يعرض 1 - 20 نتائج من 63 نتيجة بحث عن '"Aquino Rocha, Joaquin Humberto"', وقت الاستعلام: 0.57s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
    Conference
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    المصدر: Materiales de Construcción; Vol. 73 No. 350 (2023); e314 ; Materiales de Construcción; Vol. 73 Núm. 350 (2023); e314 ; 1988-3226 ; 0465-2746 ; 10.3989/mc.2023.v73.i350

    وصف الملف: text/html; application/pdf; text/xml

    Relation: https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2993/4234; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2993/4235; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2993/4236; European Union (2010). Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings (EPBD recast). Off. J. Eur. Union 2010, 53. Retrieved from https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF; Byrne, A.; Byrne, G.; Robinson, A. (2017) Compact facility for testing steady and transient thermal performance of building walls. Energy Build. 152, 602-614. https://doi.org/10.1016/j.enbuild.2017.07.086; Geraldi, M.S.; Ghisi, E. (2020) Building-level and Stock-level in contrast: a literature review of the energy performance of buildings during the operational stage. Energy Build. 211, 109810. https://doi.org/10.1016/j.enbuild.2020.109810; Marinakis, V. (2020) Big data for energy management and energy-efficient buildings. Energies. 13 [7], 1555. https://doi.org/10.3390/en13071555; Al-Naghi, A.A.A.; Rahman, M.K.; Al-Amoudi, O.S.B.; Al-Dulaijan, S.U. (2020) Thermal performance evaluation of walls with aac blocks, insulating plaster, and reflective coating. J. Energy Eng. 146, 04019040. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000636; Ascione, F.; Bianco, N.; de Masi, R.F.; Mauro, G.M.; Vanoli, G.P. (2015) Design of the Building Envelope: A novel multi-objective approach for the optimization of energy performance and thermal comfort. Sustainability. 7 [8], 10809. https://doi.org/10.3390/su70810809; Lamberts, R.; Duarte, V.C.P. (2016) Desempenho térmico de edificações, Universidade Federal de Santa Catarina, Florianopolis, Brazil.; Echarri, V.; Espinosa, A.; Rizo, C. (2017) Thermal transmission through existing building enclosures: destructive monitoring in intermediate layers versus non-destructive monitoring with sensors on surfaces. Sensors. 17 [12], 2848. https://doi.org/10.3390/s17122848 PMid:29292781 PMCid:PMC5751449; Economidou, M.; Todeschi, V.; Bertoldi, P.; Agostino, D.; Zangheri, P.; Castellazzi, L. (2020) Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322; Pereira, B.M.S. (2014) A eficiência energética em edifícios: análise comparativa da regulamentação aplicável na península Ibérica, Master's Thesis, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Brazil.; Najjar, M.; Figueiredo, K.; Hammad, A.W.A.; Haddad, A. (2019) Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Appl. Energy. 250, 1366-1382. https://doi.org/10.1016/j.apenergy.2019.05.101; Aguilera, D.G.; Lagüelab, S.; Rodríguez-Gonzálveza, P.; Hernández-López, D. (2013) Image-based thermographic modeling for assessing energy efficiency of buildings façades. Energy Build. 65, 29-36. https://doi.org/10.1016/j.enbuild.2013.05.040; International Organization for Standardization - ISO (2017). ISO 52000-1:2017. Energy performance of buildings - Overarching EPB assessment - Part 1: General framework and procedures. Geneva, Switzerland.; International Organization for Standardization - ISO (2017). ISO 52003-1:2017. Energy performance of buildings - Indicators, requirements, ratings and certificates - Part 1: General aspects and application to the overall energy performance. Geneva, Switzerland.; International Organization for Standardization - ISO (2017). ISO 52010-1:2017 Energy performance of buildings - External climatic conditions - Part 1: Conversion of climatic data for energy calculations. Geneva, Switzerland.; International Organization for Standardization - ISO (2017). ISO 52016-1:2017. Energy performance of buildings - Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads - Part 1: Calculation procedures. Geneva, Switzerland.; International Organization for Standardization - ISO (2017). ISO 52018-1:2017. Energy performance of buildings - Indicators for partial EPB requirements related to thermal energy balance and fabric features - Part 1: Overview of options. Geneva, Switzerland.; Tubelo, R.C.S.; Rodrigues, L.T.; Gillot, M.A. (2014) Comparative study of the brazilian energy labelling system and the passivhaus standard for housing. Buildings. 4 [2], 207-221. https://doi.org/10.3390/buildings4020207; Bogo, A.J. (2016) Reflexões críticas quanto as limitações do texto das normas brasileiras de desempenho NBR 15220-3 e NBR 15575. Holos. 32, 290-298. https://doi.org/10.15628/holos.2016.4389; Associação Brasileira de Normas Técnicas (2005) NBR 15220: Desempenho térmico de edificações - Parte 1-5. ABNT, Rio de Janeiro.; Associação Brasileira de Normas Técnicas (2013) NBR 15575: Edificações habitacionais - Desempenho - Parte 1 -5. ABNT, Rio de Janeiro.; Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (2012) Regulamento técnico da qualidade para o nível de eficiência energética edificações residenciais (RTQ-R), INMETRO, Rio de Janeiro, Brasil, 2012.; Marques, T.H.T.; Chavatala, K.M.S. (2013) Review of the Brazilian NBR 15575 standard: applying the simulation and simplified methods for evaluating a social house thermal performance. Proceedings of the Symposium on Simulation for Architecture and Urban Design. San Diego: SimAUD.; Dalbem, R.; Grala da Cunha, E.; Vicente, R.; Figueiredo, A.; Oliveira, R.; Silva, A.C. (2019) Optimisation of a social housing for south of Brazil: From basic performance standard to passive house concept. Energy. 167, 1278-1296. https://doi.org/10.1016/j.energy.2018.11.053; Silva, E.P.; Melo, A.B.; Queiroga, A.B.R.E. (2013) Desempenho térmico de vedações: estudo comparativo com blocos de eva, tijolo cerâmico e gesso acartonado. Proceedings of the Encontro Nacional de Conforto no Ambiente Construído. Brasília (ENCAC).; Lakatos, A. (2017) Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: Measurements, calculations, simulations. Energy Build. 139, 506-516. https://doi.org/10.1016/j.enbuild.2017.01.054; Souza, C.R.N. (2015) Estudo da condutividade térmica do gesso (CaSO4 0,5 H2O) em função de sua porosidade. Master's Thesis, Universidade Federal do Vale do São Francisco, Juazeiro, Brazil.; Specht, L.P.; Borges P.A.P.; Rupp, R.F.; Varnier, R. (2010) Análise da transferência de calor em paredes compostas por diferentes materiais. Amb. Constr. 10, 7-18. https://doi.org/10.1590/S1678-86212010000400002; Otteléa, M.; Perinib, K. (2017) Comparative experimental approach to investigate the thermal behaviour of vertical greened façades of buildings. Ecol. Eng. 108 [Part A], 152-161. https://doi.org/10.1016/j.ecoleng.2017.08.016; Silva, E.P.; Cahino, J.E.M.; Melo, A.B. (2012) Avaliação do desempenho térmico de blocos EVA, Proceedings of the Encontro Nacional de Tecnologia no Ambiente Construído, Juiz de Fora (ENTAC).; Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A. (2018) Hygrothermal behavior for a clay brick wall. J. Heat Mass. 54, 1579-1591. https://doi.org/10.1007/s00231-017-2271-5; Danieslki, I.; Fröling, M. (2015) Diagnosis of buildings' thermal performance: a quantitative method using thermography under non-steady state heat flow. Energy Procedia. 83, 320-329. https://doi.org/10.1016/j.egypro.2015.12.186; Liu, C.; Zhang, Z. (2019) Thermal response of wall implanted with heat pipes: Experimental analysis. Renew. Energy. 143, 1687-1697. https://doi.org/10.1016/j.renene.2019.05.123; Bauer, E.; Leal, F.E. (2013) Condicionantes das medições termográficas para avaliação da temperatura em fachadas. Proceedings of the X Simpósio Brasileiro de Tecnologia das Argamassas. Porto Alegre (X SBTA).; Ibañez Puy, M.; Viadurre-Arbizu, M.; Sacristán-Fernández, J.A.; Martín Gómez, F.C. (2017) Opaque Ventilated Façades: Thermal and energy performance review. Renew. Sust. Energ. Rev. 79, 180-191. https://doi.org/10.1016/j.rser.2017.05.059; Marques, D.F.P.C. (2014) Avaliação da qualidade térmica da envolvente de edifícios - Estudo de caso através da análise numérica e por termografia infravermelha. Master's Thesis, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Porto, Portugal.; Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. (2014) Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy. 134, 531-549. https://doi.org/10.1016/j.apenergy.2014.08.005; Shariq, M.H.; Hughes, B.R. (2020) Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art. Renew. Sust. Energ. Rev. 130, 109979. https://doi.org/10.1016/j.rser.2020.109979; François, A.; Ibos, L.; Feuillet, V.; Meulemans, J. (2021) In situ measurement method for the quantification of the thermal transmittance of a non-homogeneous wall or a thermal bridge using an inverse technique and active infrared thermography. Energy Build. 233, 110633. https://doi.org/10.1016/j.enbuild.2020.110633; Lamrani, M.; Laaroussi, N.; Khabbazi, A.; Khalfaoui, M.; Garoum, M.; Feiz, A. (2017) Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Stud. Constr. Mater. 7, 294-304. https://doi.org/10.1016/j.cscm.2017.09.006; Rahmanian, I.; Wang, Y.C. (2012) A combined experimental and numerical method for extracting temperature-dependent thermal conductivity of gypsum boards. Constr. Build. Mater. 26, 707-722. https://doi.org/10.1016/j.conbuildmat.2011.06.078; Yu, J.; Yang, J.; Xiong, C. (2015) Study of dynamic thermal performance of hollow block ventilated wall. Renew. Energy. 84, 145-151. https://doi.org/10.1016/j.renene.2015.07.020; Iucolano, F.; Liguori, B.; Aprea, P.; Caputo, D. (2018) Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Constr. Build. Mater. 185, 256-263. https://doi.org/10.1016/j.conbuildmat.2018.07.036; Uriarte-Flores, J.; Xamán, J.; Chávez, Y.; Hernández-López, I.; Moraga, N.O.; Aguilar, J.O. (2019) Thermal performance of walls with passive cooling techniques using traditional materials available in the Mexican market. Appl. Therm. Eng. 149, 1154-1169. https://doi.org/10.1016/j.applthermaleng.2018.12.045; Kheradmand, M.; Azenha, M.; de Aguiar, J.L.; Castro-Gomes, J. (2016) Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings. Energy. 94, 250-261. https://doi.org/10.1016/j.energy.2015.10.131; Pedreño-Rojas, M.A.; Morales-Conde, M.J.; Pérez-Gálvez, F.; Rodríguez-Liñán, C. (2017) Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste. J. Clean. Prod. 166, 690-705. https://doi.org/10.1016/j.jclepro.2017.08.077; Toppi, T.; Mazzarella, L. (2013) Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition. Energy Build. 57, 227-236. https://doi.org/10.1016/j.enbuild.2012.11.009; Belayachi, N.; Hoxha, D.; Slaimia, M. (2016) Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 125, 912-918. https://doi.org/10.1016/j.conbuildmat.2016.08.120; Bicer, A.; Kar, F. (2017) Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Therm. Sci. Eng. Prog. 1, 59-65. https://doi.org/10.1016/j.tsep.2017.02.008; Batista, P.I.B. (2019). Parâmetros de desempenho térmico de blocos de gesso, Master's Thesis. Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brazil.; Delgado, J.M.P.Q.; Paula, P. (2018) Hygrothermal performance evaluation of gypsum plaser houses in Brazil. In: J. Delgado, A. Barbosa de Lima (Eds). Transport phenomena in multiphase systems, advanced structured materials. 93, 1-53. United States: Springer. https://doi.org/10.1007/978-3-319-91062-8_1; Santos, A.N. (2017) Comportamento higrotérmico de paredes em gesso: avaliação da adequabilidade a zonas climáticas do Brasil, PhD Thesis, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.; Costa e Silva, A.J.; Peres, L. (2016) Como construir: execução de alvenaria não estrutural de blocos de gesso. Revista Techne, Brasil:Pini.; Neves, M.L.R. (2011) Método construtivo de vedação vertical interna com blocos de gesso. Master's Thesis. Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brazil.; Pires Sobrinho, C.W. (2010) Divisórias internas de edifícios em alvenaria de blocos de gesso- Vantagens técnicas, económicas e ambientais. Proceedings of the Congresso Internacional de Tecnologia Aplicada para a Arquitetura & Engenharia Sustentáveis. Recife.; Associação Brasileira de Normas Técnicas (2017) NBR 16494: Bloco de gesso para vedação vertical - Requisitos. ABNT, Rio de Janeiro.; Associação Brasileira de Normas Técnicas (2017) NBR 13207: Gesso para construção civil - Requisitos. ABNT, Rio de Janeiro.; Associação Brasileira de Normas Técnicas (2019) NBR 12127: Gesso para construção civil - Determinação das propriedades físicas do pó. ABNT, Rio de Janeiro.; Associação Brasileira de Normas Técnicas (2019) NBR 12129: Gesso para construção civil - Determinação das propriedades mecânicas. ABNT, Rio de Janeiro.; American Society for Testing and Materials (2005) ASTM C1363. Standard test method for thermal performance of building materials and envelope assemblies by means of a hot box apparatus. West Consohoken: ASTM.; Ferrari, S.; Zanotto, V. (2013) The thermal performance of walls under actual service conditions: Evaluating the results of climatic chamber tests. Constr. Build. Mater. 43, 309-316. https://doi.org/10.1016/j.conbuildmat.2013.02.056; FLIR (2014) User's manual FLIR Exx Series, first ed. Wilsonville: FLIR.; Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. (2016) Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 138 [4], 040802. https://doi.org/10.1115/1.4034605; NETZSCH (2010) Operating instructions of Heat Flow Meter HFM 436/6 Lambda, NETZSCH, Selb, Germany.; Incropera, F.P.; Dewitt, D.P. (2008) Fundamentos de transferência de calor e de massa, sixth ed., Rio de Janeiro: Guanabara Koogan.; Callister, W.; Rethwisch, D. (2018) Materials science and engineering: an introduction. New York: Wiley.; Correia, C.; Souza, M. (2009) Mechanical strength and thermal conductivity of low-porosity gypsum plates. Mater. Res. 12 [1], 95-99. https://doi.org/10.1590/S1516-14392009000100012; Huelsz, G.; Barrios, G.; Rojas, J. (2016) Equivalent-homogeneous-layers-set method for time-dependent heat transfer through hollow-block walls. Appl. Therm. Eng. 102, 1019-1023. https://doi.org/10.1016/j.applthermaleng.2016.03.113; Mansour, M.B.; Soukaina, C.A.; Benhamou, B.; Jabrallah, S.B. (2013) Thermal characterization of a Tunisian gypsum plaster as construction material. Energy Procedia. 42, 680-688. https://doi.org/10.1016/j.egypro.2013.11.070; Zhang, Y.; Du, K.; He, J.; Yang, L.; Li, Y.; Li, S. (2014). Impact factors analysis on the thermal performance of hollow block wall. Energy Build. 75:330-341. https://doi.org/10.1016/j.enbuild.2014.02.037; Bianco, L.; Serra, V.; Fantucci, S.; Dutto, M.; Massolino, M. (2015) Thermal insulating plaster as a solution for refurbishing historic building envelopes: First experimental results. Energy Build. 95, 86-91. https://doi.org/10.1016/j.enbuild.2014.11.016; Asdrubali, F.; D'Alessandro, F.; Baldinelli, G.; Bianchi, F. (2014) Evaluating in situ thermal transmittance of green buildings masonries-A case study. Case Stud. Constr. Mater. 1, 53-59. https://doi.org/10.1016/j.cscm.2014.04.004; Simões, I.; Simões, N.; Tadeu, A. (2012) Thermal delay simulation in multilayer systems using analytical solutions. Energy Build. 49, 631-639. https://doi.org/10.1016/j.enbuild.2012.03.005; Tadeu, A.; Moreira, A.; António, J.; Simões, N.; Simões, I. (2014) Thermal delay provided by floors containing layers that incorporate expanded cork granule waste. Energy Build. 68, 611-619. https://doi.org/10.1016/j.enbuild.2013.10.007; He, Z.; He, Z.; Zhang, X.; Li, Z. (2015) Study of hot air recirculation and thermal management in data centers by using temperature rise distribution. Build. Simul. 9, 541-55. https://doi.org/10.1007/s12273-016-0282-7; de Freitas, S.S.; de Freitas, V.P.; Barreira, E. (2014) Detection of façade plaster detachments using infrared thermography-A nondestructive technique. Constr. Build. Mater. 70, 80-87. https://doi.org/10.1016/j.conbuildmat.2014.07.094; Theodorakeas, P.; Avdelidis, N.P.; Cheilakou, E.; Koui, M. (2014) Quantitative analysis of plastered mosaics by means of active infrared thermography. Constr. Build. Mater. 73, 417-425. https://doi.org/10.1016/j.conbuildmat.2014.09.089; https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2993

  8. 8
  9. 9
    Electronic Resource
  10. 10
    Academic Journal
  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal

    المصدر: E&S Engineering and Science; v. 11 n. 1 (2022): E&S Engineering and Science| Dezembro - Abril (2022); 1 - 21 ; E&S Engineering and Science; Vol. 11 No. 1 (2022): E&S Engineering and Science| December - April (2022); 1 - 21 ; E&S Engineering and Science; Vol. 11 Núm. 1 (2022): E&S Engineering and Science| Diciembre - Abril (2022); 1 - 21 ; 2358-5390 ; 10.18607/ES2022111

    وصف الملف: application/pdf

  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Academic Journal
  19. 19
    Academic Journal
  20. 20
    Academic Journal