-
1Dissertation/ Thesis
المؤلفون: Carrió Gaspar, Pau
المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Ciències Experimentals i de la Salut
Thesis Advisors: Pastor Maeso, Manuel
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: In silico prediction, Applicability domain, Read across, QSAR, Toxicity, Prediccions in silico, Domini d'aplicabilitat, Toxicitat
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/328418
-
2Academic Journal
المؤلفون: Sergey Sosnin
المصدر: Journal of Cheminformatics, Vol 16, Iss 1, Pp 1-13 (2024)
مصطلحات موضوعية: Chemical space visualization, Clustering, Applicability domain, Visual validation, Chemoinformatics, QSAR/QSPR modelling, Information technology, T58.5-58.64, Chemistry, QD1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1758-2946
-
3
المؤلفون: Tal, Tamara, Myhre, Oddvar, Fritsche, Ellen, Rüegg, Joëlle, Craenen, Kai, Aiello-Holden, Kiara, Agrillo, Caroline, Babin, Patrick J., Escher, Beate I., Dirven, Hubert, Hellsten, Kati, Dolva, Kristine, Hessel, Ellen, Heusinkveld, Harm J., Hadzhiev, Yavor, Hurem, Selma, Jagiello, Karolina, Judzinska, Beata, Klüver, Nils, Knoll-Gellida, Anja, Kühne, Britta A., Leist, Marcel, Lislien, Malene, Lyche, Jan L., Müller, Ferenc, Colbourne, John K., Neuhaus, Winfried, Pallocca, Giorgia, Seeger, Bettina, Scharkin, Ilka, Scholz, Stefan, Spjuth, Ola, Professor, 1977, Torres-Ruiz, Monica, Bartmann, Kristina
المصدر: Frontiers in Toxicology. 6
مصطلحات موضوعية: new approach method (NAM), developmental neurotoxicity (DNT), adult neurotoxicity (ANT), DNT-IVB, zebrafish, applicability domain
وصف الملف: electronic
-
4Academic Journal
المؤلفون: Efrén Pérez-Santín, Luis de-la-Fuente-Valentín, Mariano González García, Kharla Andreina Segovia Bravo, Fernando Carlos López Hernández, José Ignacio López Sánchez
المصدر: AIMS Mathematics, Vol 8, Iss 11, Pp 27858-27900 (2023)
مصطلحات موضوعية: applicability domain, oecd principles, quantitative structure-activity relationship (qsar), toxicity, machine learning, Mathematics, QA1-939
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2473-6988
-
5Academic Journal
المصدر: ChemElectroChem, Vol 11, Iss 10, Pp n/a-n/a (2024)
مصطلحات موضوعية: Machine Learning, Applicability Domain, Active Learning, Self-supervised Learning, Material Discovery, Industrial electrochemistry, TP250-261, Chemistry, QD1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/2196-0216
-
6Academic Journal
المؤلفون: Srijit Seal, Hongbin Yang, Maria-Anna Trapotsi, Satvik Singh, Jordi Carreras-Puigvert, Ola Spjuth, Andreas Bender
المصدر: Journal of Cheminformatics, Vol 15, Iss 1, Pp 1-16 (2023)
مصطلحات موضوعية: Machine learning, Cell Painting, Structure, Toxicity, Bioactivity, Applicability domain, Information technology, T58.5-58.64, Chemistry, QD1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1758-2946
-
7Academic Journal
المؤلفون: Ozren Jovic, RABAH MOURAS
مصطلحات موضوعية: Chemical sciences, solubility, machine learning, extreme gradient boosting, variable selection, conformal predictor, prediction interval, applicability domain, molecular descriptor
-
8Academic Journal
المؤلفون: Brandmair, K., Dising, Denise, Finkelmeier, Doris, Schepky, A., Kuehnl, J., Ebmeyer, J., Burger-Kentischer, Anke
مصطلحات موضوعية: 3D epidermis model, applicability domain, new approach methodology, Nrf2, reporter gene, Skin sensitization
Relation: Toxicology; https://publica.fraunhofer.de/handle/publica/464308
-
9Academic Journal
المؤلفون: Yoshihiro Uesawa
المصدر: International Journal of Molecular Sciences, Vol 25, Iss 3, p 1373 (2024)
مصطلحات موضوعية: Ames test, quantitative structure–activity relationship, applicability domain, in silico study, machine learning, predictive performance, Biology (General), QH301-705.5, Chemistry, QD1-999
Relation: https://www.mdpi.com/1422-0067/25/3/1373; https://doaj.org/toc/1661-6596; https://doaj.org/toc/1422-0067; https://doaj.org/article/20f34a1d1402430fadd9ab085f3ad8d6
-
10Academic Journal
المؤلفون: Wouter Heyndrickx, Adam Arany, Jaak Simm, Anastasia Pentina, Noé Sturm, Lina Humbeck, Lewis Mervin, Adam Zalewski, Martijn Oldenhof, Peter Schmidtke, Lukas Friedrich, Regis Loeb, Arina Afanasyeva, Ansgar Schuffenhauer, Yves Moreau, Hugo Ceulemans
المصدر: Artificial Intelligence in the Life Sciences, Vol 3, Iss , Pp 100070- (2023)
مصطلحات موضوعية: Small molecule drug discovery, MELLODDY, QSAR, Federated multitask learning, Applicability domain, Uncertainty, Science (General), Q1-390
وصف الملف: electronic resource
-
11
المؤلفون: Alvarsson, Jonathan, Arvidsson McShane, Staffan, Norinder, Ulf, 1956, Spjuth, Ola
المصدر: Journal of Pharmaceutical Sciences. 110(1):42-49
مصطلحات موضوعية: QSAR, applicability domain, confidence, conformal prediction, predictive modeling
وصف الملف: print
-
12Academic Journal
المؤلفون: Ya Ju Fan, Jonathan E. Allen, Kevin S. McLoughlin, Da Shi, Brian J. Bennion, Xiaohua Zhang, Felice C. Lightstone
المصدر: Artificial Intelligence Chemistry, Vol 1, Iss 1, Pp 100004- (2023)
مصطلحات موضوعية: Uncertainty quantification, Neural networks, Drug discovery, Applicability domain, Chemistry, QD1-999, Electronic computers. Computer science, QA75.5-76.95
وصف الملف: electronic resource
-
13Dissertation/ Thesis
-
14Academic Journal
المؤلفون: Cindy Trinh, Silvia Lasala, Olivier Herbinet, Dimitrios Meimaroglou
المصدر: Algorithms, Vol 16, Iss 12, p 573 (2023)
مصطلحات موضوعية: machine learning, QSPR/QSAR, high-dimensional data, descriptors, thermodynamic properties, applicability domain, Industrial engineering. Management engineering, T55.4-60.8, Electronic computers. Computer science, QA75.5-76.95
وصف الملف: electronic resource
-
15Academic Journal
المؤلفون: Yimeng Wang, Yaxin Gu, Chaofeng Lou, Yuning Gong, Zengrui Wu, Weihua Li, Yun Tang, Guixia Liu
المصدر: Journal of Cheminformatics, Vol 14, Iss 1, Pp 1-15 (2022)
مصطلحات موضوعية: Selective JAK inhibitors, GNN, Multitask learning, Model interpretations, Key substructures, Applicability domain, Information technology, T58.5-58.64, Chemistry, QD1-999
وصف الملف: electronic resource
Relation: https://doaj.org/toc/1758-2946
-
16Dissertation/ Thesis
المؤلفون: Mervin, Lewis
المساهمون: Bender, Andreas, Engkvist, Ola
مصطلحات موضوعية: 615.1, Cheminformatics, Mode of action, In silico, Protein Target Prediction, Orthologue, Chemical space, AstraZeneca, Chemistry Connect, Bioactivity data, Target deconvolution, Target prediction, MoA, ChEMBL, PubChem, Functional prediction, Sphere exclusion, Random Forest, Naive Bayes, SVM, Support Vector Machine, AD-AUC, Activation, Inhibition, Functional Effects, Mechanism-of-action, Mode-of-action, Mechanism of action, Phenotypic screens, High throughput screens, High content screens, PR-AUC, Applicability domain, Venn Abers, Platt scaling, Isotonic regression scaling, Python, Scikit-learn, RDKit
-
17Academic Journal
المؤلفون: Pérez-Santín, Efrén, de-la-Fuente-Valentín, Luis, González García, Marian, Segovia Bravo, Kharla Andreina, López Hernández, Fernando Carlos, López Sánchez, José Ignacio
مصطلحات موضوعية: applicability domain, machine learning, OECD principles, quantitative structure-activity relationship (QSAR), toxicity, Scopus, JCR
Relation: vol. 8, nº 11; Efrén Pérez-Santín, Luis de-la-Fuente-Valentín, Mariano González García, Kharla Andreina Segovia Bravo, Fernando Carlos López Hernández, José Ignacio López Sánchez. Applicability domains of neural networks for toxicity prediction[J]. AIMS Mathematics, 2023, 8(11): 27858-27900. doi:10.3934/math.20231426; https://reunir.unir.net/handle/123456789/15478; https://doi.org/10.3934/math.20231426
-
18Academic Journal
المؤلفون: Kumari, Priyanka, Van Laethem, Thomas, Hubert, Philippe, Fillet, Marianne, Sacre, Pierre-Yves, Hubert, Cédric
المساهمون: CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
المصدر: Molecules, 28 (4), 1696 (2023-02-10)
مصطلحات موضوعية: QSRR, RPLC, applicability domain, machine learning, stacking, Reproducibility of Results, Chromatography, Liquid/methods, Algorithms, High Pressure Liquid/methods, Quantitative Structure-Activity Relationship, Reverse-Phase, High Pressure Liquid, Liquid, Analytical Chemistry, Pharmaceutical Science, Human health sciences, Pharmacy, pharmacology & toxicology, Sciences de la santé humaine, Pharmacie, pharmacologie & toxicologie
Relation: https://www.mdpi.com/1420-3049/28/4/1696/pdf; urn:issn:1420-3049; https://orbi.uliege.be/handle/2268/301951; info:hdl:2268/301951; info:pmid:36838689
-
19Academic Journal
المؤلفون: Alberto Danieli, Erika Colombo, Giuseppa Raitano, Anna Lombardo, Alessandra Roncaglioni, Alberto Manganaro, Alessio Sommovigo, Edoardo Carnesecchi, Jean-Lou C. M. Dorne, Emilio Benfenati
المصدر: International Journal of Molecular Sciences; Volume 24; Issue 12; Pages: 9894
مصطلحات موضوعية: in silico models, new approach methodologies (NAMs), toxicological endpoints, applicability domain (AD), VEGA tool
جغرافية الموضوع: agris
وصف الملف: application/pdf
Relation: Molecular Informatics; https://dx.doi.org/10.3390/ijms24129894
الاتاحة: https://doi.org/10.3390/ijms24129894
-
20Academic Journal
المؤلفون: М. И. Шаладонова, Я. В. Диченко, С. А. Усанов, M. I. Shaladonova, Ya. V. Dzichenka, S. A. Usanov
المصدر: Doklady of the National Academy of Sciences of Belarus; Том 67, № 5 (2023); 388-398 ; Доклады Национальной академии наук Беларуси; Том 67, № 5 (2023); 388-398 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-5
مصطلحات موضوعية: идентификация препаратов, ингибиторы ароматазы, лиганд, топологические дескрипторы, машинное обучение, прогностическая модель, область применимости, aromatase inhibitors, ligand, topological descriptors, machinery learning, predictive model, applicability domain, drug identification
وصف الملف: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/1152/1151; Guha, R. Development of Linear, Ensemble, and Nonlinear Models for the Prediction and Interpretation of the Biological Activity of a Set of PDGFR Inhibitors / R. Guha, P. C. Jurs // J. Chem. Inf. Comput. Sci. – 2004. – Vol. 44, N 6. – P. 2179–2189. doi:10.1021/ci049849f; Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors / C. Chamduang [et al.] // Bioorg. Chem. – 2019. – Vol. 93. – Art. 103327. doi:10.1016/j.bioorg.2019.103327; Brueggemeier, R. W. Aromatase Inhibitors in the Treatment of Breast Cancer / R. W. Brueggemeier, J. C. Hackett, E. S. Diaz-Cruz // Endocrine Rev. – 2005. – Vol. 26, N 3. – P. 331–345. doi:10.1210/er.2004-0015; Bertelli, G. Sequencing of aromatase inhibitors / G. Bertelli // Br. J. Cancer. – 2005. – Vol. 93, N S1. – P. 6–9. doi:10.1038/sj.bjc.6602689; Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl) thiazole derivatives / Z. Sahin [et al.] // Bioorg. Med. Chem. – 2018. – Vol. 26, N 8. – P. 1986–1995. doi:10.1016/j.bmc.2018.02.048; Aromatase Inhibitors Evolution as Potential Class of Drugs in the Treatment of Postmenopausal Brest Cancer Women / S. Avvaru [et al.] // Mini-Rev. Med. Chem. – 2018. – Vol. 18, N 7. – P. 609–621. doi:10.2174/1389557517666171101100902; Determining the IC50 Values for Vorozole and Letrozole, on a Series of Human Liver Cytochrome P450s, to Help Determine the Binding Site of Vorozole in the Liver / L. Raymond [et al.] // Enzyme Research. – 2015. – Vol. 2015. – P. 1–4. doi:10.1155/2015/321820; Synthesis of Aromatase Inhibitors and Dual Aromatase Steroid Sulfatase Inhibitors by Linking an Arylsulfamate Motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, Crystal Structures, in vitro and in vivo Activities / C. Bubert [et al.] // ChemMedChem. – 2008. – Vol. 3, N 11. – P. 1708–1730. doi:10.1002/cmdc.200800164; Баскин, И. И. Введение в хемоинформатику / И. И. Баскин, Т. И. Маджидов, А. А. Варнек. – М., Казань, Страсбург, 2020. – Ч. 4: Методы машинного обучения. – 321 с.; Application of the Random Forest Method in Studies of Local Lymph Node Assay Based Skin Sensitization Data / S. Li [et al.] // J. Chem. Inf. Model. – 2005. – Vol. 45, N 4. – P. 952–964. doi:10.1021/ci050049u; Применение метода количественных корреляций структура–свойство (ККСС) с использованием топологического индекса Балабана на примере группы сульфаниламидов / А. В. Сыроешкин [и др.] // Вестн. Рос. ун-та дружбы народов. Сер. Медицина. – 2000. – № 2. – С. 80–83.; Optimisation and evaluation of the random forest model in the efficacy prediction of chemoradiotherapy for advanced cervical cancer based on radiomics signature from high-resolution T2 weighted images / D. Liu [et al.] // Arch. Gynecol. Obstet. – 2021. – Vol. 303, N 3. – Р. 811–820. doi:10.1007/s00404-020-05908-5; Janitza, S. An AUC-based permutation variable importance measure for random forests / S. Janitza, C. Strobl, A.-L. Boulesteix // BMC Bioinformatics. – 2013. – Vol. 14, N 1. – Р. 1–11. doi:10.1186/1471-2105-14-119; https://doklady.belnauka.by/jour/article/view/1152