يعرض 1 - 20 نتائج من 110 نتيجة بحث عن '"Apéstigue, V."', وقت الاستعلام: 0.66s تنقيح النتائج
  1. 1
    Report
  2. 2
    Academic Journal

    المساهمون: Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)

    المصدر: Geophysical Research Letters ; https://insu.hal.science/insu-04853444 ; Geophysical Research Letters, 2024, 51, ⟨10.1029/2023GL107975⟩

    Relation: BIBCODE: 2024GeoRL.5107975V

  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المساهمون: Institute for Atmospheric and Earth System Research (INAR)

    وصف الملف: application/pdf

    Relation: German Martinez wants to acknowledge JPL funding from USRA Contract Number 1638782. A. V. R. is supported by the Spanish State Research Agency (AEI) Project MDM-2017-0737, Unidad de Excelencia "Maria de Maeztu"-Centro de Astrobiologia (INTA-CSIC), and by the Comunidad de Madrid Project S2018/NMT-4291 (TEC2SPACE-CM). J. J. acknowledges funding from Mastcam-Z ASU subcontract 15-707. R. H., A. S. L., and A. M. were supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1742-22. F. G. acknowledges financial support from the Agencia Estatal de Investigacion of the Ministerio de Ciencia e Innovacion and the European Regional Development Fund "A way of making Europe" through project the Centre of Excellence "Maria de Maeztu" award to the Centro de Astrobiologia (MDM-2017-0737), and from the Instituto Nacional de Tecnica Aeroespacial through Project S.IGS22001. L. M. was supported by CNES and IRIS-OCAV. J. P., M. H., and A.-M. H. are thankful for the Finnish Academy Grant 310509. M.-P. Z. was supported by Grant PID2019-104205GB-C21 funded by MCIN/AEI/10.13039/501100011033. M. de la T. J. acknowledges partial funding from the National Aeronautics and Space Administration (80NM0018D0004). The JPL co-authors acknowledge funding from NASA's Space Technology Mission Directorate and the Science Mission Directorate.; Martinez , G M , Sebastián , E , Vicente-Retortillo , A , Smith , M D , Johnson , J R , Fischer , E , Savijärvi , H , Toledo , D , Hueso , R , Mora-Sotomayor , L , Gillespie , H , Munguira , A , Sánchez-Lavega , A , Lemmon , M T , Gómez , F , Polkko , J , Mandon , L , Apestigue , V , Arruego , I , Ramos , M , Conrad , P , Newman , C E , de la Torre-Juarez , M , Jordan , F , Tamppari , L K , McConnochie , T H , Harri , A-M , Genzer , M , Hieta , M , Zorzano , M-P , Siegler , M , Prieto , O , Molina , A & Rodríguez-Manfredi , J A 2023 , ' Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument ' , Journal of Geophysical Research: Planets , vol. 128 , no. 2 , e2022JE007537 . https://doi.org/10.1029/2022JE007537; http://hdl.handle.net/10138/571240; 80cfb452-c6a1-4c6c-85c7-e79efacb5933; 85147127818; 001000268500012

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    المساهمون: Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Instituto Nacional de Técnica Aeroespacial (España), European Commission, National Aeronautics and Space Administration (US), NASA Jet Propulsion Laboratory, California Institute of Technology, Rodriguez-Manfredi, J. A., Torre Juarez, Manuel de la, Sánchez-Lavega, A., Hueso, R., Martinez, G., Lemmon, M. T., Newman, C. E., Munguira, A., Jaakonaho, I., Viudez-Moreiras, D., Ramos, M. Ángeles, Saiz-Lopez, A., Lepinette, A., Sullivan, R. J., Apestigue, V., Río Gaztelurrutia, Teresa del, Murdoch, N., Arruego, I., Banfield, D., Brown, A. J., Ceballos, J., Dominguez-Pumar, M., Espejo, S., Fischer, E., Guzewich, S. D., Makinen, T., Martin, C., Molina, A., Mora-Sotomayor, L., Navarro, S., Perez-Grande, I., Romero, C.

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-1-R/ES/CIENCIA Y TECNOLOGIA DE INSTRUMENTOS ESPACIALES PARA LA CARACTERIZACION DEL AMBIENTE MARCIANO EN MULTIPLES MISIONES DE NASA: REMS, TWINS Y MEDA/; info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-2-R/ES/CIENCIA Y TECNOLOGIA DE INSTRUMENTOS ESPACIALES PARA LA CARACTERIZACION DEL AMBIENTE MARCIANO EN MULTIPLES MISIONES DE NASA Y ESA: SENSOR DE VIENTO 3D/; info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-3-R/ES/INSTRUMENTACION PARA LA INVESTIGACION Y CIENCIA ATMOSFERICA EN MARTE/; info:eu-repo/grantAgreement/MINECO//ESP2014-54256-C4-4-R/ES/MICROELECTRONICA DE ESPACIO PARA INSTRUMENTACION AMBIENTAL EN MARTE/; info:eu-repo/grantAgreement/MICIU//ESP2016-79612-C3-1-R; info:eu-repo/grantAgreement/MICIU//ESP2016-79612-C3-2-R; info:eu-repo/grantAgreement/MICIU//ESP2016-79612-C3-3-R; info:eu-repo/grantAgreement/MICINN//ESP2016-80320-C2-1-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098728-B-C31/ES/CIENCIA Y TECN. DE INSTRUM. ESPACIALES PARA CARACTERIZACION DE AMBIENTE MARCIANO EN VARIAS MISIONES DE NASA - III: REMS (FASE E), TWINS (FASE E) Y MEDA (FIN FASE D Y FASE E)/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098728-B-C32/ES/CALIBRACION DEL SENSOR DE VIENTO DE MEDA Y ASIC DEL SENSOR DE VIENTO ESFERICO/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098728-B-C33/ES/INSTRUMENTACION PARA CARACTERIZAR EL ENTORNO MARCIANO EN MISIONES DE LA NASA: SENSORES DE VIENTO PARA MEDA (CONCLUSION DE LAS FASES D Y E)/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099825-B-C31/ES/INSTRUMENTACION PARA LA INVESTIGACION ATMOSFERICA EN LA SUPERFICIE DE MARTE/; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109467GB-I00/ES/ATMOSFERAS PLANETARIAS DEL SISTEMA SOLAR/; info:eu-repo/grantAgreement/MICINN//PRE2020-092562; info:eu-repo/grantAgreement/EC/H2020/818602; Nature Geoscience; Publisher's version; https://doi.org/10.1038/s41561-022-01084-0; Sí; Nature Geoscience 16:19–28 (2023); http://hdl.handle.net/10261/288536; http://dx.doi.org/10.13039/501100003329; http://dx.doi.org/10.13039/501100004837; http://dx.doi.org/10.13039/100000104; http://dx.doi.org/10.13039/100006961; http://dx.doi.org/10.13039/501100010687; http://dx.doi.org/10.13039/501100000780; 2-s2.0-85145950264; https://api.elsevier.com/content/abstract/scopus_id/85145950264

  7. 7
    Academic Journal

    المساهمون: Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)

    مصطلحات موضوعية: Autre, Dust, Mars, Perseverance, Vortices

    وصف الملف: application/pdf

    Relation: https://oatao.univ-toulouse.fr/29495/1/Toledo_29495.pdf; HAL : hal-03978206; Toledo, D. and Apéstigue, V. and Arruego, I. and Lemmon, M. and Gómez, L. and Montoro, F. and Hueso, R. and Newman, C. and Smith, M. and Viudez‐Moreiras, D. and Martínez, G. and Lorenz, R. and Vicente‐Retortillo, A. and Sanchez‐Lavega, A. and Juarez, M. de la Torre and Rodriguez‐Manfredi, J. A. and Carrasco, I. and Yela, M. and Jimenez, J. J. and García‐Menendez, E. and Navarro, S. and Gomez‐Elvira, F. J. and Harri, A.‐M. and Polkko, J. and Hieta, M. and Genzer, M. and Murdoch, Naomi and Sebastian, E. Dust Devil Frequency of Occurrence and Radiative Effects at Jezero Crater, Mars, as Measured by MEDA Radiation and Dust Sensor (RDS). (2023) Journal of Geophysical Research: Planets, 128 (1). ISSN 2169-9097

  8. 8
    Academic Journal
  9. 9
  10. 10
    Academic Journal

    المساهمون: Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)

    مصطلحات موضوعية: Autre, Mars, Acoustics, Microphone, Regolith, Dust, Convective vortex

    وصف الملف: application/pdf

    Relation: https://oatao.univ-toulouse.fr/29486/1/Murdoch_29486.pdf; HAL : hal-03977192; Murdoch, Naomi and Stott, Alexander E. and Gillier, Martin and Hueso, R. and Lemmon, M. and Martinez, G. and Apéstigue, V. and Toledo, D. and Lorenz, R. D. and Chide, B. and Munguira, A. and Sánchez-Lavega, A. and Vicente-Retortillo, A. and Newman, C. E. and Maurice, S. and de la Torre Juárez, M. and Bertrand, T. and Banfield, D. and Navarro, S. and Marin, M. and Torres, J. and Gomez-Elvira, Javier and Jacob, Xavier and Cadu, Alexandre and Sournac, Anthony and Rodriguez-Manfredi, J. A. and Wiens, Roger C. and Mimoun, David. The sound of a Martian dust devil. (2022) Nature Communications, 13 (1). ISSN 2041-1723

  11. 11
    Academic Journal

    المساهمون: Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)

    المصدر: ISSN: 0094-8276.

    مصطلحات موضوعية: [SDU]Sciences of the Universe [physics]

    Relation: BIBCODE: 2022GeoRL.4900126L; PUBMEDCENTRAL: PMC9540647

  12. 12
    Academic Journal

    المساهمون: Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Instituto Nacional de Técnica Aeroespacial (España), Centro para el Desarrollo Tecnológico Industrial (España), Eusko Jaurlaritza, European Research Council

    Relation: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-1-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-2-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-3-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/ESP2014-54256-C4-4-R; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016MINECO/ICTI2013‐2016/AYA2015-65041-P; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-1-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-2-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-79612-C3-3-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/ESP2016-80320-C2-1-R; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C31; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C32; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-098728-B-C33; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020MICIU/ICTI2017‐2020/RTI2018-099825-B-C31; Space science reviews; Publisher's version; https://doi.org/10.1007/s11214-021-00816-9; Sí; Astronomy & Astrophysics 217 (3): 48 (2021); http://hdl.handle.net/10261/257952; http://dx.doi.org/10.13039/501100003086; http://dx.doi.org/10.13039/501100000781; http://dx.doi.org/10.13039/501100001872; http://dx.doi.org/10.13039/501100010687; http://dx.doi.org/10.13039/501100003329; 2-s2.0-85104412286; https://api.elsevier.com/content/abstract/scopus_id/85104412286

  13. 13
    Academic Journal

    وصف الملف: application/pdf

    Relation: Vicente-Retortillo, A.; Martínez, G. M.; Lemmon, M. T.; Hueso, R.; Johnson, J. R.; Sullivan, R.; Newman, C. E.; Sebastián, E.; Toledo, D.; Apéstigue, V.; Arruego, I.; Munguira, A.; Sánchez-Lavega, A.; Murdoch, N.; Gillier, M.; Stott, A.; Mora-Sotomayor, L.; Bertrand, T.; Tamppari, L. K.; Juárez, M. De La Torre; Rodríguez-Manfredi, J.-A. (2023). "Dust Lifting Through Surface Albedo Changes at Jezero Crater, Mars." Journal of Geophysical Research: Planets 128(4): n/a-n/a.; https://hdl.handle.net/2027.42/176074; Journal of Geophysical Research: Planets; Reid, R. J., Smith, P. H., Lemmon, M., Tanner, R., Burkland, M., Wegryn, E., et al. ( 1999 ). Imager for Mars Pathfinder (IMP) image calibration. Journal of Geophysical Research, 104 ( E4 ), 8907 – 8925. https://doi.org/10.1029/1998je900011; Lemmon, M. T., Smith, M. D., Viudez-Moreiras, D., de la Torre-Juarez, M., Vicente-Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active Martian storm in Jezero crater. Geophysical Research Letters, 49 ( 17 ), e2022GL100126. https://doi.org/10.1029/2022gl100126; Lorenz, R. D. ( 2014 ). Vortex encounter rates with fixed barometer stations: Comparison with visual dust devil counts and large-eddy simulations. Journal of the Atmospheric Sciences, 71 ( 12 ), 4461 – 4472. https://doi.org/10.1175/jas-d-14-0138.1; Lorenz, R. D. ( 2016 ). Heuristic estimation of dust devil vortex parameters and trajectories from single-station meteorological observations: Application to InSight at Mars. Icarus, 271, 326 – 337. https://doi.org/10.1016/j.icarus.2016.02.001; Lorenz, R. D., Lemmon, M. T., & Maki, J. ( 2021 ). First Mars year of observations with the InSight solar arrays: Winds, dust devil shadows, and dust accumulation. Icarus, 364, 114468. https://doi.org/10.1016/j.icarus.2021.114468; Lorenz, R. D., Martínez, G. M., Spiga, A., Vicente-Retortillo, A., Newman, C. E., Murdoch, N., et al. ( 2021 ). Lander and rover histories of dust accumulation on and removal from solar arrays on Mars. Planetary and Space Science, 207, 105337. https://doi.org/10.1016/j.pss.2021.105337; Maki, J. N. ( 2020 ). Calibrated data products for the Mars 2020 perseverance rover navigation cameras. NASA Planetary Data System Imaging Node. https://doi.org/10.17189/yvkm-rx37; Maki, J. N., Gruel, D., McKinney, C., Ravine, M. A., Morales, M., Lee, D., et al. ( 2020 ). The Mars 2020 engineering cameras and microphone on the perseverance rover: A next-generation imaging system for Mars exploration. Space Science Reviews, 216 ( 8 ), 1 – 48. https://doi.org/10.1007/s11214-020-00765-9; Malin, M. C., & Cantor, B. A. ( 2022 ). MRO MARCI weather report for the week of 3 January 2022–9 January 2022, Malin space science systems captioned image release, MSSS 432 604. Retrieved from http://www.msss.com/msss_images/2022/01/12/; Martínez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., et al. ( 2023 ). Surface energy budget, albedo and thermal inertia at Jezero Crater, Mars, as observed from the Mars 2020 MEDA instrument. Journal of Geophysical Research: Planets, 128 ( 2 ), e2022JE007537. https://doi.org/10.1029/2022je007537; Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., et al. ( 2021 ). The SuperCam instrument suite on the Mars 2020 rover: Science objectives and Mast-Unit description. Space Science Reviews, 217 ( 3 ), 1 – 108.; Merusi, M., Kinch, K. B., Madsen, M. B., Bell, J. F., Maki, J. N., Hayes, A. G., et al. ( 2022 ). The Mastcam-Z radiometric calibration targets on NASA’s Perseverance rover: Derived irradiance time-series, dust deposition, and performance over the first 350 sols on Mars. Earth and Space Science, 9 ( 12 ), e2022EA002552. https://doi.org/10.1029/2022ea002552; Morris, R. V., Golden, D. C., Bell, J. F., III., Shelfer, T. D., Scheinost, A. C., Hinman, N. W., et al. ( 2000 ). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research, 105 ( E1 ), 1757 – 1817. https://doi.org/10.1029/1999je001059; Neakrase, L. D., & Greeley, R. ( 2010 ). Dust devil sediment flux on Earth and Mars: Laboratory simulations. Icarus, 206 ( 1 ), 306 – 318. https://doi.org/10.1016/j.icarus.2009.08.028; Neakrase, L. D. V., Greeley, R., Iversen, J. D., Balme, M. R., & Eddlemon, E. E. ( 2006 ). Dust flux within dust devils: Preliminary laboratory simulations. Geophysical Research Letters, 33 ( 19 ), L19S09. https://doi.org/10.1029/2006gl026810; Newman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, Á., Apestigue, V., et al. ( 2022 ). The dynamic atmospheric and Aeolian environment of Jezero crater, Mars. Science Advances, 8 ( 21 ), eabn3783.; Newman, C. E., Lewis, S. R., Read, P. L., & Forget, F. ( 2002a ). Modeling the Martian dust cycle, 1. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 107 ( E12 ), 6 – 1. https://doi.org/10.1029/2002je001910; Newman, C. E., Lewis, S. R., Read, P. L., & Forget, F. ( 2002b ). Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 107 ( E12 ), 7 – 1. https://doi.org/10.1029/2002je001920; Pérez-Izquierdo, J., Sebastián, E., Martínez, G. M., Bravo, A., Ramos, M., & Manfredi, J. A. R. ( 2018 ). The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement, 122, 432 – 442. https://doi.org/10.1016/j.measurement.2017.12.004; Reiss, D., Fenton, L., Neakrase, L., Zimmerman, M., Statella, T., Whelley, P., et al. ( 2016 ). Dust devil tracks. Space Science Reviews, 203 ( 1 ), 143 – 181. https://doi.org/10.1007/s11214-016-0308-6; Reiss, D., & Lorenz, R. D. ( 2016 ). Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites. Icarus, 266, 315 – 330. https://doi.org/10.1016/j.icarus.2015.11.012; Reiss, D., Raack, J., Rossi, A. P., Di Achille, G., & Hiesinger, H. ( 2010 ). First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophysical Research Letters, 37 ( 14 ). https://doi.org/10.1029/2010gl044016; Rice, M. S., Reynolds, M., Studer-Ellis, G., Bell, J. F., III., Johnson, J. R., Herkenhoff, K. E., et al. ( 2018 ). The albedo of Mars: Six Mars years of observations from Pancam on the Mars exploration rovers and comparisons to MOC, CTX and HiRISE. Icarus, 314, 159 – 174. https://doi.org/10.1016/j.icarus.2018.05.017; Rice, M. S., Seeger, C., Bell, J., Calef, F., St. Clair, M., Eng, A., et al. ( 2022 ). Spectral diversity of rocks and soils in Mastcam observations along the Curiosity rover’s traverse in Gale crater, Mars. Journal of Geophysical Research: Planets, 127 ( 8 ), e2021JE007134. https://doi.org/10.1029/2021je007134; Rodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 perseverance rover Mars environmental dynamics analyzer (MEDA) experiment data record (EDR) and reduced data record (RDR) data products archive bundle. NASA Planetary Data System Atmospheres Node. https://doi.org/10.17189/1522849; Rodriguez-Manfredi, J. A., de la Torre Juarez, M., Sanchez-Lavega, A., Hueso, R., Martinez, G., Lemmon, M. T., et al. ( 2023 ). The diverse meteorology of Jezero crater over the first 250 sols of Perseverance on Mars. Nature Geoscience, 16, 19 – 28.; Rodriguez-Manfredi, J. A., De la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al. ( 2021 ). The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 1 – 86.; Ruff, S. W., & Christensen, P. R. ( 2002 ). Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal emission spectrometer data. Journal of Geophysical Research, 107 ( E12 ), 5119 – 5122. https://doi.org/10.1029/2001je001580; Sebastián, E., Martínez, G., Ramos, M., Haenschke, F., Ferrándiz, R., Fernández, M., & Manfredi, J. A. R. ( 2020 ). Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’s Mars 2020 mission. Measurement, 164, 107968. https://doi.org/10.1016/j.measurement.2020.107968; Sebastián, E., Martínez, G., Ramos, M., Pérez-Grande, I., Sobrado, J., & Manfredi, J. A. R. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s Perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006; Sullivan, R., Arvidson, R., Bell, J. F., III., Gellert, R., Golombek, M., Greeley, R., et al. ( 2008 ). Wind-driven particle mobility on Mars: Insights from Mars exploration rover observations at “El Dorado” and surroundings at Gusev Crater. Journal of Geophysical Research, 113 ( E6 ), E06S07. https://doi.org/10.1029/2008je003101; Szwast, M. A., Richardson, M. I., & Vasavada, A. R. ( 2006 ). Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters. Journal of Geophysical Research, 111 ( E11 ), E11008. https://doi.org/10.1029/2005je002485; Toledo, D., Apéstigue, V., Arruego, I., Lemmon, M., Gómez, L., Montoro, A. D. F., et al. ( 2023 ). Dust devil frequency of occurrence and radiative effects at Jezero crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). Journal of Geophysical Research: Planets, 128 ( 1 ), e2022JE007494. https://doi.org/10.1029/2022je007494; Vicente-Retortillo, A. ( 2023 ). Derived data supporting the analysis of surface albedo changes from Mars 2020 observations: Probabilistic distribution of the Amplitude Spectral Densities of Supercam microphone recordings and Monte-Carlo dust devil simulations. (Version 1) [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7689351; Vicente-Retortillo, Á., Martínez, G. M., Renno, N., Newman, C. E., Ordonez-Etxeberria, I., Lemmon, M. T., et al. ( 2018 ). Seasonal deposition and lifting of dust on Mars as observed by the Curiosity rover. Scientific Reports, 8 ( 1 ), 1 – 8. https://doi.org/10.1038/s41598-018-35946-8; Vicente-Retortillo, Á., Martínez, G. M., Renno, N. O., Lemmon, M. T., & de la Torre-Juárez, M. ( 2017 ). Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements. Geophysical Research Letters, 44 ( 8 ), 3502 – 3508. https://doi.org/10.1002/2017gl072589; Vicente-Retortillo, A., Martínez, G. M., Rennó, N. O., Lemmon, M. T., de la Torre-Juárez, M., & Gómez-Elvira, J. ( 2020 ). In situ UV measurements by MSL/REMS: Dust deposition and angular response corrections. Space Science Reviews, 216 ( 5 ), 97. https://doi.org/10.1007/s11214-020-00722-6; Wellington, D. F., & Bell, J. F., III. ( 2020 ). Patterns of surface albedo changes from Mars reconnaissance orbiter Mars color imager (MARCI) observations. Icarus, 349, 113766. https://doi.org/10.1016/j.icarus.2020.113766; Wellington, D. F., Bell, J. F., Johnson, J. R., Kinch, K. M., Rice, M. S., Godber, A., et al. ( 2017 ). Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars. American Mineralogist, 102 ( 6 ), 1202 – 1217. https://doi.org/10.2138/am-2017-5760ccby; Wells, E., Veverka, J., & Thomas, P. ( 1984 ). Mars: Experimental study of albedo changes caused by dust fallout. Icarus, 58 ( 3 ), 331 – 338. https://doi.org/10.1016/0019-1035(84)90079-4; Whelley, P. L., & Greeley, R. ( 2008 ). The distribution of dust devil activity on Mars. Journal of Geophysical Research, 113 ( E7 ), E07002. https://doi.org/10.1029/2007je002966; Wiens, R. C., & Maurice, S. A. ( 2021 ). Mars 2020 perseverance rover SuperCam raw, calibrated, and derived data products. NASA PDS Geosciences Node. https://doi.org/10.17189/1522646; Apestigue, V., Gonzalo, A., Jiménez, J. J., Boland, J., Lemmon, M., de Mingo, J. R., et al. ( 2022 ). Radiation and dust sensor for Mars environmental dynamic analyzer onboard M2020 rover. Sensors, 22 ( 8 ), 2907. https://doi.org/10.3390/s22082907; Baker, M., Newman, C., Charalambous, C., Golombek, M., Spiga, A., Banfield, D., et al. ( 2021 ). Vortex-dominated Aeolian activity at InSight’s landing site, Part 2: Local meteorology, transport dynamics, and model analysis. Journal of Geophysical Research: Planets, 126 ( 4 ), e2020JE006514. https://doi.org/10.1029/2020je006514; Banerdt, W. B., Smrekar, S. E., Banfield, D., Giardini, D., Golombek, M., Johnson, C. L., et al. ( 2020 ). Initial results from the InSight mission on Mars. Nature Geoscience, 13 ( 3 ), 183 – 189. https://doi.org/10.1038/s41561-020-0544-y; Bapst, J., Piqueux, S., Edwards, C. S., Wolfe, C., Hayne, P. O., Kass, D. M., & Kleinböhl, A. ( 2022 ). Surface dust redistribution on Mars from interannual differences in temperature and albedo. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007365. https://doi.org/10.1029/2022je007365; Basu, S., Richardson, M. I., & Wilson, R. J. ( 2004 ). Simulation of the Martian dust cycle with the GFDL Mars GCM. Journal of Geophysical Research, 109 ( E11 ), E11006. https://doi.org/10.1029/2004je002243; Bell, J. F., III., Rice, M. S., Johnson, J. R., & Hare, T. M. ( 2008 ). Surface albedo observations at Gusev crater and Meridiani Planum, Mars. Journal of Geophysical Research, 113 ( E6 ), E06S18. https://doi.org/10.1029/2007je002976; Bell, J. F., & Maki, J. N. ( 2021 ). Calibrated data products for the Mars 2020 Perseverance rover mast camera zoom camera created by the Arizona State University Mastcam-Z instrument team for the science team. NASA Planetary Data System Imaging Node. https://doi.org/10.17189/q3ts-c749; Bell, J. F., Maki, J. N., Mehall, G. L., Ravine, M. A., Caplinger, M. A., Bailey, Z. J., et al. ( 2021 ). The Mars 2020 perseverance rover mast camera zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation. Space Science Reviews, 217 ( 1 ), 1 – 40. https://doi.org/10.1007/s11214-020-00755-x; Cantor, B. A., Kanak, K. M., & Edgett, K. S. ( 2006 ). Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. Journal of Geophysical Research, 111 ( E12 ), E12002. https://doi.org/10.1029/2006je002700; Charalambous, C., McClean, J. B., Baker, M., Pike, W. T., Golombek, M., Lemmon, M., et al. ( 2021 ). Vortex-dominated Aeolian activity at InSight’s Landing Site, Part 1: Multi-instrument observations, analysis, and implications. Journal of Geophysical Research: Planets, 126 ( 6 ), e2020JE006757. https://doi.org/10.1029/2020je006757; Chide, B., Murdoch, N., Bury, Y., Maurice, S., Jacob, X., Merrison, J. P., et al. ( 2021 ). Experimental wind characterization with the SuperCam microphone under a simulated Martian atmosphere. Icarus, 354, 114060. https://doi.org/10.1016/j.icarus.2020.114060; Clancy, R. T., Wolff, M. J., & Christensen, P. R. ( 2003 ). Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. Journal of Geophysical Research, 108 ( E9 ), 5098. https://doi.org/10.1029/2003je002058; Farley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., et al. ( 2020 ). Mars 2020 mission overview. Space Science Reviews, 216 ( 8 ), 1 – 41. https://doi.org/10.1007/s11214-020-00762-y; Farrand, W. H., Bell, J. F., III., Johnson, J. R., Squyres, S. W., Soderblom, J., & Ming, D. W. ( 2006 ). Spectral variability among rocks in visible and near-infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques. Journal of Geophysical Research, 111 ( E2 ), E02S15. https://doi.org/10.1029/2005JE002495; Fenton, L., Reiss, D., Lemmon, M., Marticorena, B., Lewis, S., & Cantor, B. ( 2016 ). Orbital observations of dust lofted by daytime convective turbulence. Space Science Reviews, 203 ( 1 ), 89 – 142. https://doi.org/10.1007/s11214-016-0243-6; Geissler, P. E., Fenton, L. K., Enga, M. T., & Mukherjee, P. ( 2016 ). Orbital monitoring of Martian surface changes. Icarus, 278, 279 – 300. https://doi.org/10.1016/j.icarus.2016.05.023; Greeley, R., Arvidson, R., Bell, J. F., III., Christensen, P., Foley, D., Haldemann, A., et al. ( 2005 ). Martian variable features: New insight from the Mars express orbiter and the Mars exploration rover spirit. Journal of Geophysical Research, 110 ( E6 ), E06002. https://doi.org/10.1029/2005je002403; Harri, A. M., Genzer, M., Kemppinen, O., Kahanpää, H., Gomez-Elvira, J., Rodriguez-Manfredi, J. A., et al. ( 2014 ). Pressure observations by the Curiosity rover: Initial results. Journal of Geophysical Research: Planets, 119 ( 1 ), 82 – 92. https://doi.org/10.1002/2013je004423; Hayes, A. G., Corlies, P., Tate, C., Barrington, M., Bell, J. F., Maki, J. N., et al. ( 2021 ). Pre-flight calibration of the Mars 2020 rover Mastcam zoom (Mastcam-Z) multispectral, stereoscopic imager. Space Science Reviews, 217 ( 2 ), 1 – 95. https://doi.org/10.1007/s11214-021-00795-x; Hueso ( 2022 ). General tools for analysis of convective vortices (IDL and Fortran codes) (0.9). Zenodo. https://doi.org/10.5281/zenodo.6958141; Hueso, R., Newman, C. E., del Río-Gaztelurrutia, T., Munguira, A., Sánchez-Lavega, A., Toledo, D., et al. ( 2023 ). Convective vortices and dust devils detected and characterized by Mars 2020. Journal of Geophysical Research: Planets, 128 ( 2 ), e2022JE007516. https://doi.org/10.1029/2022je007516; Jacob, S. R., Wellington, D. F., Bell, J. F., Achilles, C., Fraeman, A. A., Horgan, B., et al. ( 2020 ). Spectral, compositional, and physical properties of the Upper Murray formation and Vera Rubin ridge, Gale crater, Mars. Journal of Geophysical Research: Planets, 125 ( 11 ), e2019JE006290. https://doi.org/10.1029/2019je006290; Johnson, J. R., Bell, J. F., Bender, S., Blaney, D., Cloutis, E., DeFlores, L., et al. ( 2015 ). ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, 249, 74 – 92. https://doi.org/10.1016/j.icarus.2014.02.028; Johnson, J. R., & Grundy, W. M. ( 2001 ). Visible/near-infrared spectra and two-layer modeling of palagonite-coated basalts. Geophysical Research Letters, 28 ( 10 ), 2101 – 2104. https://doi.org/10.1029/2000gl012669; Johnson, J. R., Grundy, W. M., & Lemmon, M. T. ( 2003 ). Dust deposition at the Mars Pathfinder landing site: Observations and modeling of visible/near-infrared spectra. Icarus, 163 ( 2 ), 330 – 346. https://doi.org/10.1016/s0019-1035(03)00084-8; Johnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R. G., et al. ( 2006 ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 1. Spirit. Journal of Geophysical Research, 111 ( E2 ), 114261. https://doi.org/10.1029/2005je002494; Johnson, J. R., Grundy, W. M., & Shepard, M. K. ( 2004 ). Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks. Icarus, 171 ( 2 ), 546 – 556. https://doi.org/10.1016/j.icarus.2004.05.013; Johnson, J. R., Sohl-Dickstein, J., Grundy, W. M., Arvidson, R. E., Bell, J. F., III., Christensen, P., et al. ( 2006 ). Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry. Journal of Geophysical Research, 111 ( E12 ), E12S07. https://doi.org/10.1029/2005je002658; Kahre, M. A., Murphy, J. R., & Haberle, R. M. ( 2006 ). Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. Journal of Geophysical Research, 111 ( E6 ), E06008. https://doi.org/10.1029/2005je002588; Kahre, M. A., Murphy, J. R., Newman, C. E., Wilson, R. J., Cantor, B. A., Lemmon, M. T., & Wolff, M. J. ( 2017 ). The Mars dust cycle. In R. Haberle, R. T. Clancy, F. Forget, M. D. Smith, & R. W. Zurek (Eds.), The atmosphere and climate of Mars (pp. 295 – 337 ). Cambridge Univ. Press.; Kinch, K. M., Bell, J. F., III., Goetz, W., Johnson, J. R., Joseph, J., Madsen, M. B., & Sohl-Dickstein, J. ( 2015 ). Dust deposition on the decks of the Mars exploration rovers: 10 years of dust dynamics on the panoramic camera calibration targets. Earth and Space Science, 2 ( 5 ), 144 – 172. https://doi.org/10.1002/2014ea000073; Kinch, K. M., Sohl-Dickstein, J., Bell, J. F., III., Johnson, J. R., Goetz, W., & Landis, G. A. ( 2007 ). Dust deposition on the Mars exploration rover panoramic camera (Pancam) calibration targets. Journal of Geophysical Research, 112 ( E6 ), E06S03. https://doi.org/10.1029/2006je002807

  14. 14
    Academic Journal

    وصف الملف: application/pdf

    Relation: Polkko, J.; Hieta, M.; Harri, A.-M.; Tamppari, L.; Martínez, G.; Viúdez-Moreiras, D.; Savijärvi, H.; Conrad, P.; Zorzano Mier, M. P.; La Torre Juarez, M.; Hueso, R.; Munguira, A.; Leino, J.; Gómez, F.; Jaakonaho, I.; Fischer, E.; Genzer, M.; Apestigue, V.; Arruego, I.; Banfield, D.; Lepinette, A.; Paton, M.; Rodriguez-Manfredi, J. A.; Sánchez Lavega, A.; Sebastian, E.; Toledo, D.; Vicente-Retortillo, A. (2023). "Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover." Journal of Geophysical Research: Planets 128(2): n/a-n/a.; https://hdl.handle.net/2027.42/175939; Journal of Geophysical Research: Planets; Savijärvi, H. I., Harri, A.-M., & Kemppinen, O. ( 2016 ). The diurnal water cycle at Curiosity: Role of exchange with the regolith. Icarus, 265, 63 – 69. https://doi.org/10.1016/j.icarus.2015.10.008; JCGM. ( 2008 ). Evaluation of measurement data Guide to the expression of uncertainty in measurement, JCGM 100:2008 [Computer software manual]. Pavillon de Breteuil, F-92312 Sèvres CEDEX, France. (Retrieved from https://www.bipm.org/en/publications/guides ); Lemmon, M. T., Smith, M. D., Viudez-Moreiras, D., de la Torre-Juarez, M., Vicente-Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active martian storm in Jezero Crater. Geophysical Research Letters, 49 ( 17 ), e00126. https://doi.org/10.1029/2022GL100126; Maltagliati, L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., & Bertaux, J. L. ( 2011 ). Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science, 333 ( 6051 ), 1868 – 1871. https://doi.org/10.1126/science.1207957; Mangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J. D., Sholes, S. F., et al. ( 2021 ). Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 374 ( 6568 ), 711 – 717. https://doi.org/10.1126/science.abl4051; Martínez, G. M., Sebastián, E., Vicente-Retortillo, A., Smith, M. D., Johnson, J. R., Fischer, E., et al. ( 2023 ). Surface energy budget, albedo and thermal inertia at Jezero Crater, Mars, as observed from the Mars 2020 MEDA instrument. Journal of Geophysical Research: Planets, 128, e2022JE007537. https://doi.org/10.1029/2022JE007537; Martínez, G. M., Fischer, E., Rennó, N. O., Sebastián, E., Kemppinen, O., Bridges, N., et al. ( 2016 ). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus, 280, 93 – 102. https://doi.org/10.1016/j.icarus.2015.12.004; Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., et al. ( 1999 ). The global topography of Mars and implications for surface evolution. Science, 284 ( 5419 ), 1495 – 1503. https://doi.org/10.1126/science.284.5419.1495; Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern near-surface martian climate: A review of in-situ meteorological data from Viking to curiosity. Space Science Reviews, 212 ( 1–2 ), 295 – 338. https://doi.org/10.1007/s11214-017-0360-x; Martín-Torres, F. J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., et al. ( 2015 ). Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8 ( 5 ), 357 – 361. https://doi.org/10.1038/ngeo2412; McConnochie, T. H., Smith, M. D., Wolff, M. J., Bender, S., Lemmon, M., Wiens, R. C., et al. ( 2018 ). Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy. Icarus, 307, 294 – 326. https://doi.org/10.1016/j.icarus.2017.10.043; Melchiorri, R., Encrenaz, T., Drossart, P., Fouchet, T., Forget, F., Titov, D., et al. ( 2009 ). OMEGA/Mars Express: South Pole Region, water vapor daily variability. Icarus, 201 ( 1 ), 102 – 112. https://doi.org/10.1016/j.icarus.2008.12.018; Milton, D. J. ( 1973 ). Water and processes of degradation in the Martian landscape. Journal of Geophysical Research, 78 ( 20 ), 4037 – 4047. https://doi.org/10.1029/JB078i020p04037; Morris, R. V., Klingelhöfer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W., et al. ( 2006 ). Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of Geophysical Research (Planets), 111 ( E12 ), E12S15. https://doi.org/10.1029/2006JE002791; Munguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martínez, G. M., Newman, C. E., et al. ( 2023 ). Near surface atmospheric temperatures at Jezero from Mars 2020 MEDA measurements. Journal of Geophysical Research: Planets, 128, e2022JE007559. https://doi.org/10.1029/2022JE007559; Navarro-González, R., Rainey, F. A., Molina, P., Bagaley, D. R., Hollen, B. J., de la Rosa, J., et al. ( 2003 ). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302 ( 5647 ), 1018 – 1021. https://doi.org/10.1126/science.1089143; Pla-García, J., Rafkin, S. C. R., Martinez, G. M., Vicente-Retortillo, Á., Newman, C. E., Savijärvi, H., et al. ( 2020 ). Meteorological predictions for Mars 2020 perseverance rover landing site at Jezero Crater. Space Science Reviews, 216 ( 8 ), 148. https://doi.org/10.1007/s11214-020-00763-x; Polkko, J. ( 2022 ). Data for the manuscript “initial results of the relative humidity observations by meda instrument onboard the mMars2020 perseverance rover” submitted to JGR planets m2020 special issue “crater floor” [dataset]. FMI. https://doi.org/10.23728/fmi-b2share.daab03d71fc94bcd893b6c97adce497f; Rodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 MEDA bundle [dataset]. NASA. https://doi.org/10.17189/1522849; Rodriguez-Manfredi, J. A., de la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al.MEDA Team. ( 2021 ). The Mars environmental dynamics analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 48. https://doi.org/10.1007/s11214-021-00816-9; Savijärvi, H. I., & Harri, A. M. ( 2021 ). Water vapor adsorption on Mars. Icarus, 357, 114270. https://doi.org/10.1016/j.icarus.2020.114270; Savijärvi, H. I., Harri, A. M., & Kemppinen, O. ( 2015 ). Mars Science Laboratory diurnal moisture observations and column simulations. Journal of Geophysical Research (Planets), 120 ( 5 ), 1011 – 1021. https://doi.org/10.1002/2014JE004732; Savijärvi, H. I., Martinez, G., Harri, A.-M., & Paton, M. ( 2020a ). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515; Savijärvi, H. I., Martinez, G. M., Fischer, E., Renno, N. O., Tamppari, L. K., Zent, A., & Harri, A. M. ( 2020b ). Humidity observations and column simulations for a warm period at the Mars Phoenix lander site: Constraining the adsorptive properties of regolith. Icarus, 343, 113688. https://doi.org/10.1016/j.icarus.2020.113688; Savijärvi, H. I., Martinez, G. M., Vicente-Retortillo, A., & Harri, A. M. ( 2022 ). Surface energy budget at Curiosity through observations and column modeling. Icarus, 376, 114900. https://doi.org/10.1016/j.icarus.2022.114900; Savijärvi, H. I., McConnochie, T. H., Harri, A.-M., & Paton, M. ( 2019 ). Water vapor mixing ratios and air temperatures for three Martian years from Curiosity. Icarus, 326, 170 – 175. https://doi.org/10.1016/j.icarus.2019.03.020; Savijärvi, H. I., & Siili, T. ( 1993 ). The Martian slope winds and the nocturnal PBL jet. Journal of the Atmospheric Sciences, 50 ( 1 ), 77 – 88. https://doi.org/10.1175/1520-0469(1993)050〈0077:TMSWAT〉2.0.CO;2; Sebastián, E., Martínez, G., Ramos, M., Pérez-Grande, I., Sobrado, J., & Rodríguez Manfredi, J. A. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s Perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006; Sindoni, G., Formisano, V., & Geminale, A. ( 2011 ). Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX. Planetary and Space Science, 59 ( 2–3 ), 149 – 162. https://doi.org/10.1016/j.pss.2010.12.006; Smith, M. D. ( 2002 ). The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. Journal of Geophysical Research: Planets, 107 ( E11 ), 5115 – 5125-19. https://doi.org/10.1029/2001JE001522; Smith, M. D. ( 2004 ). Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus, 167 ( 1 ), 148 – 165. https://doi.org/10.1016/j.icarus.2003.09.010; Smith, M. D., Daerden, F., Neary, L., & Khayat, A. ( 2018 ). The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus, 301, 117 – 131. https://doi.org/10.1016/j.icarus.2017.09.027; Smith, M. D., Pearl, J. C., Conrath, B. J., & Christensen, P. R. ( 2001 ). Thermal emission spectrometer results: Mars atmospheric thermal structure and aerosol distribution. Journal of Geophysical Research, 106 ( E10 ), 23929 – 23945. https://doi.org/10.1029/2000JE001321; Smith, M. D., Wolff, M. J., Clancy, R. T., & Murchie, S. L. ( 2009 ). Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide. Journal of Geophysical Research: Planets, 114 ( E9 ), E00D03. https://doi.org/10.1029/2008JE003288; Smith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., et al. ( 2009 ). H2O at the Phoenix landing s i te. Science, 325 ( 5936 ), 58 – 61. https://doi.org/10.1126/science.1172339; Spinrad, H., Münch, G., & Kaplan, L. D. ( 1963 ). Letter to the editor: The detection of water vapor on Mars. The Astrophysical Journal, 137, 1319. https://doi.org/10.1086/147613; Sprague, A. L., Hunten, D. M., Doose, L. R., & Hill, R. E. ( 2003 ). Mars atmospheric water vapor abundance: 1996–1997. Icarus, 163 ( 1 ), 88 – 101. https://doi.org/10.1016/S0019-1035(03)00072-1; Sprague, A. L., Hunten, D. M., Hill, R. E., Rizk, B., & Wells, W. K. ( 1996 ). Martian water vapor, 1988-1995. Journal of Geophysical Research, 101 ( E10 ), 23229 – 23254. https://doi.org/10.1029/96JE02265; Steele, L. J., Balme, M. R., Lewis, S. R., & Spiga, A. ( 2017 ). The water cycle and regolith-atmosphere interaction at Gale crater, Mars. Icarus, 289, 56 – 79. https://doi.org/10.1016/j.icarus.2017.02.010; Tamppari, L. K., & Lemmon, M. T. ( 2020 ). Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site. Icarus, 343, 113624. https://doi.org/10.1016/j.icarus.2020.113624; Vaisala-Oyj ( 2020 ). Humicap technology description (Tech. Rep. No. B210781EN-D). Retrieved from https://www.vaisala.com/sites/default/files/documents/HUMICAP-Technology-description-B210781EN.pdf; Viúdez-Moreiras, D., de la Torre, M., Gómez-Elvira, J., Lorenz, R., Apéstigue, V., Guzewich, S., et al. ( 2022 ). Winds at the Mars 2020 landing site.part 2: Wind variability and turbulence. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007523. https://doi.org/10.1029/2022JE007523; Viúdez-Moreiras, D., Lemmon, M., Newman, C., Guzewich, S., Mischna, M., Gómez-Elvira, J., et al. ( 2022 ). Winds at the Mars 2020 landing site: 1. Near-surface wind patterns at Jezero Crater. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007522. https://doi.org/10.1029/2022JE007522; Viúdez-Moreiras, D., Newman, C. E., de la Torre, M., Martínez, G., Guzewich, S., Lemmon, M., et al. ( 2019 ). Effects of the MY34/2018 global dust storm as measured by MSL REMS in Gale Crater. Journal of Geophysical Research: Planets, 124 ( 7 ), 1899 – 1912. https://doi.org/10.1029/2019JE005985; VTT-Ltd. ( 2022 ). Uncertainty evaluation of meda hs humidity measurements (Tech. Rep.). (“State Research Center (VTT) consultation report with Finnish Meteorological Institute, 2022 by Tabandeh, S. and Högström, R.”); Whiteway, J. A., Komguem, L., Dickinson, C., Cook, C., Illnicki, M., Seabrook, J., et al. ( 2009 ). Mars water-ice clouds and precipitation. Science, 325 ( 5936 ), 68 – 70. https://doi.org/10.1126/science.1172344; Young, I., Crawford, J., Nunan, N., Otten, W., & Spiers, A. ( 2008 ). Chapter 4 microbial distribution in soils: Physics and scaling. In (Vol. 100, p. 81 – 121 ). Academic Press. https://doi.org/10.1016/S0065-2113(08)00604-4; Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115 ( 2 ), E00E14. https://doi.org/10.1029/2009JE003420; Zent, A. P., Hecht, M. H., Hudson, T. L., Wood, S. E., & Chevrier, V. F. ( 2016 ). A revised calibration function and results for the Phoenix mission TECP relative humidity sensor. Journal of Geophysical Research: Planets, 121 ( 4 ), 626 – 651. https://doi.org/10.1002/2015JE004933; Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, G. L., Liuzzi, G., Thomas, I. R., et al. ( 2019 ). Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets, 124 ( 12 ), 3482 – 3497. https://doi.org/10.1029/2019JE006109; Azua-Bustos, A., Caro-Lara, L., & Vicuña, R. ( 2015 ). Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environmental Microbiology Reports, 7 ( 3 ), 388 – 394. https://doi.org/10.1111/1758-2229.12261; Banfield, D., Stern, J., Davila, A., Johnson, S. S., Brain, D., Wordsworth, R., et al. (Eds.) ( 2020 ). Mepag (2020), Mars scientific goals, objectives, investigations, and priorities: 2020 (white paper), (White paper posted March, 2020 by the Mars exploration program analysis group (MEPAG). Retrieved from https://mepag.jpl.nasa.gov/reports.cfm; Böhm, C., Reyers, M., Schween, J. H., & Crewell, S. ( 2020 ). Water vapor variability in the Atacama Desert during the 20th century. Global and Planetary Change, 190, 103192. https://doi.org/10.1016/j.gloplacha.2020.103192; Buck, A. L. ( 1981 ). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20 ( 12 ), 1527 – 1532. https://doi.org/10.1175/1520-0450(1981)0202.0.CO;2; CáCeres, L., Gómez-Silva, B., Garró, X., RodríGuez, V., Monardes, V., & McKay, C. P. ( 2007 ). Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications. Journal of Geophysical Research, 112 ( G4 ), G04S14. https://doi.org/10.1029/2006JG000344; Chatain, A., Spiga, A., Banfield, D., Forget, F., & Murdoch, N. ( 2021 ). Seasonal variability of the daytime and nighttime atmospheric turbulence experienced by InSight on Mars. Geophysical Research Letters, 48 ( 22 ), e95453. https://doi.org/10.1029/2021GL095453; Choe, Y.-H., Kim, M., & Lee, Y. K. ( 2021 ). Distinct microbial communities in adjacent rock and soil substrates on a high arctic polar desert. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.607396; Christensen, P. R., Anderson, D. L., Chase, S. C., Clark, R. N., Kieffer, H. H., Malin, M. C., et al. ( 1992 ). Thermal emission spectrometer experiment: Mars observer mission. Journal of Geophysical Research, 97 ( E5 ), 7719 – 7734. https://doi.org/10.1029/92JE00453; Clancy, R. T., Grossman, A. W., & Muhleman, D. O. ( 1992 ). Mapping Mars water vapor with the very large array. Icarus, 100 ( 1 ), 48 – 59. https://doi.org/10.1016/0019-1035(92)90017-2; Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy, D. J., Billawala, Y. N., et al. ( 1996 ). Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate? Icarus, 122 ( 1 ), 36 – 62. https://doi.org/10.1006/icar.1996.0108; Conrath, B., Curran, R., Hanel, R., Kunde, V., Maguire, W., Pearl, J., et al. ( 1973 ). Atmospheric and surface properties of Mars obtained by infrared spectroscopy on mariner 9. Journal of Geophysical Research, 78 ( 20 ), 4267 – 4278. https://doi.org/10.1029/JB078i020p04267; Encrenaz, T., Lellouch, E., Cernicharo, J., Paubert, G., & Gulkis, S. ( 1995 ). A tentative detection of the 183-GHz water vapor line in the Martian atmosphere: Constraints upon the H 2 O abundance and vertical distribution. Icarus, 113 ( 1 ), 110 – 118. https://doi.org/10.1006/icar.1995.1009; Encrenaz, T., Lellouch, E., Paubert, G., & Gulkis, S. ( 2001 ). The water vapor vertical distribution on mars from millimeter transitions of HDO and H 2 18 O. Planetary and Space Science, 49 ( 7 ), 731 – 741. https://doi.org/10.1016/S0032-0633(01)00009-5; Encrenaz, T., Melchiorri, R., Fouchet, T., Drossart, P., Lellouch, E., Gondet, B., et al. ( 2005 ). A mapping of Martian water sublimation during early northern summer using OMEGA/Mars Express. Astronomy and Astrophysics, 441 ( 3 ), L9 – L12. https://doi.org/10.1051/0004-6361:200500171; Farmer, C. B., Davies, D. W., Holland, A. L., Laporte, D. D., & Doms, P. E. ( 1977 ). Mars: Water vapor observations from the Viking orbiters. Journal of Geophysical Research, 82 ( B28 ), 4225 – 4248. https://doi.org/10.1029/JS082i028p04225; Fedorova, A., Korablev, O., Bertaux, J.-L., Rodin, A., Kiselev, A., & Perrier, S. ( 2006 ). Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. Journal of Geophysical Research: Planets, 111 ( E9 ), E09S08. https://doi.org/10.1029/2006JE002695; Fedorova, A., Montmessin, F., Korablev, O., Lefèvre, F., Trokhimovskiy, A., & Bertaux, J.-L. ( 2021 ). Multi-Annual monitoring of the water vapor vertical distribution on Mars by SPICAM on Mars express. Journal of Geophysical Research: Planets, 126 ( 1 ), e06616. https://doi.org/10.1029/2020JE006616; Fedorova, A., Rodin, A. V., & Baklanova, I. V. ( 2004 ). MAWD observations revisited: Seasonal behavior of water vapor in the Martian atmosphere. Icarus, 171 ( 1 ), 54 – 67. https://doi.org/10.1016/j.icarus.2004.04.017; Fischer, E., Martínez, G. M., Rennó, N. O., Tamppari, L. K., & Zent, A. P. ( 2019 ). Relative humidity on Mars: New results from the Phoenix TECP sensor. Journal of Geophysical Research: Planets, 124 ( 11 ), 2780 – 2792. https://doi.org/10.1029/2019JE006080; Fouchet, T., Lellouch, E., Ignatiev, N. I., Forget, F., Titov, D. V., Tschimmel, M., et al. ( 2007 ). Martian water vapor: Mars express PFS/LW observations. Icarus, 190 ( 1 ), 32 – 49. https://doi.org/10.1016/j.icarus.2007.03.003; Gomez-Elvira, J. ( 2013 ). Mars Science Laboratory rover environmental monitoring station edr data v1.0 [Dataset]. NASA. https://doi.org/10.17189/1523032; Gómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., et al. ( 2012 ). REMS: The environmental sensor suite for the Mars Science Laboratory rover. Space Science Reviews, 170 ( 1–4 ), 583 – 640. https://doi.org/10.1007/s11214-012-9921-1; Harri, A. M., Genzer, M., Kemppinen, O., Gomez-Elvira, J., Haberle, R., Polkko, J., et al. ( 2014 ). Mars Science Laboratory relative humidity observations: Initial results. Journal of Geophysical Research: Planets, 119 ( 9 ), 2132 – 2147. https://doi.org/10.1002/2013JE004514; Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., et al. ( 2018 ). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2, 126 – 132. https://doi.org/10.1038/s41550-017-0353-4; Hieta, M., Genzer, M., Polkko, J., Jaakonaho, I., Tabandeh, S., Lorek, A., et al. ( 2022 ). MEDA HS: Relative humidity sensor for the Mars 2020 Perseverance rover. Planetary and Space Science, 223, 105590. https://doi.org/10.1016/j.pss.2022.105590; Imre Friedmann, E. ( 1982 ). Endolithic microorganisms in the Antarctic cold desert. Science, 215 ( 4536 ), 1045 – 1053. https://doi.org/10.1126/science.215.4536.1045; Jakosky, B. M. ( 1985 ). The seasonal cycle of water on Mars. Space Science Reviews, 41 ( 1–2 ), 131 – 200. https://doi.org/10.1007/BF00241348; Jakosky, B. M., & Farmer, C. B. ( 1982 ). The seasonal and global behavior of water vapor in the Mars atmosphere—Complete global results of the Viking atmospheric water detector experiment. Journal of Geophysical Research, 87 ( B4 ), 2999 – 3019. https://doi.org/10.1029/JB087iB04p02999; Jakosky, B. M., & Haberle, R. M. ( 1992 ). In M. George (Ed.), The seasonal behavior of water on Mars (pp. 969 – 1016 ).; Jakosky, B. M., Zent, A. P., & Zurek, R. W. ( 1997 ). The Mars water cycle: Determining the role of exchange with the regolith. Icarus, 130 ( 1 ), 87 – 95. https://doi.org/10.1006/icar.1997.5799

  15. 15
    Academic Journal

    وصف الملف: application/pdf

    Relation: Martínez, G. M.; Sebastián, E.; Vicente-Retortillo, A.; Smith, M. D.; Johnson, J. R.; Fischer, E.; Savijärvi, H.; Toledo, D.; Hueso, R.; Mora-Sotomayor, L.; Gillespie, H.; Munguira, A.; Sánchez-Lavega, A.; Lemmon, M. T.; Gómez, F.; Polkko, J.; Mandon, L.; Apéstigue, V.; Arruego, I.; Ramos, M.; Conrad, P.; Newman, C. E.; Torre-Juarez, M. De La; Jordan, F.; Tamppari, L. K.; McConnochie, T. H.; Harri, A.-M.; Genzer, M.; Hieta, M.; Zorzano, M.-P.; Siegler, M.; Prieto, O.; Molina, A.; Rodríguez-Manfredi, J. A. (2023). "Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument." Journal of Geophysical Research: Planets 128(2): n/a-n/a.; https://hdl.handle.net/2027.42/175750; Journal of Geophysical Research: Planets; Putzig, N. E., Mellon, M. T., Kretke, K. A., & Arvidson, R. E. ( 2005 ). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173 ( 2 ), 325 – 341. https://doi.org/10.1016/j.icarus.2004.08.017; Johnson, J. R., Grundy, W., Lemmon, M. T., Liang, W., Bell, J. F., III, Hayes, A. G., & Deen, R. G. ( 2021 ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 4. Final mission observations. Icarus, 357, 114261. https://doi.org/10.1016/j.icarus.2020.114261; Johnson, J. R., Grundy, W., Lemmon, M. T., Liang, W., Bell, J. F., III, Hayes, A. G., & Deen, R. G. ( 2022 ). Spectrophotometric properties of materials observed by Mastcam on the Mars Science Laboratory at Gale Crater: 1. Bradbury landing to cooperstown. Planetary and Space Science, 222, 105563. https://doi.org/10.1016/j.pss.2022.105563; Johnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R. G., et al. ( 2006a ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 1. Spirit. Journal of Geophysical Research, 111 ( E2 ), E02S14. https://doi.org/10.1029/2005je002494; Johnson, J. R., Grundy, W. M., Lemmon, M. T., Bell, J. F., III, Johnson, M. J., Deen, R., et al. ( 2006b ). Spectrophotometric properties of materials observed by Pancam on the Mars exploration rovers: 2. Opportunity. Journal of Geophysical Research, 111 ( E12 ), E12S16. https://doi.org/10.1029/2006je002762; Johnson, J. R., Kirk, R., Soderblom, L. A., Gaddis, L., Reid, R. J., Britt, D. T., et al. ( 1999 ). Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars. Journal of Geophysical Research, 104 ( E4 ), 8809 – 8830. https://doi.org/10.1029/98je02247; Kahre, M. A., Murphy, J. R., Chanover, N. J., Africano, J. L., Roberts, L. C., & Kervin, P. W. ( 2005 ). Observing the Martian surface albedo pattern: Comparing the AEOS and TES data sets. Icarus, 179 ( 1 ), 55 – 62. https://doi.org/10.1016/j.icarus.2005.06.011; Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., & Palluconi, F. D. ( 1977 ). Thermal and albedo mapping of Mars during the Viking primary mission. Journal of Geophysical Research, 82 ( 28 ), 4249 – 4291. https://doi.org/10.1029/js082i028p04249; Lemmon, M. T., Smith, M. D., Viúdez-Moreiras, D., de la Torre-Juarez, M., Vicente- Retortillo, A., Munguira, A., et al. ( 2022 ). Dust, sand, and winds within an active Martian storm in Jezero Crater. Geophysical Research Letters, 49 ( 17 ), e2022GL100126. https://doi.org/10.1029/2022gl100126; Madeleine, J. B., Forget, F., Millour, E., Montabone, L., & Wolff, M. J. ( 2011 ). Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. Journal of Geophysical Research, 116 ( E11 ), E1101. https://doi.org/10.1029/2011je003855; Maki, J., Thiessen, D., Pourangi, A., Kobzeff, P., Litwin, T., Scherr, L., et al. ( 2012 ). The Mars Science Laboratory engineering cameras. Space Science Reviews, 170 ( 1 ), 77 – 93. https://doi.org/10.1007/s11214-012-9882-4; Maki, J. N., Bell, J. F., III, Herkenhoff, K. E., Squyres, S. W., Kiely, A., Klimesh, M., et al. ( 2003 ). Mars exploration rover engineering cameras. Journal of Geophysical Research, 108 ( E12 ), 8071. https://doi.org/10.1029/2003je002077; Mandon, L., Quantin-Nataf, C., Thollot, P., Mangold, N., Lozac’h, L., Dromart, G., et al. ( 2020 ). Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars. Icarus, 336, 113436. https://doi.org/10.1016/j.icarus.2019.113436; Martínez, G., Valero, F., & Vázquez, L. ( 2009 ). Characterization of the Martian surface layer. Journal of the Atmospheric Sciences, 66 ( 1 ), 187 – 198. https://doi.org/10.1175/2008jas2765.1; Martínez, G. M. ( 2022 ). Downwelling LW flux and aerosol opacity at Jezero Crater, Mars, as derived from MEDA/TIRS. Retrieved from https://repository.hou.usra.edu/handle/20.500.11753/1839; Martínez, G. M., Newman, C. N., De Vicente-Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to curiosity. Space Science Reviews, 212 ( 1–2 ), 295 – 338. https://doi.org/10.1007/s11214-017-0360-x; Martínez, G. M., Rennó, N., Fischer, E., Borlina, C. S., Hallet, B., De La Torre Juárez, M., et al. ( 2014 ). Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements. Journal of Geophysical Research: Planets, 119 ( 8 ), 1822 – 1838. https://doi.org/10.1002/2014je004618; Martínez, G. M., Vicente-Retortillo, A., Vasavada, A. R., Newman, C. E., Fischer, E., Rennó, N. O., et al. ( 2021 ). The surface energy budget at gale crater during the first 2500 sols of the Mars Science Laboratory mission. Journal of Geophysical Research: Planets, 126 ( 9 ), e2020JE006804. https://doi.org/10.1029/2020je006804; Mellon, M. T., Jakosky, B. M., Kieffer, H. H., & Christensen, P. R. ( 2000 ). High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus, 148 ( 2 ), 437 – 455. https://doi.org/10.1006/icar.2000.6503; Monin, A. S., & Obukhov, A. M. ( 1954 ). Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnon sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz. Inst. AN SSSR, 24, 163 – 187.; Montmessin, F., Gondet, B., Bibring, J. P., Langevin, Y., Drossart, P., Forget, F., & Fouchet, T. ( 2007 ). Hyperspectral imaging of convective CO 2 ice clouds in the equatorial mesosphere of Mars. Journal of Geophysical Research, 112 ( E11 ), E11S90. https://doi.org/10.1029/2007je002944; Munguira, A., Hueso, R., Sánchez-Lavega, A., de la Torre-Juarez, M., Martinez, G. M., Newman, C., et al. ( 2022 ). Mars 2020 MEDA measurements of near surface atmospheric temperatures at Jezero. In Seventh international works hop on the Mars atmosphere: Modelling and observations (p. 1509 ).; Newman, C. E., Hueso, R., Lemmon, M. T., Munguira, A., Vicente-Retortillo, Á., Apestigue, V., et al. ( 2022 ). The dynamic atmospheric and aeolian environment of Jezero Crater, Mars. Science Advances, 8 ( 21 ), eabn3783. https://doi.org/10.1126/sciadv.abn3783; Pérez-Izquierdo, J., Sebastián, E., Martínez, G. M., Bravo, A., Ramos, M., & Manfredi, J. A. R. ( 2018 ). The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) instrument onboard Mars 2020, a general description and performance analysis. Measurement, 122, 432 – 442. https://doi.org/10.1016/j.measurement.2017.12.004; Piqueux, S., Müller, N., Grott, M., Siegler, M., Millour, E., Forget, F., et al. ( 2021 ). Soil thermophysical properties near the insight lander derived from 50 sols of radiometer measurements. Journal of Geophysical Research: Planets, 126 ( 8 ), e2021JE006859. https://doi.org/10.1029/2021je006859; Presley, M. A., & Christensen, P. R. ( 1997 ). The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures. Journal of Geophysical Research, 102 ( E4 ), 9221 – 9229. https://doi.org/10.1029/97je00271; Putzig, N. E., Barratt, E. M., Mellon, M. T., & Michaels, T. I. ( 2013 ). MARSTHERM: A web-based system providing thermophysical analysis tools for Mars research. In AGU Fall Meeting Abstracts, (Vol. 2013, p. P43C-2023 ).; Putzig, N. E., & Mellon, M. T. ( 2007 ). Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 191 ( 1 ), 68 – 94. https://doi.org/10.1016/j.icarus.2007.05.013; Rice, M. S., Reynolds, M., Studer-Ellis, G., Bell, J. F., III, Johnson, J. R., Herkenhoff, K. E., et al. ( 2018 ). The albedo of Mars: Six Mars years of observations from Pancam on the Mars exploration rovers and comparisons to MOC, CTX and HiRISE. Icarus, 314, 159 – 174. https://doi.org/10.1016/j.icarus.2018.05.017; Rodriguez-Manfredi, J. A., & de la Torre Juarez, M. ( 2021 ). Mars 2020 perseverance rover Mars environmental Dynamics analyzer (MEDA) experiment data record (EDR) and reduced data record (RDR) data products archive bundle. PDS Atmospheres Node, 10, 1522849. https://doi.org/10.17189/1522849; Rodríguez-Manfredi, J. A., De la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., et al. ( 2021 ). The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space Science Reviews, 217 ( 3 ), 1 – 86. https://doi.org/10.1007/s11214-021-00816-9; Sánchez-Lavega, A., del Rio-Gaztelurrrutia, T., Hueso, R., de la Torre Juárez, M., Martínez, G. M., Harri, A. M., et al. ( 2022 ). Mars 2020 Perseverance rover studies of the Martian atmosphere over Jezero from 1 pressure measurements. Journal of Geophysical Research: Planets, 128 ( 1 ), e2022JE007480. https://doi.org/10.1029/2022JE007480; Savijärvi, H., & Määttänen, A. ( 2010 ). Boundary-layer simulations for the Mars Phoenix lander site. Quarterly Journal of the Royal Meteorological Society, 136 ( 651 ), 1497 – 1505. https://doi.org/10.1002/qj.650; Savijärvi, H., Martinez, G., Harri, A. M., & Paton, M. ( 2020 ). Curiosity observations and column model integrations for a Martian global dust event. Icarus, 337, 113515. https://doi.org/10.1016/j.icarus.2019.113515; Savijärvi, H. I., & Harri, A. M. ( 2021 ). Water vapor adsorption on Mars. Icarus, 357, 114270. https://doi.org/10.1016/j.icarus.2020.114270; Savijärvi, H. I., Martínez, G., & Harri, A.-M. ( 2022 ). Surface energy fluxes and temperatures at Jezero Crater, Mars. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2022je007438; Sebastián, E., Armiens, C., Gomez-Elvira, J., Zorzano, M. P., Martinez-Frias, J., Esteban, B., & Ramos, M. ( 2010 ). The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on Mars. Sensors, 10 ( 10 ), 9211 – 9231. https://doi.org/10.3390/s101009211; Sebastián, E., Martínez, G., Ramos, M., Haenschke, F., Ferrándiz, R., Fernández, M., & Manfredi, J. A. R. ( 2020 ). Radiometric and angular calibration tests for the MEDA-TIRS radiometer onboard NASA’s Mars 2020 mission. Measurement, 164, 107968. https://doi.org/10.1016/j.measurement.2020.107968; Sebastián, E., Martínez, G., Ramos, M., Perez-Grande, I., Sobrado, J., & Manfredi, J. A. R. ( 2021 ). Thermal calibration of the MEDA-TIRS radiometer onboard NASA’s perseverance rover. Acta Astronautica, 182, 144 – 159. https://doi.org/10.1016/j.actaastro.2021.02.006; Shepard, M. K. ( 2017 ). Introduction to planetary photometry. Cambridge University Press.; Smith, M. D., Martínez, G. M., Sebastián, E., Lemmon, M. T., Wolff, M. J., Apéstigue, V., et al. ( 2022 ). Diurnal and seasonal variations of aerosol optical depth observed by MEDA/TIRS at Jezero Crater, Mars. Journal of Geophysical Research: Planets, e2022JE007560. https://doi.org/10.1029/2022je007560; Smith, M. D., Wolff, M. J., Spanovich, N., Ghosh, A., Banfield, D., Christensen, P. R., et al. ( 2006 ). One Martian year of atmospheric observations using MER mini-TES. Journal of Geophysical Research, 111 ( E12 ), E12S13. https://doi.org/10.1029/2006je002770; Spohn, T., Grott, M., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C., et al. ( 2018 ). The Heat flow and physical properties package (HP3) for the InSight mission. Space Science Reviews, 214 ( 5 ), 33. https://doi.org/10.1007/s11214-018-0531-4; Stull, R. ( 1988 ). An introduction to boundary layer meteorology (p. 670 ). Springer.; Sutton, J. L., Leovy, C. B., & Tillman, J. E. ( 1978 ). Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites. Journal of the Atmospheric Sciences, 35 ( 12 ), 2346 – 2355. https://doi.org/10.1175/1520-0469(1978)0352.0.co;2; Toledo, D., Apéstigue, V., Arruego, I., Lemmon, M., Gómez, L., de Montoro, F., et al. ( 2023 ). Dust devil frequency of occurrence and radiative effects at Jezero Crater, Mars, as measured by MEDA Radiation and Dust Sensor (RDS). Journal of Geophysical Research: Planets. https://doi.org/10.1029/2022JE007494; Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale Crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372 – 386. https://doi.org/10.1016/j.icarus.2016.11.035; Vicente-Retortillo, A., Martínez, G. M., Lemmon, M. T., Hueso, R., Sullivan, R., Newman, C. E., et al. ( 2022 ). Changes in surface albedo induced by dust devils and the MY 36 Ls 155 dust storm at Jezero Crater. In Seventh international workshop on the Mars atmosphere: Modelling and observations (p. 1512 ).; Vicente-Retortillo, Á., Martínez, G. M., Renno, N., Newman, C. E., Ordonez-Etxeberria, I., Lemmon, M. T., et al. ( 2018 ). Seasonal deposition and lifting of dust on Mars as observed by the Curiosity rover. Scientific Reports, 8 ( 1 ), 1 – 8. https://doi.org/10.1038/s41598-018-35946-8; Vicente-Retortillo, A., Martínez, G. M., Rennó, N. O., Lemmon, M. T., de la Torre-Juárez, M., & Gómez-Elvira, J. ( 2020 ). In situ UV measurements by MSL/REMS: Dust deposition and angular response corrections. Space Science Reviews, 216 ( 5 ), 1 – 19. https://doi.org/10.1007/s11214-020-00722-6; Vicente-Retortillo, Á., Valero, F., Vázquez, L., & Martínez, G. M. ( 2015 ). A model to calculate solar radiation fluxes on the Martian surface. Journal of Space Weather and Space Climate, 5, A33. https://doi.org/10.1051/swsc/2015035; Vincendon, M., Audouard, J., Altieri, F., & Ody, A. ( 2015 ). Mars Express measurements of surface albedo changes over 2004–2010. Icarus, 251, 145 – 163. https://doi.org/10.1016/j.icarus.2014.10.029; Viúdez-Moreiras, D., de la Torre, D., Gómez-Elvira, J., Lorenz, R. D., Apéstigue, V., Guzewich, S., et al. ( 2022 ). Winds at the Mars 2020 landing site. Part 2: Wind variability and turbulence. Journal of Geophysical Research: Planets. e2022JE007523. https://doi.org/10.1029/2022JE007523; Viúdez-Moreiras, D., Lemmon, M., Newman, C. E., Guzewich, S., Mischna, M., Gómez-Elvira, J., et al. ( 2022 ). Winds at the Mars 2020 landing site. Part 1: Near-surface wind patterns at Jezero Crater. Journal of Geophysical Research: Planets. e2022JE007522. https://doi.org/10.1029/2022JE007522; Wolff, M. J., Lopéz-Valverde, M. I. G. U. E. L., Madeleine, J. B., Wilson, R. J., Smith, M. D., Fouchet, T., & Delory, G. T. ( 2017 ). Radiative process: Techniques and applications. The Atmosphere and Climate of Mars, 18, 106.; Zent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115 ( E3 ), E00E14. https://doi.org/10.1029/2009je003420; Zhang, Y. F., Wang, X. P., Hu, R., Pan, Y. X., & Zhang, H. ( 2014 ). Variation of albedo to soil moisture for sand dunes and biological soil crusts in arid desert ecosystems. Environmental Earth Sciences, 71 ( 3 ), 1281 – 1288. https://doi.org/10.1007/s12665-013-2532-7; Apéstigue, V., Gonzalo, A., Jiménez, J. J., Boland, J., Lemmon, M., de Mingo, J. R., et al. ( 2022 ). Radiation and dust sensor for Mars environmental dynamic analyzer onboard M2020 rover. Sensors, 22 ( 8 ), 2907. https://doi.org/10.3390/s22082907; Banfield, D., Spiga, A., Newman, C., Forget, F., Lemmon, M., Lorenz, R., et al. ( 2020 ). The atmosphere of Mars as observed by InSight. Nature Geoscience, 13 ( 3 ), 190 – 198.; Bell, J. F., III, Rice, M. S., Johnson, J. R., & Hare, T. M. ( 2008 ). Surface albedo observations at Gusev crater and Meridiani Planum, Mars. Journal of Geophysical Research, 113 ( E6 ), E06S18. https://doi.org/10.1029/2007je002976; Chide, B., Bertrand, T., Lorenz, R. D., Munguira, A., Hueso, R., Sánchez-Lavega, A., et al. ( 2022 ). Acoustics reveals short-term air temperature fluctuations near Mars’ surface. Geophysical Research Letters, 49 ( 21 ), e2022GL100333. https://doi.org/10.1029/2022gl100333; Christensen, P. R. ( 1988 ). Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion. Journal of Geophysical Research, 93 ( B7 ), 7611 – 7624. https://doi.org/10.1029/jb093ib07p07611; Christensen, P. R., Banfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H., Titus, T. N., et al. ( 2001 ). Mars Global surveyor thermal emission spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106 ( E10 ), 23823 – 23871. https://doi.org/10.1029/2000je001370; Christensen, P. R., Engle, E., Anwar, S., Dickenshied, S., Noss, D., Gorelick, N., & Weiss-Malik, M. ( 2009 ). JMARS-a planetary GIS. In AGU fall meeting Abstracts (Vol. 2009, p. IN22A-06 ).; Christian, J. R., Arvidson, R. E., O’Sullivan, J. A., Vasavada, A. R., & Weitz, C. M. ( 2022 ). CRISM-based high spatial resolution thermal inertia mapping along curiosity’s traverses in Gale Crater. Journal of Geophysical Research: Planets, 127 ( 5 ), e2021JE007076. https://doi.org/10.1029/2021je007076; Creecy, E., Li, L., Jiang, X., Smith, M., Kass, D., Kleinböhl, A., & Martínez, G. ( 2022 ). Mars’ emitted energy and seasonal energy imbalance. Proceedings of the National Academy of Sciences of the United States of America, 119 ( 21 ), e2121084119. https://doi.org/10.1073/pnas.2121084119; Edwards, C. S., Piqueux, S., Hamilton, V. E., Fergason, R. L., Herkenhoff, K. E., Vasavada, A. R., et al. ( 2018 ). The thermophysical properties of the Bagnold Dunes, Mars: Ground-truthing orbital data. Journal of Geophysical Research: Planets, 123 ( 5 ), 1307 – 1326. https://doi.org/10.1029/2017je005501; Elsasser, W. M. ( 1942 ). Heat transfer by infrared radiation in the atmosphere. Harvard Meteor. Studies, 6, 107.; Farley, K. A., Williford, K. H., Stack, K. M., Bhartia, R., Chen, A., de la Torre, M., et al. ( 2020 ). Mars 2020 mission overview. Space Science Reviews, 216 ( 8 ), 1 – 41. https://doi.org/10.1007/s11214-020-00762-y; Fenton, L. K., Geissler, P. E., & Haberle, R. M. ( 2007 ). Global warming and climate forcing by recent albedo changes on Mars. Nature, 446 ( 7136 ), 646 – 649. https://doi.org/10.1038/nature05718; Fergason, R., Christensen, P., Golombek, M., & Parker, T. ( 2012 ). Surface properties of the Mars Science Laboratory candidate landing sites: Characterization from orbit and predictions. Space Science Reviews, 170 ( 1–4 ), 739 – 773. https://doi.org/10.1007/s11214-012-9891-3; Fergason, R. L., Christensen, P. R., Bell, J. F., III, Golombek, M. P., Herkenhoff, K. E., & Kieffer, H. H. ( 2006 ). Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia. Journal of Geophysical Research, 111 ( E2 ), E02S21. https://doi.org/10.1029/2005JE002583; Fergason, R. L., Christensen, P. R., & Kieffer, H. H. ( 2006 ). High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications. Journal of Geophysical Research, 111 ( E12 ), E12004. https://doi.org/10.1029/2006je002735; Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. ( 1999 ). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104 ( E10 ), 24155 – 24175. https://doi.org/10.1029/1999je001025; Garrat, J. R. ( 1992 ). The atmospheric boundary layer. Cambridge Atmos. Cambridge Univ. Press.; Geissler, P. E., Fenton, L. K., Enga, M. T., & Mukherjee, P. ( 2016 ). Orbital monitoring of Martian surface changes. Icarus, 278, 279 – 300. https://doi.org/10.1016/j.icarus.2016.05.023; Grott, M., Spohn, T., Knollenberg, J., Krause, C., Hudson, T. L., Piqueux, S., et al. ( 2021 ). Thermal conductivity of the Martian soil at the InSight landing site from HP 3 active heating experiments. Journal of Geophysical Research: Planets, 126 ( 7 ), e2021JE006861. https://doi.org/10.1029/2021je006861; Guinness, E. A., Arvidson, R. E., Clark, I. H., & Shepard, M. K. ( 1997 ). Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking lander sites. Journal of Geophysical Research, 102 ( E12 ), 28687 – 28703. https://doi.org/10.1029/97je03018; Haberle, R. M., Houben, H. C., Hertenstein, R., & Herdtle, T. ( 1993 ). A boundary-layer model for Mars: Comparison with Viking lander and entry data. Journal of the Atmospheric Sciences, 50 ( 11 ), 1544 – 1559. https://doi.org/10.1175/1520-0469(1993)0502.0.co;2; Hamilton, V. E., Vasavada, A. R., Sebastián, E., de la Torre Juárez, M., Ramos, M., Armiens, C., et al. ( 2014 ). Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research: Planets, 119 ( 4 ), 745 – 770. https://doi.org/10.1002/2013je004520; Hébrard, E., Listowski, C., Coll, P., Marticorena, B., Bergametti, G., Määttänen, A., et al. ( 2012 ). An aerodynamic roughness length map derived from extended Martian rock abundance data. Journal of Geophysical Research, 117 ( E4 ), E04008. https://doi.org/10.1029/2011je003942; Hieta, M., Polkko, J., Jaakonaho, I., Genzer, M., Harri, A. M., Martinez, G. M., et al. ( 2022 ). First results of the relative humidity sensor on board M2020 perseverance rover. In Seventh international workshop on the Mars atmosphere: Modelling and observations (p. 3519 ).; Hueso, R., Newman, C. E., del Rio-Gaztelurrutia, T., Munguira, A., Sanchez-Lavega, A., Toledo, D., et al. ( 2022 ). Convective vortices and dust devils detected and characterized by Mars 2020. Journal of Geophysical Research: Planets, e2022JE007516. https://doi.org/10.1029/2022JE007516. (under minor revisions; this issue).

  16. 16
    Conference

    المساهمون: Karafolas, Nikos, Cugny, Bruno, Sodnik, Zoran

    المصدر: International Conference on Space Optics — ICSO 2016

  17. 17
    Academic Journal

    المساهمون: INAF - Osservatorio Astronomico di Capodimonte (OAC), Istituto Nazionale di Astrofisica (INAF), Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” (CISAS), Università degli Studi di Padova = University of Padua (Unipd), Instituto Nacional de Técnica Aeroespacial (INTA), Finnish Meteorological Institute (FMI), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), INAF - Osservatorio Astrofisico di Arcetri (OAA), INAF - Osservatorio Astronomico di Bologna (OABO), Osservatorio Astronomico d'Abruzzo, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École nationale des ponts et chaussées (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Dipartimento di Fisica "Ettore Pancini", University of Naples Federico II = Università degli studi di Napoli Federico II, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Space Exploration Institute Neuchâtel (SPACE - X), Royal Observatory of Belgium = Observatoire Royal de Belgique (ROB), NASA Glenn Research Center, NASA, Johns Hopkins University Applied Physics Laboratory Laurel, MD (APL), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt Berlin (DLR), The Open University Milton Keynes (OU), STRATO - LATMOS, Southwest Research Institute San Antonio (SwRI), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), University of Michigan Ann Arbor, University of Michigan System, Université de Reims Champagne-Ardenne (URCA), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA), Departamento de Astrofisica y Ciencias de la Atmósfera, Universidad Complutense de Madrid = Complutense University of Madrid Madrid (UCM), Agenzia Spaziale Italiana (ASI)

    المصدر: ISSN: 0038-6308.

  18. 18
  19. 19
  20. 20
    Academic Journal