi.org/10.35663/amp.2020.373.942; Sánchez LR. Prevalencia de pacientes con fisuras oro- faciales y factores familiares asociados en el Hospital Regional Docente Las Mercedes Chiclayo 2016. Rev Cient Epistemia. 2018;2. http://revistas.uss.edu.pe/index.php/EPT/article/view/799/680 DOI: https://doi. org/10.26495/re.v2i1.799; Berryhill W. Otologic Concerns for Cleft Lip and Pa- late Patient. Oral Maxillofac Surg Clin North Am. 2016; 28(2):177-179. DOI: https://doi.org/10.1016/j.coms.2015.12.001; Palmero-Picazo J, Rodríguez MF, Martínez-Gutiérrez, M. Labio y paladar hendido. Conceptos actuales. Rev Mex Anestesiol. 2019:33 (SUPPL.1): 372-379. https://www.medigraphic.com/pdfs/actmed/am-2019/am194j.pdf; Leslie EJ, Mansilla MA, Biggs LC, Schuette K, Bullard S, Cooper M, et al. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22. Birth Defects Res A Clin Mol Teratol. 2012; 94(11):934-942. DOI: https://doi.org/10.1002/bdra.23076; Niemann S, Zhao C, Pascu F, Zhao Ch, Pascu F, Sta- hl U, Aulepp U, Niswander L, Weber JL, et al. Homozygous WNT3 Mutation Causes Tetra-Amelia in a Large Consanguineous Family. Am J Hum Genet. 2004; (14872406): 558-563. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182269/ DOI: https://doi.org/10.1086/382196; Estudio nacional de Salud Bucal ENSAB IV. [Internet] Bogotá: Ministerio de Salud y Protección social de Colombia; 2014 Disponible en: http://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB-IV-Situacion-Bucal-Actual.pdf; Escobar LM, Prada-Arismendy J, Téllez C, Caste- llanos J. Bases genéticas de la formación de fisuras labiales y/o palatinas en humanos. CES Odontology, 2013;26(1):57-67. Retrieved March 23, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttex-t&pid=S0120-971X2013000100006&lng=en&tlng=es; Isaza C, Manrique LA. Anomalías y síndromes asociados con labio y/o paladar hendido. Colomb Med. 1991;20:55-61.; Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011 Mar; 12(3):167- 78. DOI: https://doi.org/10.1038/nrg2933; Fogh-Andersen P. Epidemiology and etiology of clefts. Birth Defects Orig Artic Ser. 1972 Jun; 7(7):50-3. PMID: 5173241.; Marazita ML, Spence MA, Melnick M. Genetic analysis of cleft lip with or without cleft palate in Danish kindreds. Am J Med Genet. 1984; 19(1):9-18. DOI: https://doi.org/10.1002/ajmg.1320190104; Mitchell LE. Mode of inheritance of oral clefts. En: Wyszyski DF, editor. Cleft Lip and Palate: From Origin to Treatment. Oxford University Press; 2002. p. 234- 239.; Little J, Cardy A, Munger RG. Tobacco smoking and oral clefts: a meta-analysis. Bull World Health Organ. 2004 Mar; 82(3):213-8.; Van-Rooij IA, Wegerif MJ, Roelofs HM, Peters WH, Kuijpers-Jagtman AM, Zielhuis GA, Merkus HM, Steegers-Theunissen RP. Smoking, genetic polymorphisms in biotransformation enzymes, and nonsyndromic oral clefting: a gene-environment interaction. Epidemiology. 2001 Sep; 12(5):502-7. DOI: https://doi.org/10.1097/00001648-200109000-00007; Beaty TH, Hetmanski JB, Zeiger JS, Fan YT, Liang KY, VanderKolk CA, McIntosh I. Testing candidate genes for non-syndromic oral clefts using a case-parent trio design. Genet Epidemiol. 2002 Jan; 22(1):1-11. DOI: https://doi.org/10.1002/gepi.1039; Munger RG, Romitti PA, Daack-Hir- sch S, Burns TL, Murray JC, Hanson J. Maternal alcohol use and risk of orofacial cleft birth defects. Teratology. 1996 Jul; 54(1):27-33.; Safra MJ, Oakley GP Jr. Association between cleft lip with or without cleft palate and prenatal exposure to diazepam. Lancet. 1975 Sep 13; 2(7933):478-80. DOI: https://doi.org/10.1016/S0140-6736(75)90548-6; Czeizel A, Kiss R, Rackz K, Mohori K, Glaz E. Case-control cytogenetic study in offspring of mothers treated with bromocriptine during early pregnancy. Mutation Research. January 1989; 210(1):23-27. DOI: https://doi.org/10.1016/0027-5107(89)90040-7; Phan M, Conte F, Khandelwal KD, Ockeloen CW, Bartzela T, Kleefstra T, et al. Tooth agenesis and orofacial clefting: genetic brothers in arms Hum Genet. 2016; 135:1299-1327. DOI: https://doi.org/10.1007/s00439-016-1733-z; Ramírez D, Saldarriaga W, Pachajoa H, Isaza C. Síndrome de Apert, una aproximación para un diagnóstico clínico. Reporte de caso. Revista Salud Uninorte. 2010; 26(1):165-169. Retrieved March 22, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-55522010000100016&lng=en&tlng=es; Carré A, Hamza RT, Kariyawasam D, Guillot L, Teis- sier R, Tron E, Castanet M, Dupuy C, El Kholy M, Polak M. A novel FOXE1 mutation (R73S) in Bamforth-Lazarus syndrome causing increased thyroidal gene expression. Thyroid: official journal of the American Thyroid Association. 2016; 24(4):649-654. DOI: https://doi.org/10.1089/thy.2013.0417; Ercoli G, Mazzitelli N, Rittler M. Síndrome de Bartsocas-Papas y secuencia de bridas amnióticas: semejanzas clínicas sugieren un factor etiopatogénico común. Archivos de Pediatría del Uruguay. 2017; 88(1):24- 31. Recuperado en 22 de marzo de 2021, de http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-12492017000100006&lng=es&tlng=es; Milunsky JM, Maher TA, Zhao G, Roberts AE, Stalker HJ, Zori RT, Burch MN, Clemens M, Mulliken JB, Smith R, Lin AE. TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum Genet. 2008 May;82(5):1171-7. Erratum in: Am J Hum Genet. 2009 Feb;84(2):301. PMID: 18423521; PMCID: PMC2427243. DOI: https://doi.org/10.1016/j.ajhg.2008.03.005; Vissers LE, Van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, Schoenmakers EF, Brunner HG, Veltman JA, Van Kessel AG. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004; 36(9):955-957. DOI: https://doi.org/10.1038/ng1407; Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. American journal of medical genetic. Part A. 2010; 152A(3):674-686. DOI: https://doi.org/10.1002/ajmg.a.33323; Avila JR, Jezewski PA, Vieira AR, Orioli IM, Castilla EE, Christensen K, Daack-Hirsch S, Romitti PA, Murray JC. PVRL1 variants contribute to non-syndromic cleft lip and palate in multiple populations. American journal of medical genetics. Part A, 2006; 140(23):2562- 2570. DOI: https://doi.org/10.1002/ajmg.a.31367; Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet. 2004; 36(6):631-635. DOI: https://doi.org/10.1038/ng1364; Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet. 2004; 36(6):636-641. DOI: https://doi.org/10.1038/ ng1363; Luna-Peláez N, March-Díaz R, Ceballos-Chávez M. Guerrero-Martínez JA, Grazioli P, García-Gutié- rrez P, et al. The Cornelia de Lange Syndrome-associated factor NIPBL interacts with BRD4 ET domain for transcription control of a common set of genes. Cell Death Dis 2019; 10(8):548. DOI: https://doi.org/10.1038/s41419-019-1792-x; Gorry MC, Preston RA, White GJ, Zhang Y, Singhal VK, Losken HW, Parker MG, Nwokoro NA, Post JC, Ehrlich GD. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet. 1995 Aug; 4(8):1387-90. DOI: https://doi.org/10.1093/hmg/4.8.1387; Lin Y, Gao H, Ai S, Eswarakumar J, Zhu Y, Chen C, Li T, Liu B, Jiang H, Liu Y, Li Y, Wu Q, Li H, Liang X, Jin C, Huang X, Lin L. FGFR2 mutations and associated clinical observations in two Chinese patients with Crouzon syndrome. Molecular medicine reports. 2017; 16(5):5841-5846. DOI: https://doi.org/10.3892/mmr.2017.7397; Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet. 2003; 12 (Spec n.° 1):R37-44. DOI: https://doi.org/10.1093/hmg/ddg077; Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994; 372(6506):525-530. DOI: https://doi.org/10.1038/372525a0; Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994; 79(6):1111-1120. DOI: https://doi.org/10.1016/0092-8674(94)90041-8; Unger S, Scherer G, Superti-Furga A. Campomelic Dysplasia. 2008 Jul 31 [Updated 2021 Mar 18]. En: Adam MP, Ardinger HH, Pagon RA, et al. Editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1760/; Murata Y, Kurosaka H, Ohata Y, Aikawa T, Takahata S, Fujii K, et al. A novel PTCH1 mutation in basal cell nevus syndrome with rare craniofacial features. Hum Genome Var. 2019; 6(16). DOI: https://doi.org/10.1038/s41439-019-0047-9; McGrath JA, Duijf PH, Doetsch V, Irvine AD, de Waal R, Vanmolkot KR, Wessagowit V, Kelly A, Atherton DJ, Griffiths WA, Orlow SJ, van Haeringen A, Au- sems MG, Yang A, McKeon F, Bamshad MA, Brunner HG, Hamel BC, van Bokhoven H. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet. 2001 Feb 1; 10(3):221-9. DOI: https://doi.org/10.1093/hmg/10.3.221; Roessler E, Belloni E, Gaudenz K, Jay P, Ber- ta P, Scherer SW, Tsui LC, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996; 14(3):357-360. DOI: https://doi.org/10.1038/ng1196-357; Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen-Kaesbach G, Roeder ER, Ming JE, Ruiz i Altaba A, Muenke M. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci USA. 2003; 100(23):13424-13429. DOI: https://doi.org/10.1073/pnas.2235734100; Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, Gillessen-Kaesbach G, Zackai EH,Rommens J, Muenke M. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet. 1999; 22(2):196-198. DOI: https://doi.org/10.1038/9718; Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, Maystadt I, Dallapiccola B, Verellen-Dumoulin C. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012; 90(1):119-124. DOI: https://doi.org/10.1016/j.ajhg.2011.11.021; Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010; 42(9):790-793. DOI: https://doi.org/10.1038/ng.646; Sarfati J, Bouvattier C, Bry-Gauillard H, Cartes A, Bouligand J, Young, J. Kallmann syndrome with FGFR1 and KAL1 mutations detected during fetal life. Orphanet journal of rare diseases. 2015; 10(71). DOI: https://doi.org/10.1186/s13023-015-0287-9; Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005; 37(3):275-281. DOI: https://doi.org/10.1038/ng1511; Acosta-Aragón MA, Sierra-Zúñiga MF. Síndrome de loeys Dietz, una mutación en el gen TGFBR2, primer reporte en el suroccidente colombiano. Medicina y laboratorio. 2017; 23:187-194. DOI: https://doi.org/10.36384/01232576.53; Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, Hadley DW, Tifft C, Zhang L, Wilkie AO, van der Smagt JJ, Gorlin RJ, Burgess SM, Bardwell VJ, Black GC, Biesecker LG. Oculofaciocardio dental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet. 2004; 36(4):411-416. DOI: https://doi.org/10.1038/ng1321; Tiol MA, Maldonado ZN, Tiol CA, Esparza RN, Gar- cía RE. Reporte de dos casos del síndrome óculo-facio-cardio-dental (OFCD) en madre e hija. Rev Mex Cir Bucal Maxilofacial. 2017; 13(1):20-24.; Fontanella B, Russolillo G, Meroni G. MID1 mutations in patients with X-linked Opitz G/BBB syndrome. Hum Mutat. 2008 May;29(5):584-94. DOI: https://doi.org/10.1002/humu.20706; AlKattan WM, Al-Qattan MM, Bafaqeeh SA. The pathogenesis of the clinical features of oral-facial-digital syndrome type I. Saudi medical journal. 2015;36(11):1277-1284. DOI: https://doi.org/10.15537/smj.2015.11.12446; Braybrook C, Doudney K, Marcano AC, Arnason A, Bjornsson A, Patton MA, Goodfellow PJ, Moore GE, Stanier P. The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet. 2001;29(2):179-183. DOI: https://doi.org/10.1038/ng730; Selvi R, Mukunda-Priyanka A. Role of SOX9 in the Etiology of Pierre-Robin Syndrome. Iranian journal of basic medical sciences. 2013;16(5):700-4.; Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, de Lima RL, Daack-Hir- sch S, Sander A, McDonald-McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richie- ri-Costa A, Dixon MJ, Murray JC. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet. 2002;32(2):285-289. DOI: https://doi.org/10.1038/ng985; Kanno K, Suzuki Y, Yamada A, Aoki Y, Kure S, Matsubara Y. Association between nonsyndromic cleft lip with or without cleft palate and the glutamic acid decarboxylase 67 gene in the Japanese population. AJMG. 2004;127A (1):11-16. DOI: https://doi.org/10.1002/ajmg.a.20649; Inoue H, Kayano S, Aoki Y, Kure S, Yamada A, Hata A, Matsubara Y, Suzuki Y. Association of the GABRB3 gene with nonsyndromic oral clefts. Cleft Palate Craniofac J. 2008 May; 45(3):261-6. DOI: https://doi.org/10.1597/06-142; Suazo J, Santos JL, Scapoli L, Jara L, Blanco R. Association between TGFB3 and nonsyndromic cleft lip with or without cleft palate in a Chilean population. Cleft Palate Craniofac J. 2010 Sep; 47(5):513-7. DOI: https://doi.org/10.1597/09-015; Piceci F, Morlino S, Castori M, Buffone E, De Luca A, Grammatico P, Guida V. Identification of a second HOXA2 nonsense mutation in a family with autosomal dominant non-syndromic microtia and distinctive ear morphology. Clin Genet. 2017 May; 91(5):774-779. DOI: https://doi.org/10.1111/cge.12845; Saleem K, Zaib T, Sunab W, Fu S. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Cellpress. 2019; 5(12). DOI: https://doi.org/10.1016/j.heliyon.2019.e03019; Cesario JM, Landin-Malt A, Deacon LJ, Sandberg M, Vogt D, Tang Z, Zhao Y, Brown S, Rubenstein JL, Jeong J. Lhx6 and Lhx8 promote palate development through negative regulation of a cell cycle inhibitor gene, p57Kip2. Human molecular genetics. 2015; 24(17): 5024-5039. DOI: https://doi.org/10.1093/hmg/ddv223; Jezewski PA, Vieira AR, Nishimura C, Ludwig B, Jo- hnson M, O’Brien SE, Daack-Hirsch S, Schultz RE, Weber A, Nepomucena B, Romitti PA, Christensen K, Orioli IM, Castilla EE, Machida J, Natsume N, Murray JC. Complete sequencing shows a role for MSX1 in non-syndromic cleft lip and palate. Journal of medical genetics. 2003; 40(6):399-407. DOI: https://doi.org/10.1136/jmg.40.6.399; Funato N, Nakamura M, Richardson JA, Srivastava D, Yanagisawa H. Tbx1 regulates oral epithelial adhesion and palatal development. Human molecular genetics. 2012; 21(11):2524-2537. DOI: https://doi.org/10.1093/hmg/dds071; Maili L, Letra A, Silva R, Buchanan E, Mulliken JB, Greives MR, Teichgraeber JF, et al. PBX‐WNT‐P63‐ IRF6 pathway in nonsyndromic cleft lip and palate. Birth Defect Research. 2019; 112(3):234-244. DOI: https://doi.org/10.1002/bdr2.1630; Lee JK, Park JW, Kim YH, Baek SH. Association between PAX9 single-nucleotide polymorphisms and nonsyndromic cleft lip with or without cleft palate. J Craniofac Surg. 2012 Sep; 23(5):1262-6. DOI: https://doi.org/10.1097/SCS.0b013e31824e27c7; Greene ND, Stanier P, Moore GE. Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Human Molecular Genetics. 2004 April; 13(1):R73-R81. DOI: https://doi.org/10.1093/hmg/ddh052; http://revistas.unimilitar.edu.co/index.php/rmed/article/view/5706

  8. 8
    Academic Journal
  9. 9
    Academic Journal

    المصدر: Revista Med; Vol. 27 No. 2 (2019): july - december; 73-84 ; Revista Med; Vol. 27 Núm. 2 (2019): julio - diciembre; 73-84 ; 1909-7700 ; 0121-5256

    وصف الملف: text/xml; application/pdf

    Relation: http://revistas.unimilitar.edu.co/index.php/rmed/article/view/3784/3946; http://revistas.unimilitar.edu.co/index.php/rmed/article/view/3784/4114; Zerbino D , Achuthan P, Akanni W, Amode R , Barrell D, Bhai J ,et al. Ensembl 2018. PubMed PMID: 29155950. doi:10.1093/nar/gkx1098; Corredor A, Hernandez- Rodriguez MJ, Martinez-Villanueva J, Muñoz-Calvo MT, Argente J. Severe low growth and 2q37 syndrome. An Pediatric (Barc) 2016; 84(2):116-7; Sperry E, Schuatte, Martin D. Duplication 2p25 in a child with clinical features of CHARGE syndrome. Am J Med Genet A. 2016; 170A (5) :1148-1154; Genetic Home Reference (GHR). 2q37 deletion syndrome; 2018.[Acceso 12 de septiembre de 2018] U.S Department of Health & Human Services. [Acceso: Disponible en : https://ghr.nlm.nih.gov/condition/2q37-deletion-syndrome#synonyms; Doherty ES, Lacbawan FL. 2q37 Microdeletion Syndrome. Gene Reviews. 2013. University of Washington, Seattle. [Acceso 11 de septiembre de 2018] . Disponible en : https://www.ncbi.nlm.nih.gov/books/NBK1158/; Genetic and Rare Diseases Information Center (GARD). Síndrome de Microdeleción 2q37. 2013. [Acceso 12 de septiembre de 2018] . Disponible en: https://rarediseases.info.nih.gov/espanol/13267/sindrome-de-microdelecion-2q37; Martínez-Juárez A, Uribe-Figueroa L, Quintana-Palma M, Razo-Aguilera G, Sevilla-Montoya R. Pure trisomy 2p syndrome in two siblings with an unbalanced translocation and minimal terminal 12q monosomy characterized by high-density microarray. Cytogenet Genome Res. 2014; 142(4):249-54.; Buizer-Voskamp JE, Muntjewerff JW, Strengman E, Sabatti C, Stefansson H, Vorstman JA. Genome-wide analysis shows increased frequency of copy number variation deletions in dutch schizophrenia patients. Biol Psychiatry. 2011;70(7):655–62.; Vrijenhoek, T., Buizer-Voskamp, J., van der Stelt, I., Strengman, E., Sabatti, C., & Geurts van Kessel, A. Recurrent CNVs Disrupt Three Candidate Genes in Schizophrenia Patients. Am J Hum Genet. 2008; 83(4):504-10; Addington AM, Rapoport JL. The genetics of childhood-onset schizophrenia: when madness strikes the prepubescent. Curr Psychiatry Rep. 2009;11(2):156–61.; Lee Y, Mattai A, Long R, Rapoport JL, Gogtay N, Addington A. Microduplications disrupting the MYT1L gene (2p25.3.) Psychiatric Genetics . 2012; 206–209.; Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, Lyonnet S, et al. Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet. 2006;43:843–9.; Lacbawan F, Jones M, Dutra A, Chandrasekharappa S, Doherty ES. Chromosome 2q37 deletion syndrome: defining clinical features. 2006 Abstract 869. New Orleans, LA: American Society of Human Genetics Annual Meeting; Villavicienco-Lorini .Phenotypic variant of Brachydactyly-mental retardation syndrome in a family with an inherited interstitial 2q37.3 microdeletion including HDAC4. European Journal of Human Genetics. 2013; 21: 743-748.; Robinson SW, Morris CD, Goldmuntz E, Reller MD, Jones MA, Steiner RD, Maslen CL. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet 2003 ;72:1047; Williams A. Haploinsufficiency of HDAC4 Causes Brachydactyly Mental Retardation Syndrome, with Brachydactyly Type E, Developmental Delays, and Behavioral Problems. American Journal of Human Genetics. 2010; 87: 219–228; Tomita T , Kurita R, Onishi Y. Epigenetic regulation of the circadian clock : Role of 5-aza-2’-deoxycitidine. Biosci rep. 2017; 37(3) doi:10.1042/BSR20170053; Correa, F. A., Jorge, A. A., Nakaguma, M., Canton, A. P., Costa, S. S., Funari, M. F., Mendonca, B. B. Pathogenic copy number variants in patients with congenital hypopituitarism associated with complex phenotypes. Clinical Endocrinology, 2018;88(3),425–431.; http://revistas.unimilitar.edu.co/index.php/rmed/article/view/3784

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    Alternate Title: New variants in the TMEM126B gene associated with complex I dehydrogenase deficiency identified in a pediatric patient from southwestern of Colombia. (English)

    المصدر: Magazine of the Colombian Association of Biological Sciences / Revista de la Asociación Colombiana de Ciencias Biológicas (ACCB); 2024, Vol. 1 Issue 36, p118-125, 8p

  12. 12
    Academic Journal

    Alternate Title: Demographic, clinical, paraclinical and molecular characterization of patients with Gaucher disease type 1 in southwestern Colombia. (English)

    المصدر: Magazine of the Colombian Association of Biological Sciences / Revista de la Asociación Colombiana de Ciencias Biológicas (ACCB); 2024, Vol. 1 Issue 36, p57-76, 20p

  13. 13
    Dissertation/ Thesis
  14. 14
  15. 15

    المؤلفون: Arturo Terranova, Daniela

    المساهمون: Satizabal Soto, Jose Maria, Moreno Giraldo, Lina Johanna

    المصدر: Repositorio Digital Univalle
    Universidad del Valle
    instacron:Universidad del Valle

    وصف الملف: 1 recurso en línea (113 páginas); application/pdf

  16. 16
  17. 17
  18. 18
    Electronic Resource
  19. 19
    Academic Journal

    المصدر: Biomedica; Vol. 40 No. Supl. 1 (2020): Mayo, Infecciones en el trópico; 76-88 ; Biomédica; Vol. 40 Núm. Supl. 1 (2020): Mayo, Infecciones en el trópico; 76-88 ; 2590-7379 ; 0120-4157

    وصف الملف: application/pdf; text/xml

    Relation: https://revistabiomedica.org/index.php/biomedica/article/view/4917/4457; https://revistabiomedica.org/index.php/biomedica/article/view/4917/4622; Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702-3. https://doi.org/10.1016/S0140-6736(64)91524-7; Rickinson A, Kieff E. Epstein Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. 5th edition. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2655-700.; Higgins CD, Swerdlow AJ, Macsween KF, Harrison N, Williamns H, McAulay K, et al. A study of risk factors for acquisition of Epstein-Barr virus and its subtypes. J Infect Dis. 2007;195:474-82. https://doi.org/10.1086/510854; Pagano J. Is Epstein-Barr virus transmitted sexually? J Infect Dis. 2007;195:469-70. https://doi.org/10.1086/510861; Grünewald K, Desai P, Winkler D, Heymann J, Belnap D, Baumeister W, et al. Threedimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396-8. https://doi.org/10.1126/science.1090284; Sample J, Young L, Martin B, Chatman T, Kieff E, Rickinson A, et al. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990;64:4084-92.; Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: A need for reappraisal. Virus Res. 2009;143:209-21. https://doi.org/10.1016/j.virusres.2009.07.005; Chabay P, Preciado MV. Epidemiology of Epstein-Barr virus-associated pediatric lymphomas from Argentina. Bol Med Hosp Infant Mex. 2016;73:47-54. https://doi.org/10.1016/j.bmhimx.2015.12.002; Gallart-Catalá A. Infecciones por el virus de Epstein-Barr: mononucleosis infecciosa. 9ª edición. Madrid: Editorial Tratado de Pediatría; 2006. p. 449-55.; Trastoy R, Costa J, Rodríguez J, Navarro D, Barbeito G, Aguilera A. Primoinfección por el virus Epstein-Barr entre los años 2006 a 2015 en el área sanitaria de Santiago de Compostela. Relación con edad y sexo. Rev Esp Quimioter. 2017;30:468-71.; Young L, Murray P. Epstein-Barr virus and oncogenesis: From latent genes to tumours. Oncogene. 2003;22:5108-21. https://doi.org/10.1038/sj.onc.1206556; Niedobitek G, Meru N, Delecluse H. Epstein-Barr virus infection and human malignancies. Int J Exp Pathol. 2001;82:149-70. https://doi.org/10.1111/j.1365-2613.2001.iep190.x; Chang Y, Moore PS, Weiss RA. Human oncogenic viruses: Nature and Discovery. Philos Trans R Soc Lond B Biol Sci. 2017;372:1732-8. https://doi.org/10.1098/rstb.2016.0264; Medina-Ortega A, López-Valencia D, Mosquera-Monje S, Mora-Obando D, Dueñas-Cuéllar A. Virus de Epstein-Barr y su relación con el desarrollo del cáncer. Iatreia. 2017;30:131-45. https://doi.org/10.17533/udea.iatreia.v30n2a03; Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci. 2017;19:372. https://doi.org/10.1098/rstb.2016.0270; Lorenzetti MA, Gantuz M, Altcheh J, De Matteo E, Chabay P, Preciado M. Distinctive Epstein-Barr virus variants associated with benign and malignant pediatric pathologies: LMP1 sequence characterization and linkage with other viral gene polymorphisms. J Clin Microbiol. 2012;50:609-18. https://doi.org/10.1128/JCM.05778-11; Gantuz M. Identificación y caracterización molecular y funcional de variantes de la proteína latente de membrana 1 del virus de Epstein Barr (tesis). Buenos Aires: Universidad de Buenos Aires; 2016. Fecha de consulta: 20 de septiembre de 2018. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n6055_Gantuz.pdf; Izumi K, Kaye K, Kieff E. The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci USA.1997;94:1447-52. https://doi.org/10.1073/pnas.94.4.1447; Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757-68. https://doi.org/10.1038/nrc1452; Holthusen K, Talaty P, Everly DN Jr. Regulation of latent membrane protein 1 signaling through interaction with cytoskeletal. J Virol. 2015;89:7277-90. https://doi.org/10.1128/JVI.00321-15; Tsao SW, Tramoutanis G, Dawson CW, Lo AK, Huang DP. The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:473-87.; Dawson C, Port R, Young L. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22:144-53. https://doi.org/10.1016/j.semcancer.2012.01.004; Kieser A, Sterz KR. The latent membrane protein 1 (LMP1). Curr Top Microbiol Immunol. 2015;391:119-49. https://doi.org/10.1007/978-3-319-22834-1_4; Vaysberg MO, Hatton SL, Lambert AL, Snow B, Wong SM, Krams S, et al. Tumor-derived variants of Epstein-Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos. J Biol Chem. 2008;283:36573-85. https://doi.org/10.1074/jbc.M802968200; Tzellos S, Farrell P. Epstein-Barr virus sequence variation - biology and disease. Pathogens. 2012;1:156-174. https://doi.org/10.3390/pathogens1020156; Edwards RH, Seillier-Moiseiwitsch F, Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein-Barr virus strains. Virology.1999;261:79-95. https://doi.org/10.1006/viro.1999.9855; Hatfull G, Bankier AT, Barrell BG, Farrell PJ. Sequence analysis of Raji Epstein-Barr virus DNA. Virology. 1988;164:334-40.; Dolan A, Addison C, Gatherer D, Davison AJ, McGeoch DJ. The genome of Epstein-Barr virus type 2 Strain AG876. Virology. 2006;350:164-70. https://doi.org/10.1016/j.virol.2006.01.015; Lei H, Li T, Hung G, Li B, Tsai S, Lo S. Identification and characterization of EBV genomes in spontaneously immortalized human peripheral blood B lymphocytes by NGS technology. BMC Genomics. 2013;14:804. https://doi.org/10.1186/1471-2164-14-804; Santpere G, Darre F, Blanco S, Alcami A, Villoslada P, Mar AB, et al. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project. Genome Biol Evol. 2014;6:846-60. https://doi.org/10.1093/gbe/evu054; Giraldo-Ocampo S, Osorio JC, Fernández A, Castillo A. Detección del virus Epstein Barr en escolares adolescentes en la ciudad de Cali, Colombia. Infectio. 2019;23:175-81. https://doi.org/10.22354/in.v23i2.775; Kingman DW, Weiss WB, Jaffe ES, Kumar S, Frekko K, Raffeld M. Epstein-Barr virus latent membrane protein-1 oncogene deletions: Correlations with malignancy in Epstein-Barr virus associated lymphoproliferative disorders and malignant lymphomas. Blood.1996;88:242-51.; Zuo L, Yu H, Liu L, Tang Y, Wu H, Yang J, et al. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-kB. Oncotarget. 2015;6:41033-44. https://doi.org/10.18632/oncotarget.5708; Kumar S, Stecher G, Tamura K. MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0. Mol Biol Evol. 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054; Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.1994;22:4673-80. https://doi.org/10.1093/nar/22.22.4673; Coleman C, Daud I, Ogolla S, Ritchie J, Smith N, Sumba P, et al. Epstein-Barr virus type 2 infects t cells in healthy Kenyan children. J Infect Dis. 2017;216:670-7. https://doi.org/10.1093/infdis/jix363; Palser A, Grayson N, White R, Corton C, Correia S, Ba Abdullah M, et al Genome diversity of Epstein-Barr virus from multiple tumour types and normal infection. J Virol. 2015;89:5222-37. https://doi.org/10.1128/JVI.03614-14; Chabay P, De Matteo E, Merediz A, Preciado M. High frequency of Epstein Barr virus latent membrane protein-1 30 bp deletion in a series of pediatric malignancies in Argentina. Arch Virol. 2004;149:1515-26. https://doi.org/10.1007/s00705-004-0311-1; Correa R, Fellner M, Alonio L, Durand K, Teyssie A, Picconi M. Epstein-Barr virus (EBV) in healthy carriers: Distribution of genotypes and 30 bp deletion in latent membrane protein-1 (LMP-1) oncogene. J Med Virol. 2004;73:583-8. https://doi.org/10.1002/jmv.20129; Ai JH, Xie ZD, Liu CY, Gao LW, Yan J. Characteristic of nuclear antigen 1 gene and latent membrane protein 1 gene of Epstein-Barr virus in primary EBV infection in children in Beijin area in 2005-2010. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2012;26:352-5.; Feederle R, Klinke O, Kutikhin A, Poirey R, Tsai MH, Delecluse HJ. Epstein-Barr virus: From the detection of sequence polymorphisms to the recognition of viral types. Curr Top Microbiol Immunol. 2015;390:119-48. https://doi.org/10.1007/978-3-319-22822-8_7; Chiara M, Manzari C, Lionetti C, Mechelli R, Anastasiadou E, Chiara M. et al. Geographic population structure in Epstein-Barr virus revealed by comparative genomics. Genome Biol Evol. 2016;8:3284-91. https://doi.org/10.1093/gbe/evw226; Smatti M, Yassine H, Abudeh R, AlMarawani A, Taleb S, Althani A, et al. Prevalence and molecular profiling of Epstein Barr virus (EBV) among healthy blood donors from different nationalities in Qatar. PLoS One. 2017;12:e0189033. https://doi.org/10.1371/journal.pone.0189033; Saechan V, Settheetham-Ishida W, Kimura R, Tiwawech D, Mitarnun W, Ishida T. Epstein-Barr virus strains defined by the latent membrane protein 1 sequence characterize Thai ethnic groups. J Gen Virol. 2010;9:2054-61. https://doi.org/10.1099/vir.0.021105-0; Gantuz M, Lorenzetti MA, Chabay PA, Preciado M. A novel recombinant variant of latent membrane protein 1 from Epstein Barr virus in Argentina denotes phylogeographical association. PLoS One. 2017;10:1059-62. https://doi.org/10.1371/journal.pone.0174221; Karpova M, Schoumans J, Blennow E, Ernberg I, Henter J, Smirnov A, et al. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt’s lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Int J Oncol. 2006;26:605-17. https://doi.org/10.3892/ijo.28.3.605; Liao HM, Liu H, Lei H, Li B, Chin PJ, et al. Frequency of EBV LMP-1 promoter and coding variations in Burkitt lymphoma samples in Africa and South America and peripheral blood in Uganda. Cancers (Basel). 2018;10:177. https://doi.org/10.3390/cancers10060177; Carrascal E, Koriyama C, Akiba S, Tamayo O, Itoh T, Eizuru Y, et al. Epstein-Barr virusassociated gastric carcinoma in Cali, Colombia. Oncol Rep. 2003;10:1059-62. https://doi.org/10.3892/or.10.4.1059; Mesa J, Aristizábal B. Seguimiento con carga viral para virus Epstein-Barr en pacientes pediátricos con trasplante hepático. Médicas UIS. 2015;28:393-401. https://doi.org/10.18273/revmed.v28n3-2015015; Zuercher E, Butticaz C, Wyniger J, Martínez R, Battegay M, Boffi El, et al. Genetic diversity of EBV-encoded LMP1 in the Swiss HIV cohort study and implication for NF-Kb activation. PloS One. 2012;7:e32168. https://doi.org/10.1371/journal.pone.0032168; Nagamine M, Takahara M, Kishibe K, Nagat T, Ishii H, Bandoh N et al. Sequence variations of Epstein-Barr virus LMP1 gene in nasal NK/Tcell lymphoma. Virus Genes. 2007;34:47–54. https://doi.org/10.1007/s11262-006-0008-5; Senyuta N, Yakovleva L, Goncharova E, Scherback L, Diduk S, Smirnova K, et al. Epstein-Barr virus latent membrane protein 1 polymorphism in nasopharyngeal carcinoma and other oral cavity tumors in Russia. J Med Virol. 2014;86:290-300. https://doi.org/10.1002/jmv.23729; Yakovleva L, Senyuta N, Goncharova E, Scherback L, Smirnova R, Pavlish O, et al. Epstein-Barr virus lmp1 oncogene variants in cell lines of different origin. Mol Biol (Mosk). 2015;49:714-22. https://doi.org/10.7868/S0026898415050213; Pavlish OA, Diduk SV, Smirnova KV, Shcherbak LN, Goncharova EV, Shalginskykh NA, et al. Mutations of the Epstein-Barr virus LMP1 gene in Russian patients with lymphoid pathology and healthy individuals. Vopr Virusol. 2008;53:10-6.; https://revistabiomedica.org/index.php/biomedica/article/view/4917

  20. 20
    Electronic Resource

    Additional Titles: Caracterización molecular de las variantes del virus de Epstein-Barr detectadas en la cavidad oral de adolescentes de Cali, Colombia

    المصدر: Biomedica; Vol. 40 No. Supl. 1 (2020): Mayo, Infecciones en el trópico; 76-88; Biomédica; Vol. 40 Núm. Supl. 1 (2020): Mayo, Infecciones en el trópico; 76-88; 2590-7379; 0120-4157

    URL: https://revistabiomedica.org/index.php/biomedica/article/view/4917
    https://revistabiomedica.org/index.php/biomedica/article/view/4917/4457
    https://revistabiomedica.org/index.php/biomedica/article/view/4917/4622
    https://revistabiomedica.org/index.php/biomedica/article/view/4917/4457
    https://revistabiomedica.org/index.php/biomedica/article/view/4917/4622
    *ref*/Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702-3. https://doi.org/10.1016/S0140-6736(64)91524-7
    *ref*/Rickinson A, Kieff E. Epstein Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. 5th edition. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 2655-700.
    *ref*/Higgins CD, Swerdlow AJ, Macsween KF, Harrison N, Williamns H, McAulay K, et al. A study of risk factors for acquisition of Epstein-Barr virus and its subtypes. J Infect Dis. 2007;195:474-82. https://doi.org/10.1086/510854
    *ref*/Pagano J. Is Epstein-Barr virus transmitted sexually? J Infect Dis. 2007;195:469-70. https://doi.org/10.1086/510861
    *ref*/Grünewald K, Desai P, Winkler D, Heymann J, Belnap D, Baumeister W, et al. Threedimensional structure of herpes simplex virus from cryo-electron tomography. Science. 2003;302:1396-8. https://doi.org/10.1126/science.1090284
    *ref*/Sample J, Young L, Martin B, Chatman T, Kieff E, Rickinson A, et al. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol. 1990;64:4084-92.
    *ref*/Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: A need for reappraisal. Virus Res. 2009;143:209-21. https://doi.org/10.1016/j.virusres.2009.07.005
    *ref*/Chabay P, Preciado MV. Epidemiology of Epstein-Barr virus-associated pediatric lymphomas from Argentina. Bol Med Hosp Infant Mex. 2016;73:47-54. https://doi.org/10.1016/j.bmhimx.2015.12.002
    *ref*/Gallart-Catalá A. Infecciones por el virus de Epstein-Barr: mononucleosis infecciosa. 9ª edición. Madrid: Editorial Tratado de Pediatría; 2006. p. 449-55.
    *ref*/Trastoy R, Costa J, Rodríguez J, Navarro D, Barbeito G, Aguilera A. Primoinfección por el virus Epstein-Barr entre los años 2006 a 2015 en el área sanitaria de Santiago de Compostela. Relación con edad y sexo. Rev Esp Quimioter. 2017;30:468-71.
    *ref*/Young L, Murray P. Epstein-Barr virus and oncogenesis: From latent genes to tumours. Oncogene. 2003;22:5108-21. https://doi.org/10.1038/sj.onc.1206556
    *ref*/Niedobitek G, Meru N, Delecluse H. Epstein-Barr virus infection and human malignancies. Int J Exp Pathol. 2001;82:149-70. https://doi.org/10.1111/j.1365-2613.2001.iep190.x
    *ref*/Chang Y, Moore PS, Weiss RA. Human oncogenic viruses: Nature and Discovery. Philos Trans R Soc Lond B Biol Sci. 2017;372:1732-8. https://doi.org/10.1098/rstb.2016.0264
    *ref*/Medina-Ortega A, López-Valencia D, Mosquera-Monje S, Mora-Obando D, Dueñas-Cuéllar A. Virus de Epstein-Barr y su relación con el desarrollo del cáncer. Iatreia. 2017;30:131-45. https://doi.org/10.17533/udea.iatreia.v30n2a03
    *ref*/Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci. 2017;19:372. https://doi.org/10.1098/rstb.2016.0270
    *ref*/Lorenzetti MA, Gantuz M, Altcheh J, De Matteo E, Chabay P, Preciado M. Distinctive Epstein-Barr virus variants associated with benign and malignant pediatric pathologies: LMP1 sequence characterization and linkage with other viral gene polymorphisms. J Clin Microbiol. 2012;50:609-18. https://doi.org/10.1128/JCM.05778-11
    *ref*/Gantuz M. Identificación y caracterización molecular y funcional de variantes de la proteína latente de membrana 1 del virus de Epstein Barr (tesis). Buenos Aires: Universidad de Buenos Aires; 2016. Fecha de consulta: 20 de septiembre de 2018. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n6055_Gantuz.pdf
    *ref*/Izumi K, Kaye K, Kieff E. The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation. Proc Natl Acad Sci USA.1997;94:1447-52. https://doi.org/10.1073/pnas.94.4.1447
    *ref*/Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757-68. https://doi.org/10.1038/nrc1452
    *ref*/Holthusen K, Talaty P, Everly DN Jr. Regulation of latent membrane protein 1 signaling through interaction with cytoskeletal. J Virol. 2015;89:7277-90. https://doi.org/10.1128/JVI.00321-15
    *ref*/Tsao SW, Tramoutanis G, Dawson CW, Lo AK, Huang DP. The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12:473-87.
    *ref*/Dawson C, Port R, Young L. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22:144-53. https://doi.org/10.1016/j.semcancer.2012.01.004
    *ref*/Kieser A, Sterz KR. The latent membrane protein 1 (LMP1). Curr Top Microbiol Immunol. 2015;391:119-49. https://doi.org/10.1007/978-3-319-22834-1_4
    *ref*/Vaysberg MO, Hatton SL, Lambert AL, Snow B, Wong SM, Krams S, et al. Tumor-derived variants of Epstein-Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos. J Biol Chem. 2008;283:36573-85. https://doi.org/10.1074/jbc.M802968200
    *ref*/Tzellos S, Farrell P. Epstein-Barr virus sequence variation - biology and disease. Pathogens. 2012;1:156-174. https://doi.org/10.3390/pathogens1020156
    *ref*/Edwards RH, Seillier-Moiseiwitsch F, Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein-Barr virus strains. Virology.1999;261:79-95. https://doi.org/10.1006/viro.1999.9855
    *ref*/Hatfull G, Bankier AT, Barrell BG, Farrell PJ. Sequence analysis of Raji Epstein-Barr virus DNA. Virology. 1988;164:334-40.
    *ref*/Dolan A, Addison C, Gatherer D, Davison AJ, McGeoch DJ. The genome of Epstein-Barr virus type 2 Strain AG876. Virology. 2006;350:164-70. https://doi.org/10.1016/j.virol.2006.01.015
    *ref*/Lei H, Li T, Hung G, Li B, Tsai S, Lo S. Identification and characterization of EBV genomes in spontaneously immortalized human peripheral blood B lymphocytes by NGS technology. BMC Genomics. 2013;14:804. https://doi.org/10.1186/1471-2164-14-804
    *ref*/Santpere G, Darre F, Blanco S, Alcami A, Villoslada P, Mar AB, et al. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project. Genome Biol Evol. 2014;6:846-60. https://doi.org/10.1093/gbe/evu054
    *ref*/Giraldo-Ocampo S, Osorio JC, Fernández A, Castillo A. Detección del virus Epstein Barr en escolares adolescentes en la ciudad de Cali, Colombia. Infectio. 2019;23:175-81. https://doi.org/10.22354/in.v23i2.775
    *ref*/Kingman DW, Weiss WB, Jaffe ES, Kumar S, Frekko K, Raffeld M. Epstein-Barr virus latent membrane protein-1 oncogene deletions: Correlations with malignancy in Epstein-Barr virus associated lymphoproliferative disorders and malignant lymphomas. Blood.1996;88:242-51.
    *ref*/Zuo L, Yu H, Liu L, Tang Y, Wu H, Yang J, et al. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-kB. Oncotarget. 2015;6:41033-44. https://doi.org/10.18632/oncotarget.5708
    *ref*/Kumar S, Stecher G, Tamura K. MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0. Mol Biol Evol. 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
    *ref*/Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.1994;22:4673-80. https://doi.org/10.1093/nar/22.22.4673
    *ref*/Coleman C, Daud I, Ogolla S, Ritchie J, Smith N, Sumba P, et al. Epstein-Barr virus type 2 infects t cells in healthy Kenyan children. J Infect Dis. 2017;216:670-7. https://doi.org/10.1093/infdis/jix363
    *ref*/Palser A, Grayson N, White R, Corton C, Correia S, Ba Abdullah M, et al Genome diversity of Epstein-Barr virus from multiple tumour types and normal infection. J Virol. 2015;89:5222-37. https://doi.org/10.1128/JVI.03614-14
    *ref*/Chabay P, De Matteo E, Merediz A, Preciado M. High frequency of Epstein Barr virus latent membrane protein-1 30 bp deletion in a series of pediatric malignancies in Argentina. Arch Virol. 2004;149:1515-26. https://doi.org/10.1007/s00705-004-0311-1
    *ref*/Correa R, Fellner M, Alonio L, Durand K, Teyssie A, Picconi M. Epstein-Barr virus (EBV) in healthy carriers: Distribution of genotypes and 30 bp deletion in latent membrane protein-1 (LMP-1) oncogene. J Med Virol. 2004;73:583-8. https://doi.org/10.1002/jmv.20129
    *ref*/Ai JH, Xie ZD, Liu CY, Gao LW, Yan J. Characteristic of nuclear antigen 1 gene and latent membrane protein 1 gene of Epstein-Barr virus in primary EBV infection in children in Beijin area in 2005-2010. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2012;26:352-5.
    *ref*/Feederle R, Klinke O, Kutikhin A, Poirey R, Tsai MH, Delecluse HJ. Epstein-Barr virus: From the detection of sequence polymorphisms to the recognition of viral types. Curr Top Microbiol Immunol. 2015;390:119-48. https://doi.org/10.1007/978-3-319-22822-8_7
    *ref*/Chiara M, Manzari C, Lionetti C, Mechelli R, Anastasiadou E, Chiara M. et al. Geographic population structure in Epstein-Barr virus revealed by comparative genomics. Genome Biol Evol. 2016;8:3284-91. https://doi.org/10.1093/gbe/evw226
    *ref*/Smatti M, Yassine H, Abudeh R, AlMarawani A, Taleb S, Althani A, et al. Prevalence and molecular profiling of Epstein Barr virus (EBV) among healthy blood donors from different nationalities in Qatar. PLoS One. 2017;12:e0189033. https://doi.org/10.1371/journal.pone.0189033
    *ref*/Saechan V, Settheetham-Ishida W, Kimura R, Tiwawech D, Mitarnun W, Ishida T. Epstein-Barr virus strains defined by the latent membrane protein 1 sequence characterize Thai ethnic groups. J Gen Virol. 2010;9:2054-61. https://doi.org/10.1099/vir.0.021105-0
    *ref*/Gantuz M, Lorenzetti MA, Chabay PA, Preciado M. A novel recombinant variant of latent membrane protein 1 from Epstein Barr virus in Argentina denotes phylogeographical association. PLoS One. 2017;10:1059-62. https://doi.org/10.1371/journal.pone.0174221
    *ref*/Karpova M, Schoumans J, Blennow E, Ernberg I, Henter J, Smirnov A, et al. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt’s lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Int J Oncol. 2006;26:605-17. https://doi.org/10.3892/ijo.28.3.605
    *ref*/Liao HM, Liu H, Lei H, Li B, Chin PJ, et al. Frequency of EBV LMP-1 promoter and coding variations in Burkitt lymphoma samples in Africa and South America and peripheral blood in Uganda. Cancers (Basel). 2018;10:177. https://doi.org/10.3390/cancers10060177
    *ref*/Carrascal E, Koriyama C, Akiba S, Tamayo O, Itoh T, Eizuru Y, et al. Epstein-Barr virusassociated gastric carcinoma in Cali, Colombia. Oncol Rep. 2003;10:1059-62. https://doi.org/10.3892/or.10.4.1059
    *ref*/Mesa J, Aristizábal B. Seguimiento con carga viral para virus Epstein-Barr en pacientes pediátricos con trasplante hepático. Médicas UIS. 2015;28:393-401. https://doi.org/10.18273/revmed.v28n3-2015015
    *ref*/Zuercher E, Butticaz C, Wyniger J, Martínez R, Battegay M, Boffi El, et al. Genetic diversity of EBV-encoded LMP1 in the Swiss HIV cohort study and implication for NF-Kb activation. PloS One. 2012;7:e32168. https://doi.org/10.1371/journal.pone.0032168
    *ref*/Nagamine M, Takahara M, Kishibe K, Nagat T, Ishii H, Bandoh N et al. Sequence variations of Epstein-Barr virus LMP1 gene in nasal NK/Tcell lymphoma. Virus Genes. 2007;34:47–54. https://doi.org/10.1007/s11262-006-0008-5
    *ref*/Senyuta N, Yakovleva L, Goncharova E, Scherback L, Diduk S, Smirnova K, et al. Epstein-Barr virus latent membrane protein 1 polymorphism in nasopharyngeal carcinoma and other oral cavity tumors in Russia. J Med Virol. 2014;86:290-300. https://doi.org/10.1002/jmv.23729
    *ref*/Yakovleva L, Senyuta N, Goncharova E, Scherback L, Smirnova R, Pavlish O, et al. Epstein-Barr virus lmp1 oncogene variants in cell lines of different origin. Mol Biol (Mosk). 2015;49:714-22. https://doi.org/10.7868/S0026898415050213
    *ref*/Pavlish OA, Diduk SV, Smirnova KV, Shcherbak LN, Goncharova EV, Shalginskykh NA, et al. Mutations of the Epstein-Barr virus LMP1 gene in Russian patients with lymphoid pathology and healthy individuals. Vopr Virusol. 2008;53:10-6.