يعرض 1 - 20 نتائج من 40 نتيجة بحث عن '"Anticarcinógenos"', وقت الاستعلام: 0.48s تنقيح النتائج
  1. 1
    Academic Journal
  2. 2
  3. 3
    Academic Journal
  4. 4
    Dissertation/ Thesis

    المساهمون: García Castañeda, Javier Eduardo, Síntesis y Aplicación de Moléculas Peptídicas, Barragán Cárdenas, Andrea Carolina 000000075458129, Barragán Cárdenas, Andrea Carolina 0000011789, Barragán Cárdenas, Andrea Carolina Andrea-Barragan-Cardenas

    وصف الملف: 186 páginas, ilustraciones (principalmente a color), fotografías; application/pdf

    Relation: Mayo Clinic, “Cancer,” 2018. https://www.mayoclinic.org/diseases-conditions/cancer/symptoms-causes/syc-20370588.; Y. A. Fouad and C. Aanei, “Revisiting the hallmarks of cancer,” Am. J. Cancer Res., vol. 7, no. 5, pp. 1016–1036, 2017.; AACR, “What Is Cancer?,” American Association for Cancer Research, Inc, 2020. https://www.aacr.org/patients-caregivers/about-cancer/what-is-cancer/#:~:text=The term cancer encompasses more,blood stream and bone marrow.; A. G. Waks and E. P. Winer, “Breast Cancer Treatment: A Review,” JAMA - J. Am. Med. Assoc., vol. 321, no. 3, pp. 288–300, 2019, doi:10.1001/jama.2018.19323.; M. Akram, M. Iqbal, M. Daniyal, and A. U. Khan, “Awareness and current knowledge of breast cancer,” Biol. Res., vol. 50, no. 1, pp. 1–23, 2017, doi:10.1186/s40659-017-0140-9.; The global cancer observatory, “Breast cancer,” vol. 419, pp. 3–4, 2020.; WHO, “Breast cancer,” 2019. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/.; Fondo Colombiano de Enfermedades de Alto Costo, Situación del cáncer en la población adulta atendida en el SGSSS de Colombia. Bogotá, 2019.; M. A. Vivas, “CAC: panorama del cáncer de mama en Colombia 2020 La,” ConsultorSalud, vol. 36, no. 4, pp. 344–352, 2021.; Ministerio de Salud y Protección Social de Colombia, Plan Nacional contra el Cancer 2012-2020. 2018.; C. Pardo and E. de Vries, “Breast and cervical cancer survival at instituto nacional de cancerología, Colombia,” Colomb. Med., vol. 49, no. 1, pp. 102–108, 2018, doi:10.25100/cm.v49i1.2840.; E. Vergara-Dagobeth, A. Suárez-Causado, and R. D. Gómez-Arias, “Plan Control del cáncer en Colombia 2012-2021. Un análisis formal,” Rev. Gerenc. y Polit. Salud, vol. 16, no. 33, pp. 16–18, 2017, doi:10.11144/Javeriana.rgps16-33.pccc.; N. Harbeck et al., “Breast cancer,” Nat. Rev. Dis. Prim., vol. 5, no. 1, 2019, doi:10.1038/s41572-019-0111-2; A. L. Tornesello, A. Borrelli, L. Buonaguro, F. M. Buonaguro, and M. L. Tornesello, “Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities,” Molecules, vol. 25, no. 12, pp. 1–25, 2020, doi:10.3390/molecules25122850.; N. K. Kunda, “Antimicrobial peptides as novel therapeutics for non-small cell lung cancer,” Drug Discov. Today, vol. 25, no. 1, pp. 238–247, 2020, doi:10.1016/j.drudis.2019.11.012; K. Kurrikoff, D. Aphkhazava, and Ü. Langel, “The future of peptides in cancer treatment,” Curr. Opin. Pharmacol., vol. 47, pp. 27–32, 2019, doi:10.1016/j.coph.2019.01.008.; M. Jannesari et al., “Breast Cancer Histopathological Image Classification: A Deep Learning Approach,” Proc. - 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2018, no. March 2020, pp. 2405–2412, 2019, doi:10.1109/BIBM.2018.8621307.; Y. Tang, Y. Wang, M. F. Kiani, and B. Wang, “Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer,” Clin. Breast Cancer, vol. 16, no. 5, pp. 335–343, 2016, doi:10.1016/j.clbc.2016.05.012; J. L. Townson and A. F. Chambers, “Dormancy of solitary metastatic cells,” Cell Cycle, vol. 5, no. 16, pp. 1744–1750, 2006, doi:10.4161/cc.5.16.2864.; H. Y. Wen and E. Brogi, “Lobular Carcinoma In Situ,” Surg. Pathol. Clin., vol. 11, no. 1, pp. 123–145, 2018, doi:10.1016/j.path.2017.09.009.; Z. Chen et al., “Invasive lobular carcinoma of the breast: A special histological type compared with invasive ductal carcinoma,” PLoS One, vol. 12, no. 9, pp. 1–17, 2017, doi:10.1371/journal.pone.0182397.; Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi:10.1016/j.gendis.2018.05.001.; F. Imigo, E. Mansilla, I. Delama, M. T. Poblete, and C. Fonfach, “CLASIFICACIÓN MOLECULAR DEL CÁNCER DE MAMA,” Cuad. cirugía, vol. 25, pp. 67–74, 2011.; O. A. Bonilla-Sepúlveda, G. Matute-Turízo, and Severich, “Classification of intrinsic subtypes of breast carcinomas analyzed in a pathology center of Medellin in 2011,” CES Med., vol. 29, no. 1, pp. 36–45, 2015.; Globocan, “Estimated number of incident cases and deaths worldwide,” Glob. Cancer Obs., p. 80, 2020.; H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi:10.3322/caac.21660.; A. Di Sibio, G. Abriata, D. Forman, and M. S. Sierra, “Female breast cancer in Central and South America,” Cancer Epidemiol., vol. 44, pp. S110–S120, 2016, doi:10.1016/j.canep.2016.08.010.; S. K. Al-Ghazal, L. Fallowfield, and R. W. Blamey, “Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction,” Eur. J. Cancer, vol. 36, no. 15, pp. 1938–1943, 2000, doi:10.1016/S0959-8049(00)00197-0.; B. H. L. Howes, D. I. Watson, C. Xu, B. Fosh, M. Canepa, and N. R. Dean, “Quality of life following total mastectomy with and without reconstruction versus breast-conserving surgery for breast cancer: A case-controlled cohort study,” J. Plast. Reconstr. Aesthetic Surg., vol. 69, no. 9, pp. 1184–1191, 2016, doi:10.1016/j.bjps.2016.06.004.; C. Speers and L. J. Pierce, “Postoperative radiotherapy after breast-conserving surgery for early-stage breast cancer a review,” JAMA Oncol., vol. 2, no. 8, pp. 1075–1082, 2016, doi:10.1001/jamaoncol.2015.5805.; K. Rygiel, “Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: An overview,” J. Cancer Res. Ther., vol. 13, no. 2, pp. 186–192, 2017, doi:10.4103/0973-1482.187303.; H. T. Hsu et al., “Symptom Cluster Trajectories During Chemotherapy in Breast Cancer Outpatients,” J. Pain Symptom Manage., vol. 53, no. 6, pp. 1017–1025, 2017, doi:10.1016/j.jpainsymman.2016.12.354.; J. J. Tao, K. Visvanathan, and A. C. Wolff, “Long term side effects of adjuvant chemotherapy in patients with early breast cancer,” The Breast, vol. 24, no. 0 2, pp. S23–S24, 2015, doi:10.1016/s0960-9776(15)70048-2.; S. A. Hussain, S. Williams, A. Stevens, and D. W. Rea, “Endocrine therapy for early breast cancer,” Expert Rev. Anticancer Ther., vol. 4, no. 5, pp. 877–888, 2004, doi:10.1586/14737140.4.5.877.; R. Condorelli and I. Vaz-Luis, “Managing side effects in adjuvant endocrine therapy for breast cancer,” Expert Rev. Anticancer Ther., vol. 18, no. 11, pp. 1101–1112, 2018, doi:10.1080/14737140.2018.1520096.; A. Spellman and S. C. Tang, “Immunotherapy for breast cancer: past, present, and future,” Cancer Metastasis Rev., vol. 35, no. 4, pp. 525–546, 2016, doi:10.1007/s10555-016-9654-9.; N. L. Henry, C. L. Loprinzi, and L. Schapira, “Immunotherapy for Breast Cancer Treatment : Is It an Option ?,” ASCO, 2020. https://www.cancer.net/blog/2020-09/immunotherapy-breast-cancer-treatment-it-option.; K. V. R. Reddy, R. D. Yedery, and C. Aranha, “Antimicrobial peptides: Premises and promises,” Int. J. Antimicrob. Agents, vol. 24, no. 6, pp. 536–547, 2004, doi:10.1016/j.ijantimicag.2004.09.005.; D. Gaspar, A. Salomé Veiga, and M. A. R. B. Castanho, “From antimicrobial to anticancer peptides. A review,” Front. Microbiol., vol. 4, pp. 1–16, 2013, doi:10.3389/fmicb.2013.00294.; D. Wu, Y. Gao, Y. Qi, L. Chen, Y. Ma, and Y. Li, “Peptide-based cancer therapy: Opportunity and challenge,” Cancer Lett., vol. 351, no. 1, pp. 13–22, 2014, doi:10.1016/j.canlet.2014.05.002; T. Jauset and M. E. Beaulieu, “Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead,” Curr. Opin. Pharmacol., vol. 47, pp. 133–140, 2019, doi:10.1016/j.coph.2019.03.014.; B. Chen et al., “Targeting negative surface charges of cancer cells by multifunctional nanoprobes,” Theranostics, vol. 6, no. 11, pp. 1887–1898, 2016, doi:10.7150/thno.16358.; D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochim. Biophys. Acta - Biomembr., vol. 1778, no. 2, pp. 357–375, 2008, doi:10.1016/j.bbamem.2007.11.008.; C. Adessi and C. Soto, “Converting a Peptide into a Drug: Strategies to Improve Stability and Bioavailability,” Curr. Med. Chem., vol. 9, no. 9, pp. 963–978, 2005, doi:10.2174/0929867024606731.; J. M. Davis, L. K. Tsou, and A. D. Hamilton, “Synthetic non-peptide mimetics of α-helices,” Chem. Soc. Rev., vol. 36, no. 2, pp. 326–334, 2007, doi:10.1039/b608043j.; J. Wang et al., “Combating Drug-Resistant Fungi with Novel Imperfectly Amphipathic Palindromic Peptides,” JOURNAL OF MEDICINAL CHEMISTRY, vol. 61, no. 9. pp. 3889–3907, 2018, [Online]. Available: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000432204800009&lang=es&site=eds-live.; M. Felicio et al., “Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2,” Biochim. Biophys. ACTA-BIOMEMBRANES, vol. 1858, no. 7, pp. 1488–1498, 2016, doi: https://doi.org/10.1016/j.bbamem.2016.04.003.; C. Sun et al., “Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences,” Int. J. Mol. Sci., vol. 19, no. 10, 2018, doi:10.3390/ijms19102951.; M. Xie, D. Liu, and Y. Yang, “Anti-cancer peptides: classification, mechanism of action, reconstruction and modification,” Open Biol., vol. 10, no. 7, 2020, doi:10.1098/rsob.200004.; K. J. Cutrona, B. A. Kaufman, D. M. Figueroa, and D. E. Elmore, “Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides,” FEBS Lett., vol. 589, no. 24, pp. 3915–3920, 2015, doi:10.1016/j.febslet.2015.11.002.; H. X. Luong, D. H. Kim, B. J. Lee, and Y. W. Kim, “Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides,” Arch. Pharm. Res., vol. 41, no. 11, pp. 1092–1097, 2018, doi:10.1007/s12272-018-1084-5.; C. Domhan et al., “Replacement of L-amino acids by D-amino acids in the antimicrobial peptide ranalexin and its consequences for antimicrobial activity and biodistribution,” Molecules, vol. 24, no. 16, 2019, doi:10.3390/molecules24162987.; P. Grieco et al., “The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 652–660, 2013, doi:10.1016/j.bbamem.2012.08.027.; W. Yang et al., “Inhibition of proliferative and invasive capacities of breast cancer cells by arginine-glycine-aspartic acid peptide in vitro,” Oncol. Rep., vol. 15, no. 1, pp. 113–117, 2006, doi:10.3892/or.15.1.113.; D. Legrand, “Overview of Lactoferrin as a Natural Immune Modulator,” J. Pediatr., vol. 173, pp. S10–S15, 2016, doi:10.1016/j.jpeds.2016.02.071.; B. Wang, Y. P. Timilsena, E. Blanch, and B. Adhikari, “Lactoferrin: Structure, function, denaturation and digestion,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 4, pp. 580–596, 2019, doi:10.1080/10408398.2017.1381583.; A. Richardson, R. de Antueno, R. Duncan, and D. W. Hoskin, “Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells,” Biochem. Biophys. Res. Commun., vol. 388, no. 4, pp. 736–741, 2009, doi:10.1016/j.bbrc.2009.08.083.; M. Arias et al., “Anticancer activities of bovine and human lactoferricin- derived peptides,” Comput. Cell Biol., vol. 95, no. 1, pp. 91–98, 2017.; C. Chea et al., “Bovine lactoferrin reverses programming of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition in oral squamous cell carcinoma,” Biochem. Biophys. Res. Commun., vol. 507, no. 1–4, pp. 142–147, 2018, doi:10.1016/j.bbrc.2018.10.193.; J. C. Pereira Guedes, “Molecular Mechanisms Underlying the Anticancer Activity of Lactoferrin in Highly Metastatic Cancer Cell Lines,” 2017.; J. Gibbons, R. Kanwar, and J. Kanwar, “Lactoferrin and cancer in different cancer models,” Cancer Cell, no. 1, pp. 1080–1088, 2011.; P. Puddu, P. Valenti, and S. Gessani, “Immunomodulatory effects of lactoferrin on antigen presenting cells,” Biochimie, vol. 91, no. 1, pp. 11–18, 2009, doi:10.1016/j.biochi.2008.05.005.; I. Z. Sadiq, K. Babagana, D. Danlami, L. I. Abdullahi, and A. R. Khan, “Molecular Therapeutic Cancer Peptides: A Closer Look at Bovine Lactoferricin,” Asian J. Biochem. Genet. Mol. Biol., vol. 1, no. 2, pp. 1–9, 2018, doi:10.9734/ajbgmb/2018/v1i2471; J. S. Mader, J. Salsman, D. M. Conrad, and D. W. Hoskin, “Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines,” Mol. Cancer Ther., vol. 4, no. 4, pp. 612–624, 2005, doi:10.1158/1535-7163.MCT-04-0077.; D. I. Chan, E. J. Prenner, and H. J. Vogel, “Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action,” Biochim. Biophys. Acta - Biomembr., vol. 1758, no. 9, pp. 1184–1202, 2006, doi:10.1016/j.bbamem.2006.04.006.; V. A. Solarte, “Péptidos derivados de lactoferricina bovina como agentes anticancerígenos contra el carcinoma de células escamosas de la cavidad oral.,” p. 127, 2016.; D. S. Insuasty-Cepeda et al., “Peptides derived from (Rrwqwrmkklg)2- k-ahx induce selective cellular death in breast cancer cell lines through apoptotic pathway,” Int. J. Mol. Sci., vol. 21, no. 12, pp. 1–13, 2020, doi:10.3390/ijms21124550.; Y. Zhang, C. F. Lima, and L. R. Rodrigues, “Invitro evaluation of bovine lactoferrin potential as an anticancer agent,” Int. Dairy J., vol. 40, pp. 6–15, 2015, doi:10.1016/j.idairyj.2014.08.016.; S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen,” Oncol. Rep., vol. 15, no. 5, pp. 1385–1390, 2006, doi:10.3892/or.15.5.1385.; Y. Vargas et al., “Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines,” Molecules, vol. 22, no. 10, p. 1641, 2017, doi:10.3390/molecules22101641.; J. R. Guerra et al., “The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line,” RSC Adv., vol. 9, no. 36, pp. 20497–20504, 2019, doi:10.1039/c9ra04145a.; N. D. J. Huertas et al., “Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076,” Molecules, vol. 22, no. 3, p. 452, 2017, doi:10.3390/molecules22030452.; A. C. Barragán-Cárdenas et al., “Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin,” RSC Adv., vol. 10, no. 30, pp. 17593–17601, 2020, doi:10.1039/d0ra02688c.; A. C. Barragán-Cárdenas et al., “The Nonapeptide RWQWRWQWR : A Promising Molecule for Breast Cancer Therapy,” ChemistrySelect, vol. 5, pp. 9691–9700, 2020, doi: doi.org/10.1002/slct.202002101 z.; D. S. Insuasty Cepeda et al., “Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology,” Molecules, vol. 24, no. 7, 2019, doi:10.3390/molecules24071215.; ATCC, “MDA-MB-468.” pp. 1–3, 2018.; ATCC, “MDA-MB-231.” pp. 1–3, 2020; ATCC, “MCF-7.” pp. 1–3, 2020.; ATCC, “BT-474.” pp. 1–3, 2018.; ATCC, “MCF-12A.” pp. 1–3, 2020.; J. A. Rodríguez, “Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama,” Repositorio.Unal.Edu.Co, 2019, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/76436.; A. C. Barragán-Cárdenas et al., “Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines,” ACS Omega, 2023, doi:10.1021/acsomega.2c07336.; M. Lara-Márquez et al., “Lipid-rich extract from Mexican avocado (Persea americana var. drymifolia) induces apoptosis and modulates the inflammatory response in Caco-2 human colon cancer cells,” J. Funct. Foods, vol. 64, no. October 2019, p. 103658, 2020, doi:10.1016/j.jff.2019.103658.; Luminex, “Muse® Oxidative Stress Kit,” vol. 100111, no. October, 2019, [Online]. Available: www.luminexcorp.com.; Biolegend, “Assay Kit LEGENDplex TM CRP1 & Co,” no. 75062_V01, [Online]. Available: https://www.biolegend.com/Files/Images/media_assets/pro_detail/datasheets/75062_Hu_Macrophage-Microglia_Panel_V01.pdf.; C. Numbers, “TRIzol TM Reagent,” vol. 15596018, no. 15596026.; M. C. Sandoval-Usme et al., “Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells,” PLoS One, vol. 9, no. 1, 2014, doi:10.1371/journal.pone.0087769.; R. Cabezas-Perez, A. F. Vallejo-Pulido, A. Umaña-Pérez, and M. Sánchez-Gómez, “IGF-II Y LA GONADOTROPINA CORIONICA REGULAN LA PROLIFERACION, MIGRACION E INVASION DE CELULAS DE TROFOBLASTO HUMANO_.pdf,” Acta Biológica Colomb., vol. 16, no. 1, pp. 143–152, 2011.; C. P. Bravo-Chaucanés, Y. Vargas-Casanova, L. C. Chitiva-Chitiva, A. Ceballos-Garzon, G. Modesti-Costa, and C. M. Parra-Giraldo, “Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation,” J. Fungi, vol. 8, no. 8, p. 784, 2022, doi:10.3390/jof8080784; OECD, “Test No. 236: Fish Embryo Acute Toxicity (FET) Test.,” OECD Guidel. Test. Chem. Sect. 2, OECD Publ., no. July, pp. 1–22, 2013, [Online]. Available: http://www.oecd-ilibrary.org.; J. R. Mathiasen and V. C. Moser, “The Irwin Test and Functional Observational Battery (FOB) for Assessing the Effects of Compounds on Behavior, Physiology, and Safety Pharmacology in Rodents,” Curr. Protoc. Pharmacol., vol. 83, no. 1, pp. 1–18, 2018, doi:10.1002/cpph.43.; K. Y. Chang and J. R. Yang, “Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests,” PLoS One, vol. 8, no. 8, 2013, doi:10.1371/journal.pone.0070166.; C. K. Hattotuwagama and D. R. Flower, “Empirical prediction of peptide octanol-water partition coefficients,” Bioinformation, vol. 1, no. 7, pp. 257–259, 2006, doi:10.6026/97320630001257.; N. C. Tan, P. Yu, Y.-U. Kwon, and T. Kodadek, “High-Throughput Evaluation of Relative Cell Permeability between Peptoids and Peptides,” Bioorg Med Chem, vol. 16, no. 11, pp. 5853–5861, 2008, doi:10.1038/nature08365.Reconstructing.; F. Huang and W. M. Nau, “A conformational flexibility scale for amino acids in peptides,” Angew. Chemie - Int. Ed., vol. 42, no. 20, pp. 2269–2272, 2003, doi:10.1002/anie.200250684.; L. S. Vermeer et al., “Conformational flexibility determines selectivity and antibacterial, antiplasmodial,andanticancer potency of cationic -αhelical peptides,” J. Biol. Chem., vol. 287, no. 41, pp. 34120–34133, 2012, doi:10.1074/jbc.M112.359067.; C. K. Wang, J. E. Swedberg, P. J. Harvey, Q. Kaas, and D. J. Craik, “Conformational Flexibility Is a Determinant of Permeability for Cyclosporin,” J. Phys. Chem. B, vol. 122, no. 8, pp. 2261–2276, 2018, doi:10.1021/acs.jpcb.7b12419.; K. Amin and R.-M. Dannenfelser, “In Vitro Hemolysis: Guidance for the Pharmaceutical Scientist,” J. Pharm. Sci., vol. 95, no. 6, pp. 1173–1176, 2006, doi:10.1002/jps.; F. Marques-Garcia, D. H. H. Jung, and S. E. Pérez, “Impact of individualized hemolysis management based on biological variation cut-offs in a clinical laboratory,” Ann. Lab. Med., vol. 42, no. 2, pp. 169–177, 2021, doi:10.3343/ALM.2022.42.2.169.; M. Ravikanth, P. Soujanya, K. Manjunath, T. R. Saraswathi, and C. R. Ramachandran, “Heterogenecity of fibroblasts,” J. Oral Maxillofac. Pathol., vol. 15, no. 2, pp. 247–250, 2011, doi:10.4103/0973-029X.84516.; K. Singh, A. Gangrade, A. Jana, B. B. Mandal, and N. Das, “Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1,2,3-Triazole Ring,” ACS Omega, vol. 4, no. 1, pp. 835–841, 2019, doi:10.1021/acsomega.8b02849; A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res., vol. 45, no. 3, pp. 528–537, 2000, doi:10.1016/S0008-6363(99)00384-3.; K. A. Camilio, “Short Lytic Anticancer Peptides as a Novel Therapy against Cancer,” p. 68, 2013, [Online]. Available: https://munin.uit.no/bitstream/handle/10037/5489/thesis.pdf?sequence=6&isAllowed=y.; N. Yang, M. B. Strøm, S. M. Mekonnen, J. S. Svendsen, and Ø. Rekdal, “The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells,” J. Pept. Sci., vol. 10, no. 1, pp. 37–46, 2004, doi:10.1002/psc.470.; F. Harris, S. Dennison, J. Singh, and P. David, “On the Selectivity and Efficacy of Defense Peptides With Respect to Cancer Cells,” Med. Res. Rev., vol. 33, no. 1, pp. 190–234, 2011, doi:10.1002/med.; A. Won et al., “Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin,” Biochim. Biophys. Acta - Biomembr., vol. 1808, no. 6, pp. 1592–1600, 2011, doi:10.1016/j.bbamem.2010.11.010.; K. Johanna et al., “Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides : Pursuing Production Lower Costs , Lower Hemolysis , and Sustained Antimicrobial Activity,” Int. J. Pept. Res. Ther., no. 0123456789, 2021, doi:10.1007/s10989-021-10207-x.; Z. Ye, X. Zhu, S. Acosta, D. Kumar, T. Sang, and C. Aparicio, “Self-assembly Dynamics and Antimicrobial Activity of All L- and D-amino Acid Enantiomers of a Designer Peptide,” Nanoscale, vol. 11, no. 1, pp. 266–275, 2018, doi:10.1039/c8nr07334a.Self-assembly.; M. Abdulbagi, L. Wang, O. Siddig, B. Di, and B. Li, “D-amino acids and d-amino acid-containing peptides: Potential disease biomarkers and therapeutic targets?,” Biomolecules, vol. 11, no. 11, pp. 1–14, 2021, doi:10.3390/biom11111716.; Z. Feng and B. Xu, “Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches,” Biomol. Concepts, vol. 7, no. 3, pp. 179–187, 2016, doi:10.1515/bmc-2015-0035.; R. Chen, S. Ni, W. Chen, M. Liu, J. Feng, and K. Hu, “Improved anti-triple negative breast cancer effects of docetaxel by RGD-modified lipid-core micelles,” Int. J. Nanomedicine, vol. 16, pp. 5265–5279, 2021, doi:10.2147/IJN.S313166.; R. Mahmoudi et al., “RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells,” J. Biomater. Appl., vol. 35, no. 7, pp. 743–753, 2021, doi:10.1177/0885328220949367.; G. Zheng, M. Zheng, B. Yang, H. Fu, and Y. Li, “Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic (RGD) tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo,” Biomed. Pharmacother., vol. 116, no. 440, p. 109006, 2019, doi:10.1016/j.biopha.2019.109006.; B. Chen et al., “Inhibited effect of an RGD peptide hydrogel on the expression of β1-integrin, FAK, and Akt in Tenon’s capsule fibroblasts,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 109, no. 11, pp. 1857–1865, 2021, doi:10.1002/jbm.b.34847.; A. Heras-Parets, M. P. Ginebra, J. M. Manero, and J. Guillem-Marti, “Guiding Fibroblast Activation Using an RGD-Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration,” Adv. Healthc. Mater., vol. 12, no. 21, 2023, doi:10.1002/adhm.202203307.; D. T. Seroski et al., “Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly,” Commun. Chem., vol. 3, no. 1, 2020, doi:10.1038/s42004-020-00414-w.; F. Jean-François, J. Elezgaray, P. Berson, P. Vacher, and E. J. Dufourc, “Pore formation induced by an antimicrobial peptide: Electrostatic effects,” Biophys. J., vol. 95, no. 12, pp. 5748–5756, 2008, doi:10.1529/biophysj.108.136655.; H. Li, T. Tamang, and C. Nantasenamat, “Toward insights on antimicrobial selectivity of host defense peptides via machine learning model interpretation,” Genomics, vol. 113, no. 6, pp. 3851–3863, 2021, doi:10.1016/j.ygeno.2021.08.023.; Z. Liu, F. Wang, and X. Chen, “Integrin alphaV-beta3-targeted cancer therapy,” Drug Dev. Res., vol. 69, no. 6, pp. 329–339, 2008, doi:10.1002/ddr.20265.Integrin.; S. S. A. A. Hasson et al., “In vitro apoptosis triggering in the BT-474 human breast cancer cell line by lyophilised camel’s milk,” Asian Pacific J. Cancer Prev., vol. 16, no. 15, pp. 6651–6661, 2015, doi:10.7314/APJCP.2015.16.15.6651.; Knut & Alice Wallenberg Foundation, “Integrin αvβ3,” The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000138448-ITGAV/cell+line (accessed Dec. 02, 2023).; Y. Gai et al., “Evaluation of an Integrin αv β3 and Aminopeptidase N Dual- Receptor Targeting Tracer for Breast Cancer Imaging,” Mol Pharm., vol. 17, no. 1, 2020, doi:10.1021/acs.molpharmaceut.9b01134.Detailed.; R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. 15, pp. 7181–7189, 2021, doi:10.1111/jcmm.16748.; J. S. Mader et al., “Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria,” Exp. Cell Res., vol. 313, no. 12, pp. 2634–2650, 2007, doi:10.1016/j.yexcr.2007.05.015.; N. Fester et al., “Enhanced pro-apoptosis gene signature following the activation of TAp63α in oocytes upon γ irradiation,” Cell Death Dis., vol. 13, no. 3, pp. 1–10, 2022, doi:10.1038/s41419-022-04659-2.; H. Thomadaki, M. Talieri, and A. Scorilas, “Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS,” Biol. Chem., vol. 387, no. 8, pp. 1081–1086, 2006, doi:10.1515/BC.2006.133.; D. S. Insuasty-cepeda et al., “Non-natural amino acids into LfcinB-derived peptides : effect in their ( i ) proteolytic degradation and ( ii ) cytotoxic activity against cancer cells,” R. Soc. Open Sci., vol. 10, 2023.; Y. C. Yoo et al., “Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-devived peptide: Involvement of reactive oxygen species,” Biochem. Biophys. Res. Commun., vol. 237, no. 3, pp. 624–628, 1997, doi:10.1006/bbrc.1997.7199.; J. A. Gibbons, J. R. Kanwar, and R. K. Kanwar, “Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer,” BMC Cancer, vol. 15, no. 1, pp. 1–16, 2015, doi:10.1186/s12885-015-1441-4.; N. H. Ha et al., “Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes,” Cancer Res., vol. 71, no. 23, pp. 7259–7269, 2011, doi:10.1158/0008-5472.CAN-11-1143.; M. V. Mouritzen et al., “Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota,” Mol. Ther. - Methods Clin. Dev., vol. 20, no. March, pp. 726–739, 2021, doi:10.1016/j.omtm.2021.02.008.; R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. June, pp. 7181–7189, 2021, doi:10.1111/jcmm.16748.; A. Masjedi et al., “The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer,” Biomed. Pharmacother., vol. 108, no. September, pp. 1415–1424, 2018, doi:10.1016/j.biopha.2018.09.177.; M. Cheng, P. Liu, and L. X. Xu, “Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment,” J. Inorg. Biochem., vol. 210, no. June, p. 111159, 2020, doi:10.1016/j.jinorgbio.2020.111159.; X. P. Jiang, D. C. Yang, R. L. Elliott, and J. F. Head, “Down-regulation of expression of interleukin-6 and its receptor results in growth inhibition of MCF-7 breast cancer cells,” Anticancer Res., vol. 31, no. 9, pp. 2899–2906, 2011.; E. M. El-Fakharany et al., “Therapeutic efficacy of Nano-formulation of lactoperoxidase and lactoferrin via promoting immunomodulatory and apoptotic effects,” Int. J. Biol. Macromol., vol. 220, no. August, pp. 43–55, 2022, doi:10.1016/j.ijbiomac.2022.08.067.; S. A. A.-E. Al-Ameri et al., “Function and regulation of interleukin-10 in breast cancer,” Ann. Res., vol. 3, pp. 162–183, 2020, doi:10.31219/osf.io/me4a5.; A. Cutone et al., “Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action,” Biomolecules, vol. 10, no. 3, pp. 1–26, 2020, doi:10.3390/biom10030456.; W. R. Pan, P. W. Chen, Y. L. S. Chen, H. C. Hsu, C. C. Lin, and W. J. Chen, “Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage,” J. Dairy Sci., vol. 96, no. 12, pp. 7511–7520, 2013, doi:10.3168/jds.2013-7285.; S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts,” Exp. Mol. Pathol., vol. 88, no. 3, pp. 371–375, 2010, doi:10.1016/j.yexmp.2010.02.001.; L. Bugyna, S. Kendra, and H. Bujdáková, “Galleria mellonella—A Model for the Study of aPDT—Prospects and Drawbacks,” Microorganisms, vol. 11, no. 6, 2023, doi:10.3390/microorganisms11061455.; M. El-Harbawi, “Toxicity Measurement of Imidazolium Ionic Liquids Using Acute Toxicity Test,” Procedia Chem., vol. 9, no. December, pp. 40–52, 2014, doi:10.1016/j.proche.2014.05.006.; O. Al-Jamal et al., “Organ-specific toxicity evaluation of stearamidopropyl dimethylamine (SAPDMA) surfactant using zebrafish embryos,” Sci. Total Environ., vol. 741, p. 140450, 2020, doi:10.1016/j.scitotenv.2020.140450.; https://repositorio.unal.edu.co/handle/unal/86375; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co

  5. 5
    Academic Journal
  6. 6
    Dissertation/ Thesis

    المساهمون: Montenegro Ruiz, Luis Carlos, Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos, Darwich Cedeño, Mohamed Toufic 000900060989433X, Darwich Cedeño, Mohamed Toufic 0000024464

    جغرافية الموضوع: Colombia

    وصف الملف: xvii, 125 páginas; application/pdf

    Relation: Abed, R. M. M., Dobretsov, S., & Sudesh, K. (2009). Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.x; Adesalu, T., & Kuti, F. (2020). Phytochemicals , total lipids and molecular characterization of West African strain of Oscillatoria sp . ( Cyanobacterium ) isolated from Ceratophyllum demersum L . ( Hornwort ). Journal of Pharmacognosy and Phytochemistry, 9(3), 18–25.; Ahmad, I. Z. (2022). The usage of Cyanobacteria in wastewater treatment: prospects and limitations. Letters in Applied Microbiology, 75(4), 718–730. https://doi.org/10.1111/lam.13587; Allied Market Research. (Mayo de 2018). Global seaweed market opportunities and forecast 2018-2024. https://www.alliedmarketresearch.com/seaweed-market; Allied Market Research. (Mayo de 2018). Seaweed Market by Product and Application - Global Opportunity Analysis and Industry Forecast, 2018-2024. https://www.researchandmarkets.com/reports/4580612/seaweed-market-by-product-and-application; Arencibia, D. F., Fernández Rosario, A., & Gámez Menéndez, R. (2014). Métodos generales de conservación de microorganismos. January 2008.; Ayala, F. (2017). Búsqueda de compuestos con posible actividad a partir de cianobacterias marinas del Caribe colombiano. Tesis de Maestría.; Bayona Maldonado, L. M. (2014). Estudio químico y evaluación de la actividad citotóxica de metabolitos secundarios provenientes de cianobacterias bentónicas arrecifales del Caribe colombiano. http://www.bdigital.unal.edu.co/20433/; Becerra, L. (2017). Evaluación del perfil metabólico de un consorcio de cianobacterias bentónicas arrecifales del Caribe colombiano bajo condiciones de cultivo. (Tesis de Maestría). https://repositorio.unal.edu.co/handle/unal/62324; Bioeconomía (Enero 17 de 2018). Pronostican un mercado mundial de algas de USD 3,318 millones para 2022., https://www.bioeconomia.info/2018/01/17/pronostican_mercado_mundial_de_algas_de_usd_3318_millones_para_2022/; Blunt, J., Copp, B., Keyzers, R., Munro, M., & Prinsep, M. (2009). Marine natural products. Natural Product Reports, 26(2), 170–244. https://doi.org/10.1016/j.bjp.2015.09.004; Bösch, N., Mariana, B., Greczmiel, U., Morinaka, B., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides, antiviral ornithine‐containing ribosomal peptides discovered by proteusin mining. Angewandte Chemie. https://doi.org/10.1002/ange.201916321; Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A., & Economou-Amilli, A. (2016). A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Molecular Phylogenetics and Evolution, 98, 147–160. https://doi.org/10.1016/j.ympev.2016.02.009; Brito, Â., Gaifem, J., Ramos, V., Glukhov, E., Dorrestein, P. C., Gerwick, W. H., Vasconcelos, V. M., Mendes, M. V., & Tamagnini, P. (2015). Bioprospecting Portuguese Atlantic coast cyanobacteria for bioactive secondary metabolites reveals untapped chemodiversity. Algal Research, 9, 218–226. https://doi.org/10.1016/j.algal.2015.03.016; Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030; Cano, J. (2018). Conservación in vitro y cultivo de Cyanoprocariotas bentónicas arrecifales de Providencia y Santa Catalina Islas, Colombia. Tesis de Maestría. In Universidad Nacional de Colombia.; Carrasco-Reinado, R., Escobar, A., Carrera, C., Guarnizo, P., Vallejo, R. A., & Fernández-Acero, F. J. (2019). Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. Lwt - Food Science and Technology, 114(January 2019), 108385. https://doi.org/10.1016/j.lwt.2019.108385; Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biological Reviews of the Cambridge Philosophical Society, 73(3), 203–266. https://doi.org/10.1017/s0006323198005167; De Vero, L., Boniotti, M. B., Budroni, M., Buzzini, P., Cassanelli, S., Comunian, R., Gullo, M., Logrieco, A. F., Mannazzu, I., Musumeci, R., Perugini, I., Perrone, G., Pulvirenti, A., Romano, P., Turchetti, B., & Varese, G. C. (2019). Preservation, characterization and exploitation of microbial biodiversity: The perspective of the italian network of culture collections. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120685; del Cerro-Sánchez, C., García-López, J. L., & Galán-Dicilia, B. (2017). Desarrollo de herramientas moleculares para la producción de policétidos y péptidos no ribosomales.; Demay, J., Bernard, C., Reinhardt, A., & Marie, B. (2019). Natural products from cyanobacteria: Focus on beneficial activities. In Marine Drugs (Vol. 17, Issue 6). MDPI AG. https://doi.org/10.3390/md17060320; El-Sheekh, M., El-Dalatony, M. M., Thakur, N., Zheng, Y., & Salama, E. S. (2022). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 19(3), 2173–2194. https://doi.org/10.1007/s13762-021-03270-w; Figueras, E., Borbély, A., Ismail, M., Frese, M., & Sewald, N. (2018). Novel unit B cryptophycin analogues as payloads for targeted therapy. Beilstein Journal of Organic Chemistry, 14, 1281–1286. https://doi.org/10.3762/bjoc.14.109; Finking, R., & Marahiel, M. A. (2004). Biosynthesis of nonribosomal peptides. Annual Review of Microbiology, 58, 453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615; Forero Cujiño, M. A. (2019). Determinación de Cyanoprokaryotas planctónicas y su potencial en la producción de cianotoxinas en un embalse de la sabana de Bogotá - Colombia.; Fujii, I., Watanabe, A., Sankawa, U., & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8(2), 189–197. https://doi.org/10.1016/S1074-5521(00)90068-1; Gkelis, S., Panou, M., Konstantinou, D., Apostolidis, P., Kasampali, A., Papadimitriou, S., Kati, D., Di Lorenzo, G. M., Ioakeim, S., Zervou, S. K., Christophoridis, C., Triantis, T. M., Kaloudis, T., Hiskia, A., & Arsenakis, M. (2019). Diversity, cyanotoxin production, and bioactivities of cyanobacteria isolated from freshwaters of greece. Toxins, 11(8). https://doi.org/10.3390/toxins11080436; González-Balderas, R. M., Velásquez-Orta, S. B., Valdez-Vazquez, I., & Orta Ledesma, M. T. (2020). Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrasonics Sonochemistry, 62, 104852. https://doi.org/10.1016/j.ultsonch.2019.104852; Goyena, R., & Fallis, A. . (2019). The Molecular Biology of Cyanobacteria. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004; Grossmann, L., Hinrichs, J., & Weiss, J. (2020). Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 60(17), 2961–2989. https://doi.org/10.1080/10408398.2019.1672137; Hachicha, R., Elleuch, F., Hlima, H. Ben, Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., & Fendri, I. (2022). Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 12(4). https://doi.org/10.3390/app12041924; Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria Desertifilum sp. extract: Their Antibacterial and Cytotoxicity Effects . International Journal of Nanomedicine, Volume 15, 49–63. https://doi.org/10.2147/ijn.s238575; Hitchcock, A., Hunter, C. N., & Canniffe, D. P. (2020). Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology. Microbial Biotechnology, 13(2), 363–367. https://doi.org/10.1111/1751-7915.13526; Hohmann-Marriott, M. F., & Blankenship, R. E. (2011). Evolution of photosynthesis. Annual Review of Plant Biology, 62, 515–548. https://doi.org/10.1146/annurev-arplant-042110-103811; İlter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70(April), 78–88. https://doi.org/10.1016/j.jfca.2018.04.007; Jaramillo-martínez, S., & González, M. E. (2018). Obtención de un biopolímero a base de exopolisacáridos extraídos de cultivos de Chlorella vulgaris. 1–3. https://doi.org/10.1016/j.rser.2014.04.007.2; Jones, M. R., Pinto, E., Torres, M. A., Dörr, F., Mazur-Marzec, H., Szubert, K., Tartaglione, L., Dell’Aversano, C., Miles, C. O., Beach, D. G., McCarron, P., Sivonen, K., Fewer, D. P., Jokela, J., & Janssen, E. M. L. (2020). Comprehensive database of secondary metabolites from cyanobacteria. BioRxiv, C, 1–16. https://doi.org/10.1101/2020.04.16.038703; Kamravamanesh, D., Kiesenhofer, D., Fluch, S., Lackner, M., & Herwig, C. (2019). Scale-up challenges and requirement of technology-transfer for cyanobacterial poly (3-hydroxybutyrate) production in industrial scale. International Journal of Biobased Plastics, 1(1), 60–71. https://doi.org/10.1080/24759651.2019.1688604; Kanaga, S., Silambarasan, T., Malini, E., Mangayarkarasi, S., & Dhandapani, R. (2022). Optimization of biomass production from Chlorella vulgaris by response surface methodology and study of the fatty acid profile for biodiesel production: A green approach. Biocatalysis and Agricultural Biotechnology, 45(October), 102505. https://doi.org/10.1016/j.bcab.2022.102505; Komárek, J. (2019). Quo vadis, taxonomy of cyanobacteria (2019). Fottea, 20(1), 104–110. https://doi.org/10.5507/fot.2019.020; Konstantinou, D., Mavrogonatou, E., Zervou, S. K., Giannogonas, P., & Gkelis, S. (2020). Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins, 12(2). https://doi.org/10.3390/toxins12020073; Kultschar, B., Dudley, E., Wilson, S., & Llewellyn, C. A. (2019). Intracellular and extracellular metabolites from the cyanobacterium chlorogloeopsis fritschii, pcc 6912, during 48 hours of uv-b exposure. Metabolites, 9(74). https://doi.org/10.3390/metabo9040074; Kumar, A., & Bera, S. (2020). Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. Bioresource Technology Reports, 12(October), 100584. https://doi.org/10.1016/j.biteb.2020.100584; Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. In Cyanobacteria: From Basic Science to Applications (Vol. 7421). Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00016-7; Kurmayer, R., Entfellner, E., Weisse, T., Offterdinger, M., Rentmeister, A., & Deng, L. (2020). Chemically labeled toxins or bioactive peptides show a heterogeneous intracellular distribution and low spatial overlap with autofluorescence in bloom-forming cyanobacteria. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59381-w; Larsdotter, K. (2006). Microalgae for phosphorus removal from wastewater in a Nordic climate (p. 36).; Lavrinovics, A., Murby, F., Ziverte, E., Mezule, L., & Juhna, T. (2021). Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal. Microorganisms, 9.; Li, Z., Zhang, L., & Zhao, Z. (2021). Malyngamide F Possesses Anti-Inflammatory and Antinociceptive Activity in Rat Models of Inflammation. Pain Research and Management, 2021. https://doi.org/10.1155/2021/4919391; Lotfi, H., Sheervalilou, R., & Zarghami, N. (2018). An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BioImpacts, 8(2), 139–151. https://doi.org/10.15171/bi.2018.16; Manogar, P., Vijayakumar, S., Rajalakshmi, S., Pugazhenthi, M., Praseetha, P. K., & Jayanthi, S. (2019). In silico studies on CNR1 receptor and effective cyanobacterial drugs: Homology modelling, molecular docking and molecular dynamic simulations. Gene Reports, 17, 100505. https://doi.org/10.1016/j.genrep.2019.100505; Martins, R. F., Ramos, M. F., Herfindal, L., Sousa, J. A., Skaerven, K., & Vasconcelos, V. M. (2008). Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus. In Mar. Drugs (Vol. 6, Issue 1). www.mdpi.org/marinedrugs; Millán, G. S. M. (2014). Evaluacion economica de un sistema de tratamiento de aguas residuales en la ciudad de Guadalajara de Buga. Facultad de Ciencias Sociales y Económicas Universisdad Del Valle, 1, 1–63. https://doi.org/10.1007/s13398-014-0173-7.2; Minciencias, 2016, Colombia BIO, Bogota, Colombia; Ministerio de Medio Ambiente. (2019, 21 mayo). Minambiente. https://www.minambiente.gov.co/index.php/noticias/4317-colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidad; Miranda, F. (2018). Purificación de agua : eliminación de nitratos , nitritos y compuestos orgánicos utilizando catalizadores en polvo y estructurados. In Universidad Nacional Del Litoral (Vol. 1, Issue 4). www.univeersidaddellit.com; Mondal, A., Bose, S., Banerjee, S., Patra, J. K., Malik, J., Mandal, S. K., Kilpatrick, K. L., Das, G., Kerry, R. G., Fimognari, C., & Bishayee, A. (2020). Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Marine Drugs, 18(9). https://doi.org/10.3390/md18090476; Montalvão, S., Demirel, Z., Devi, P., Lombardi, V., Hongisto, V., Perälä, M., Hattara, J., Imamoglu, E., Tilvi, S. S., Turan, G., Dalay, M. C., & Tammela, P. (2016). Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. New Biotechnology, 33(3), 399–406. https://doi.org/10.1016/j.nbt.2016.02.002; Musale, A. S., Kumar, G. R. K., Sapre, A., & Dasgupta, S. (2020). Marine Algae as a Natural Source for Antiviral Compounds. AIJR Preprints, 38(1), 1–6.; Nagarajan, M., Maruthanayagam, V., & Sundararaman, M. (2012). A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. Journal of Applied Toxicology, 32(3), 153–185. https://doi.org/10.1002/jat.1717; Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49(November 2019), 101959. https://doi.org/10.1016/j.algal.2020.101959; Olishevska, S., Nickzad, A., & Déziel, E. (2019). Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 103(3), 1189–1215. https://doi.org/10.1007/s00253-018-9541-0; Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37(3), 422–443. https://doi.org/10.1016/j.biotechadv.2019.02.010; Papadopoulos, K. P., Economou, C. N., Tekerlekopoulou, A. G., & Vayenas, D. V. (2020). Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. Journal of Environmental Management, 265(January), 110543. https://doi.org/10.1016/j.jenvman.2020.110543; Parida, S., Sriram, M., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1; Pathak, J., Pandey, A., Maurya, P. K., Rajneesh, R., Sinha, R. P., & Singh, S. P. (2020). Cyanobacterial Secondary Metabolite Scytonemin: A Potential Photoprotective and Pharmaceutical Compound. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(3), 467–481. https://doi.org/10.1007/s40011-019-01134-5; Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia.; Prato-Valderrama, J. A. (2013). Afloramientos de cianobacterias marinas bentónicas en San Andrés, Providencia y las Islas del Rosario (Caribe colombiano): Caracterización y evaluación de su posible papel ecológico.; Puglisi, M. P., Sneed, J. M., Ritson-Williams, R., & Young, R. (2019). Marine chemical ecology in benthic environments. Natural Product Reports, 36(3), 410–429. https://doi.org/10.1039/c8np00061a; Rengifo, A. L., Peña, E., & Benitez, N. (2012). Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio. Biología Tropical, 60(September), 1055–1064.; Robles-Bañuelos, B., Durán-Riveroll, L. M., Rangel-López, E., Pérez-López, H. I., & González-Maya, L. (2022). Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules, 27(15). https://doi.org/10.3390/molecules27154814; Rodríguez León, C. (2020). Search for marine natural products with cytotoxic activity. Universidad de las Palmas de Gran Canaria.; Salbitani, G., & Carfagna, S. (2021). Ammonium Utilization in Microalgae : A Sustainable Method for Wastewater Treatment. Sustainability, 13(2), 17. https://doi.org/10.3390/su13020956; Shishido, T. K., Popin, R. V., Jokela, J., Wahlsten, M., Fiore, M. F., Fewer, D. P., Herfindal, L., & Sivonen, K. (2019). Dereplication of natural products with antimicrobial and anticancer activity from Brazilian cyanobacteria. Toxins, 12(1), 1–17. https://doi.org/10.3390/toxins12010012; Su, Y. (2020). Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Science of the Total Environment, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590; Suenaga, K., & Iwasaki, A. (2020). Bioactive Substances from Marine Organisms. In Topics in Heterocyclic Chemistry (Vol. 58, p. 19). https://doi.org/10.2115/fiber.46.7_P283; Tan, L. T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry, 68(7), 954–979. https://doi.org/10.1016/j.phytochem.2007.01.012; Tang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J., & Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6(35), 29127–29134. https://doi.org/10.1039/C5RA23519G; Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1), 47–57.; Tiam, S. K., Gugger, M., Demay, J., Le Manach, S., Duval, C., Bernard, C., & Marie, B. (2019). Insights into the diversity of secondary metabolites of Planktothrix using a biphasic approach combining global genomics and metabolomics. Toxins, 11(9). https://doi.org/10.3390/toxins11090498; Virgen, M. (2016). ¿Conservar fitoplancton vivo? Cepario de microalgas del CIBNOR. Recursos Naturales y Sociedad, 02(02), 40–55. https://doi.org/10.18846/renaysoc.2016.02.02.02.0003; Walsh, C. T. (2008). The chemical versatility of natural-product assembly lines. Accounts of Chemical Research, 41(1), 4–10. https://doi.org/10.1021/ar7000414; Wu, X. J., Yang, H., Chen, Y. T., & Li, P. P. (2018). Biosynthesis of fluorescent β subunits of c-phycocyanin from spirulina subsalsa in escherichia coli, and their antioxidant properties. Molecules, 23(6), 1–11. https://doi.org/10.3390/molecules23061369; Xue, Y., Zhao, P., Quan, C., Zhao, Z., Gao, W., Li, J., Zu, X., Fu, D., Feng, S., Bai, X., Zuo, Y., & Li, P. (2018). Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides, 107(March), 17–24. https://doi.org/10.1016/j.peptides.2018.08.002; Anagnostidis, K. & Komárek, J. (1988). Modern approach to the classification system of cyanophytes. 3‐Oscillatoriales. Arch. Hydrobiol. Suppl. 80. 1-4.; Araújo, R., Bárbara, I., Tibaldo, M., Berecibar, E., Tapia, P. D., Pereira, R., Santos, R., & Pinto, I. S. (2009). Checklist of benthic marine algae and cyanobacteria of northern Portugal. Botanica Marina, 52(1), 24–46. https://doi.org/10.1515/BOT.2009.026; Brito, Â., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kaštovský, J., Vasconcelos, V. M., & Tamagnini, P. (2017). Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution, 111, 18–34. https://doi.org/10.1016/j.ympev.2017.03.006; Brito, Â., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., Ferreira, S., Martins, A., Mota, R., Frazão, B., Martins, R., Vasconcelos, V., & Tamagnini, P. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study. Systematic and Applied Microbiology, 35(2), 110–119. https://doi.org/10.1016/j.syapm.2011.07.003; Castilla Corrales, M. B. (2019). Caracterización florística de cianobacterias y macroalgas marinas de los bancos Roncador y Serrana del Archipiélago de San Andrés, Providencia y Santa Catalina, Mar Caribe colombiano.; Criscuolo, A., & Gribaldo, S. (2011). Large-Scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Molecular Biology and Evolution, 28(11), 3019–3032. https://doi.org/10.1093/molbev/msr108; Darwich, M., Peña, E., Montenegro, L., & Benitez, N. (2017). Evaluación del consorcio natural alga(Parachlorella kessleri)(CHLOROPHYCEAE)- bacteria en depuración de aguas residuales sintéticas. Universidad del Valle.; De Figueiredo, D. R., Reboleira, A. S. S. P., Antunes, S. C., Abrantes, N., Azeiteiro, U., Gonçalves, F., & Pereira, M. J. (2006). The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake. Hydrobiologia, 568(1), 145–157. https://doi.org/10.1007/s10750-006-0196-y; Duval, C., Hamlaoui, S., Piquet, B., Toutirais, G., Yéprémian, C., Reinhardt, A., Duperron, S., & Marie, B. (2020). Characterization of cyanobacteria isolated from thermal muds of Balaruc- Les-Bains ( France ) and description of a new genus and species Pseudo- chroococcus couteii. BioRxiv.; Galhano, V., de Figueiredo, D. R., Alves, A., Correia, A., Pereira, M. J., Gomes-Laranjo, J., & Peixoto, F. (2011). Morphological, biochemical and molecular characterization of Anabaena, Aphanizomenon and Nostoc strains (Cyanobacteria, Nostocales) isolated from Portuguese freshwater habitats. Hydrobiologia, 663(1), 187–203. https://doi.org/10.1007/s10750-010-0572-5; Honda, D., Yokota, A., & Sugiyama, J. (1999). Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution, 48(6), 723–739. https://doi.org/10.1007/PL00006517; Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581; Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.; Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7). https://doi.org/10.1093/molbev/msw054; Lopes, V. R., Ramos, V., Martins, A., Sousa, M., Welker, M., Antunes, A., & Vasconcelos, V. M. (2012). Phylogenetic, chemical and morphological diversity of cyanobacteria from Portuguese temperate estuaries. Marine Environmental Research, 73, 7–16. https://doi.org/10.1016/j.marenvres.2011.10.005; Machado Lima, N. M. (2020). Diversidade e distribuição de cianobactérias de crostas biológicas do bioma caatinga com base em taxonomia polifásica e análise metagenômica. 1–178. https://repositorio.unesp.br/handle/11449/194221%0Ahttp://hdl.handle.net/11449/194221; Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., & Goodman, A. E. (1997). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology, 47(3), 693–697. https://doi.org/10.1099/00207713-47-3-693; Nübel, U., Garcia-Pichel, F., & Muyzer, G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8), 3327–3332. https://doi.org/10.1128/aem.63.8.3327-3332.1997; Peña, J. (2019). Potencial biotecnológico de Cianoprocariotas provenientes de Islas del Rosario, Colombia. 135.; Potts, M., & Whitton, B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. In Ecology of Cyanobacteria II.; Puyana, M., Prato, J. A., Nieto, C. F., Ramos, F. A., Castellanos, L., Pinzón, P., & Zárate, J. C. (2019). Experimental approaches for the evaluation of allelopathic interactions between hermatypic corals and marine benthic cyanobacteria in the colombian caribbean. Acta Biologica Colombiana, 24(2), 243–254. https://doi.org/10.15446/abc.v24n2.72706; Samylina, O. S., Sinetova, M. A., Kupriyanova, E. V., Starikov, A. Y., Sukhacheva, M. V., Dziuba, M. V., & Tourova, T. P. (2021). Ecology and biogeography of the “marine Geitlerinema” cluster and a description of Sodalinema orleanskyi sp. nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. And Baaleninema simplex gen. et sp. nov. (Oscillatoriales, Cyanobacteria). FEMS Microbiology Ecology, 97(8), 1–25. https://doi.org/10.1093/femsec/fiab104; Shalygin, S., Kavulic, K., & Pietrasiak, N. (2019). Neotypification of Pleurocapsa fuliginosa and epitypification of P . minor ( Pleurocapsales ): resolving a polyphyletic cyanobacterial genus. Carroll Collected.; Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642–656. https://doi.org/10.1099/mic.0.022848-0; Andersen, R. A. (2005). Algal Culturing Techniques. In Elsevier (Vol. 1).; Babu Balaraman, H., Sivasubramanian, A., & Kumar Rathnasamy, S. (2021). Sustainable valorization of meat processing wastewater with synergetic eutectic mixture based purification of R-Phycoerythrin from porphyrium cruentium. Bioresource Technology, 336(May), 125357. https://doi.org/10.1016/j.biortech.2021.125357; Benchikh, Y., Filali, A., & Rebai, S. (2020). Modeling and optimizing the phycocyanins extraction from Arthrospira platensis (Spirulina) algae and preliminary supplementation assays in soft beverage as natural colorants and antioxidants. Journal of Food Processing and Preservation, 0–2. https://doi.org/10.1111/jfpp.15170; Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/jcb.58.2.419; Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 72, 248–254. https://doi.org/10.1016/j.cj.2017.04.003; Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A. M., & Cohen-Bazire, G. (1979). The structure of cyanobacterial phycobilisomes: a model. Archives of Microbiology, 123(2), 113–127. https://doi.org/10.1007/BF00446810; Chaiklahan, R., Chirasuwan, N., Srinorasing, T., Attasat, S., Nopharatana, A., & Bunnag, B. (2022). Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresource Technology, 343(September 2021), 126077. https://doi.org/10.1016/j.biortech.2021.126077; Cottas, A. G., Teixeira, T. A., Cunha, W. R., Ribeiro, E. J., & de Souza Ferreira, J. (2022). Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. Brazilian Journal of Chemical Engineering, 39(1), 1–9. https://doi.org/10.1007/s43153-021-00186-3; Deyab, M., Mofeed, J., El-Bilawy, E., & Ward, F. (2019). Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01734-9; Du, L., Arauzo, P. J., Meza Zavala, M. F., Cao, Z., Olszewski, M. P., & Kruse, A. (2020). Towards the properties of different biomass-derived proteins via various extraction methods. Molecules, 25(3). https://doi.org/10.3390/molecules25030488; Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28(3), 7. https://doi.org/10.1038/168167a0; Goldring, J. P. D. (2019). Measuring protein concentration with absorbance, lowry, bradford coomassie blue, or the smith bicinchoninic acid assay before electrophoresis. In Methods in Molecular Biology (Vol. 1855, pp. 31–39). https://doi.org/10.1007/978-1-4939-8793-1_3; Hossain, F., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-arachchi, D. N. (2020). Saudi Journal of Biological Sciences Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024; Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 167(March), 112737. https://doi.org/10.1016/j.foodres.2023.112737; Kannaujiya, V. K., Kumar, D., Pathak, J., & Sinha, R. P. (2018). Phycobiliproteins and Their Commercial Significance. In Cyanobacteria: From Basic Science to Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814667-5.00010-6; Lin, P. C., Zhang, F., & Pakrasi, H. B. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57319-5; Liu, J. Y., Jiang, T., Zhang, J. P., & Liang, D. C. (1999). Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. Journal of Biological Chemistry, 274(24), 16945–16952. https://doi.org/10.1074/jbc.274.24.16945; Malgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia 1.; María, D., Fradinho, J. C., Uggetti, E., García, J., Oehmen, A., & Reis, M. A. M. (2018). Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. Algal Research, 33(January), 99–108. https://doi.org/10.1016/j.algal.2018.04.027; Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42(April). https://doi.org/10.1016/j.algal.2019.101617; Prates, D. da F., Radmann, E. M., Duarte, J. H., Morais, M. G. de, & Costa, J. A. V. (2018). Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresource Technology, 256(November 2017), 38–43. https://doi.org/10.1016/j.biortech.2018.01.122; Rodriguez, E. A., Tran, G. N., Gross, L. A., Crisp, J. L., Shu, X., Lin, J. Y., & Tsien, R. Y. (2016). A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nature Methods, 13(9), 763–769. https://doi.org/10.1038/nmeth.3935; Rueda, E., García-galán, M. J., Díez-montero, R., Vila, J., Grifoll, M., & García, J. (2020). Bioresource Technology Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresource Technology, 295(September 2019), 122233. https://doi.org/10.1016/j.biortech.2019.122233; Sadvakasova, A. K., Kossalbayev, B. D., Zayadan, B. K., & Kirbayeva, D. K. (2021). Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 37(8), 1–22. https://doi.org/10.1007/s11274-021-03107-1; Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules, 25(12), 1–17. https://doi.org/10.3390/molecules25122834; Serrano-Bermúdez, L. M., Montenegro-ruíz, L. C., & Godoy-silva, R. D. (2020). Bioresource Technology Reports Effect of CO 2 , aeration , irradiance , and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresource Technology Reports, 12(August), 100578. https://doi.org/10.1016/j.biteb.2020.100578; Shahid, A., Malik, S., Liu, C., Ghulam, S., & Aamer, M. (2021). Journal of Water Process Engineering Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. Journal of Water Process Engineering, 39(September 2020), 101702. https://doi.org/10.1016/j.jwpe.2020.101702; Tan, J. Sen, Lee, S. Y., Chew, K. W., Lam, M. K., Lim, J. W., Ho, S. H., & Show, P. L. (2020). A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 11(1), 116–129. https://doi.org/10.1080/21655979.2020.1711626; Tsolcha, O. N., Patrinou, V., Economou, C. N., Dourou, M., Aggelis, G., & Tekerlekopoulou, A. G. (2021). Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production.; Villalta-romero, F., Murillo-vega, F., & Martínez-gu-, B. (2019). Microalgal biotechnology in Costa Rica : Business opportunities to the national productive sector Biotecnología microalgal en Costa Rica : Oportunidades de negocio para el sector productivo nacional. 32, 85–93.; Zhu, B., Wei, D., & Pohnert, G. (2022). The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation. Chemical Engineering Journal, 438(February), 135598. https://doi.org/10.1016/j.cej.2022.135598; Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. Di, Lee, D. J., & Chang, J. S. (2020). Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 302(January), 122814. https://doi.org/10.1016/j.biortech.2020.122814; Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., Chen, B., & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresource Technology, 302(January), 122806. https://doi.org/10.1016/j.biortech.2020.122806; de-Bashan, L. E., Antoun, H., & Bashan, Y. (2008). Involvement of INDOLE-3-ACETIC ACID produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 44(4), 938–947. https://doi.org/10.1111/j.1529-8817.2008.00533.x; de Bashan, L. E., & Bashan, Y. (2003). Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales. Revista Colombiana de Biotecnologia, 5, 85–90.; Giraldo, M. (2012). Aislamiento y caracterización de microalgas formadoras de tapetes microbianos asociados a un cultivo hidropónico de plantas halófitas Isolation and Characterization of The Microbial Mats Associated to a Hydroponic Culture of Halophytic Plants. Universidad de Las Palmas de Gran Canaria. http://acceda.ulpgc.es/bitstream/10553/6792/4/0654092_00000_0000.pdf; Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1; Guerra-Rodríguez, S., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121828; Halfhide, T., Dalrymple, O. K., Wilkie, A. C., Trimmer, J., Gillie, B., Udom, I., Zhang, Q., & Ergas, S. J. (2015). Growth of an Indigenous Algal Consortium on Anaerobically Digested Municipal Sludge Centrate: Photobioreactor Performance and Modeling. Bioenergy Research, 8(1), 249–258. https://doi.org/10.1007/s12155-014-9513-x; Imase, M., Watanabe, K., Aoyagi, H., & Tanaka, H. (2008). Construction of an artificial symbiotic community using a Chlorella-symbiont association as a model. FEMS Microbiology Ecology, 63(3), 273–282. https://doi.org/10.1111/j.1574-6941.2007.00434.x; Jebali, A., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., Mhiri, N., Karray, F., Dhouib, A., Molina-Grima, E., & Sayadi, S. (2015). Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production. Bioresource Technology, 198, 424–430. https://doi.org/10.1016/j.biortech.2015.09.037; Ji, F., Zhou, Y., Pang, A., Ning, L., Rodgers, K., Liu, Y., & Dong, R. (2015). Fed-batch cultivation of Desmodesmus sp. in anaerobic digestion wastewater for improved nutrient removal and biodiesel production. Bioresource Technology, 184, 116–122. https://doi.org/10.1016/j.biortech.2014.09.144; Lin, Y., Koutsospyros, A., Braida, W., Christodoulatos, C., Terracciano, A., & Su, T. L. (2022). MicroAlgal Biofilm Reactor (MABR) – Evaluation of Biomass Support Materials and Nitrate Removal Performance. Environmental Processes, 9(2). https://doi.org/10.1007/s40710-022-00574-y; Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 752(September 2020), 142168. https://doi.org/10.1016/j.scitotenv.2020.142168; Mousavi, S. A., Sarshad Ghahfarokhi, M., & Soltani Koupaei, S. (2020). Negative impacts of nomadic livestock grazing on common rangelands’ function in soil and water conservation. Ecological Indicators, 110(November 2019), 105946. https://doi.org/10.1016/j.ecolind.2019.105946; Mtaki, K., Kyewalyanga, M. S., & Mtolera, M. S. P. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals of Microbiology, 71(1). https://doi.org/10.1186/s13213-020-01618-0; Nur, M. M. A., & Buma, A. G. J. (2019). Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 10(8), 2079–2097. https://doi.org/10.1007/s12649-018-0256-3; Park, S., Kim, J., Park, Y., Son, S., Cho, S., Kim, C., & Lee, T. (2017). Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. Bioresource Technology, 234, 432–438. https://doi.org/10.1016/j.biortech.2017.03.074; Ponte, W. M. L., Talaverano, N. Z., Huaynate, A. O., Cafferata, E. A., & Gallegos, M. C. (2022). Efficiency of microalgae cultures for nutrient removal from domestic wastewater. Advances in Environmental Technology, 8(1), 73–81. https://doi.org/10.22104/aet.2022.5069.1374; Ross, M. E., Davis, K., McColl, R., Stanley, M. S., Day, J. G., & Semião, A. J. C. (2018). Nitrogen uptake by the macro-algae Cladophora coelothrix and Cladophora parriaudii: Influence on growth, nitrogen preference and biochemical composition. Algal Research, 30(December 2017), 1–10. https://doi.org/10.1016/j.algal.2017.12.005; Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. Journal of Cleaner Production, 247. https://doi.org/10.1016/j.jclepro.2019.119164; Su, Y., Mennerich, A., & Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45(11), 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046; Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2014). Physiology Plants. In Plants Physiology (Quinta). Sinauer Associates Inc. http://www.sinauer.com/media/wysiwyg/tocs/PlantPhysiology5.pdf; Takáčová, A., Smolinská, M., Semerád, M., & Matúš, P. (2015). DEGRADATION OF BTEX BY MICROALGAE Parachlorella kessleri. Petroleum & Coal, 57(2), 101–107.; Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., & Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006; Wang, Y., Wang, S., Sun, L., Sun, Z., & Li, D. (2020). Screening of a Chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research, 47(October 2019), 101840. https://doi.org/10.1016/j.algal.2020.101840; Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H., & Tanaka, H. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196. https://doi.org/10.1016/j.femsec.2004.08.004; Zhang, H., Chen, X., Song, L., Liu, S., & Li, P. (2022). The mechanism by which Enteromorpha Linza polysaccharide promotes Bacillus subtilis growth and nitrate removal. International Journal of Biological Macromolecules, 209(PA), 840–849. https://doi.org/10.1016/j.ijbiomac.2022.04.082; Charitos, G., Trafalis, D. T., Dalezis, P., Potamitis, C., Sarli, V., Zoumpoulakis, P., & Camoutsis, C. (2019). Synthesis and anticancer activity of novel 3,6-disubstituted 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole derivatives. Arabian Journal of Chemistry, 12(8), 4784–4794. https://doi.org/10.1016/j.arabjc.2016.09.015; Costa, M., Garcia, M., Costa-Rodrigues, J., Costa, M. S., Ribeiro, M. J., Fernandez, M. H., Barros, P., Barreiro, A., Vasconcelos, V., & Martins, R. (2014). Exploring Bioactive Properties of Marine Cyanobacteria Isolated from the Portuguese Coast: High Potential as a Source of Anticancer Compounds. Marine Drugs, 12(December 2013), 98–114. https://doi.org/10.3390/md12010098; Ferreira, L., Morais, J., Preto, M., Silva, R., Urbatzka, R., Vasconcelos, V., & Reis, M. (2021). Uncovering the bioactive potential of a cyanobacterial natural products library aided by untargeted metabolomics. Marine Drugs, 19(11). https://doi.org/10.3390/md19110633; Ferreira, L., Morais, J., Vasconcelos, V., & Reis, M. (2022). Discovery of a Novel Potent Cytotoxic Compound from Leptothoe sp. 778069, 46. https://doi.org/10.3390/blsf2022014046; Girão, M., Ribeiro, I., Ribeiro, T., Azevedo, I. C., Pereira, F., Urbatzka, R., Leão, P. N., & Carvalho, M. F. (2019). Actinobacteria isolated from laminaria ochroleuca: A source of new bioactive compounds. Frontiers in Microbiology, 10(APR), 1–13. https://doi.org/10.3389/fmicb.2019.00683; Grkovic, T., Akee, R. K., Thornburg, C. C., Trinh, S. K., Britt, J. R., Harris, M. J., Evans, J. R., Kang, U., Ensel, S., Henrich, C. J., Gustafson, K. R., Schneider, J. P., & O’Keefe, B. R. (2020). National Cancer Institute (NCI) Program for Natural Products Discovery: Rapid Isolation and Identification of Biologically Active Natural Products from the NCI Prefractionated Library. ACS Chemical Biology, 15(4), 1104–1114. https://doi.org/10.1021/acschembio.0c00139; Guesmi, F., Saidi, I., Abbassi, R., Saidani, M., Hfaiedh, N., & Landoulsi, A. (2022). Therapeutic potential of second degree’s skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatologic Therapy, 35(5), 1–9. https://doi.org/10.1111/dth.15428; Hassouani, M., Sabour, B., Belattmania, Z., Atouani, S. El, Reani, A., Ribeiro, T., Ramos, V., Preto, M., Costa, P. M., Urbatzka, R., Leão, P., & Vasconcelos, V. (2017). In vitro anticancer , antioxidant and antimicrobial potential of Lyngbya aestuarii ( Cyanobacteria ) from the Atlantic coast of Morocco. 2508, 4923–4933.; Klinngam, W., Rungkamoltip, P., Thongin, S., Joothamongkhon, J., Khumkhrong, P., Khongkow, M., Namdee, K., Tepaamorndech, S., Chaikul, P., Kanlayavattanakul, M., Lourith, N., Piboonprai, K., Ruktanonchai, U., Asawapirom, U., & Iempridee, T. (2022). Polymethoxyflavones from Kaempferia parviflora ameliorate skin aging in primary human dermal fibroblasts and ex vivo human skin. Biomedicine and Pharmacotherapy, 145(September 2021), 112461. https://doi.org/10.1016/j.biopha.2021.112461; Lorenzi, A. S., Bonatelli, M. L., Varani, A. M., Quecine, M. C., & Bittencourt-Oliveira, M. do C. (2022). Draft genome sequence of the cyanobacterium Sphaerospermopsis aphanizomenoides BCCUSP55 from the Brazilian semiarid region reveals potential for anti-cancer applications. Archives of Microbiology, 204(1), 1–7. https://doi.org/10.1007/s00203-021-02602-1; Parida, S., Satybrata, D., Bhanaja, C., Sahoo, B., & Bhanja, C. (2022). In Vitro Screening of Antioxidant, Antimicrobial and Anticancer Activities of Cyanobacteria Found Across Odisha Coast, India SATYABRATA DASH Maharaja Sriram Chandra Bhanja Deo University. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-1272821/v1; Quintana Bulla, J. I. (2011). Evaluación de la toxicidad y del potencial bioactivo de afloramientos de cianobacterias bentónicas arrecifales del Caribe Colombiano / Evaluation of toxicity and bioactive potential of benthic marine cyanobacteria from Colombian Caribbean Sea. http://www.bdigital.unal.edu.co/8094/; Sousa, M. L. da S. (2020). Cyanobacterial bioactive metabolites for anticancer drug discovery: Characterization of new compounds and molecular mechanisms in physiologically relevant 3D cell culture. https://repositorio-aberto.up.pt/handle/10216/126888; Sousa, M. L., Preto, M., Vasconcelos, V., Linder, S., & Urbatzka, R. (2019). Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Frontiers in Oncology, 9(APR), 1–13. https://doi.org/10.3389/fonc.2019.00224; Sousa, M. L., Ribeiro, T., Vasconcelos, V., Linder, S., & Urbatzka, R. (2020). Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon, 175, 49–56. https://doi.org/10.1016/j.toxicon.2019.12.159; Gkotsis, P., Peleka, E., & Zouboulis, A. (2020). The use of natural minerals in a pilot-scale MBR for membrane fouling mitigation. Separations, 7(2), 1–13. https://doi.org/10.3390/separations7020024; Suraraksa, B., Nopharatana, A., Chaiprasert, P., Bhumiratana, S., & Tanticharoen, M. (2017). Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor. ASEAN Journal on Science and Technology for Development, 20(3&4), 361–372. https://doi.org/10.29037/ajstd.357; Cegłowska, M., Kwiecień, P., Szubert, K., Brzuzan, P., Florczyk, M., Edwards, C., Kosakowska, A., & Mazur-Marzec, H. (2022). Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Marine Drugs, 20(2). https://doi.org/10.3390/md20020093; https://repositorio.unal.edu.co/handle/unal/86613; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  7. 7
    Academic Journal
  8. 8
  9. 9
    Academic Journal

    المصدر: Revista Médica Sinergia, ISSN 2215-5279, Vol. 7, Nº. 7 (Julio), 2022

    وصف الملف: application/pdf

    Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=8876565; (Revista) ISSN 2215-4523; (Revista) ISSN 2215-5279

  10. 10
    Dissertation/ Thesis
  11. 11
    Dissertation/ Thesis

    المساهمون: Contreras Ramos, Luz Mery

    وصف الملف: 80 p.; application/pdf

    Relation: Ahmed Elsamany, S., Alghanmi, H., Albaradei, A., Abdelhamid, R., Madi, E., & Ramzan, A. (2022). Assessment of compliance with hormonal therapy in early breast cancer patients with positive hormone receptor phenotype: A single institution study. The Breast, 62(1), 69-74. https://doi.org/10.1016/j.breast.2022.01.017; Aiello Bowles, E. J., Boudreau, D. M., Chubak, J., Yu, O., Fujii, M., Chestnut, J., & Buist, D. S. M. (2012). Patient-Reported Discontinuation of Endocrine Therapy and Related Adverse Effects Among Women With Early-Stage Breast Cancer. Journal of Oncology Practice, 8(6), e149-e157. https://doi.org/10.1200/JOP.2012.000543; American Brain Tumor Association. (2018). Quimioterapia. abta.org. https://www.abta.org/wp-content/uploads/2018/03/quimioterapia.pdf; American Cancer Society. (2019a). Biopsia del seno. cancer.org. https://www.cancer.org/es/cancer/cancer-de-seno/pruebas-de-deteccion-y-deteccion-temprana-del-cancer-de-seno/biopsia-del-seno.html; American Cancer Society. (2019b). Inmunoterapia. cancer.org. https://www.cancer.org/es/tratamiento/tratamientos-y-efectos-secundarios/tipos-de-tratamiento/inmunoterapia.html; American Cancer Society. (2019c). Radioterapia interna (braquiterapia). cancer.org. https://www.cancer.org/es/tratamiento/tratamientos-y-efectos-secundarios/tipos-de-tratamiento/radioterapia/radioterapia-interna.html; American Cancer Society. (2019d). Tratamiento del cáncer de seno. cancer.org. https://www.cancer.org/es/cancer/cancer-de-seno/tratamiento.html; Angarita, J. R. Q. (2007). Teoría de las Necesidades de Maslow. DocPlayer, 1(1), 1-6. https://docplayer.es/20908893-Teoria-de-las-necesidades-de-maslow.html; Atkins, L., & Fallowfield, L. (2006). Intentional and non-intentional non-adherence to medication amongst breast cancer patients. European Journal of Cancer, 42(14), 2271-2276. https://doi.org/10.1016/j.ejca.2006.03.004; Barsha, N. A., Rahman, A., & Mahdy, M. R. C. (2021). Automated detection and grading of Invasive Ductal Carcinoma breast cancer using ensemble of deep learning models. Computers in Biology and Medicine, 139(1), 1-9. https://doi.org/10.1016/j.compbiomed.2021.104931; Bautista, N. (2020). Detecte el cáncer de mama a tiempo. Minsalud. https://www.minsalud.gov.co/Paginas/Detecte-el-cancer-de-mama-a-tiempo.aspx; Berkowitz, M. J., Thompson, C. K., Zibecchi, L. T., Lee, M. K., Streja, E., Berkowitz, J. S., Wenziger, C. M., Baker, J. L., DiNome, M. L., & Attai, D. J. (2021). How patients experience endocrine therapy for breast cancer: An online survey of side effects, adherence, and medical team support. Journal of Cancer Survivorship, 15(1), 29-39. https://doi.org/10.1007/s11764-020-00908-5; Boussen, H., Labidi, S., Mejri, N., Belaid, A., Bouzaiene, H., El Benna, H., Afrit, M., Gamoudi, A., Hemissa, S., Benna, F., Rahal, K., Gligorov, J., & Belkacemi, Y. (2017). Cáncer de mama inflamatorio. EMC - Ginecología-Obstetricia, 53(1), 1-9. https://doi.org/10.1016/S1283-081X(16)82413-3; Breastcancer. (2017, abril 20). Factores de riesgo del cáncer de mama. Breastcancer.org. https://www.breastcancer.org/es/sintomas/cancer_de_mama/riesgo/factores; Briceño, I., Gómez Gutiérrez, A., Díaz Dussán, N. A., Noguera Santamaría, M. C., Díaz Rincón, D., & Casas Gómez, M. C. (2017). Mutational spectrum in breast cancer associated BRCA1 and BRCA2 genes in Colombia. Colombia Medica, 48(2), 12-16. https://doi.org/10.25100/cm.v48i2.1867; Brito, C., Portela, M. C., & de Vasconcellos, M. T. L. (2014). Adherence to hormone therapy among women with breast cancer. BMC Cancer, 14(1), 397. https://doi.org/10.1186/1471-2407-14-397; Cahir, C., Barron, T. I., Sharp, L., & Bennett, K. (2017). Can demographic, clinical and treatment-related factors available at hormonal therapy initiation predict non-persistence in women with stage I–III breast cancer? Cancer Causes and Control, 28(3), 215-225. https://doi.org/10.1007/s10552-017-0851-9; CancerHelp. (2017). Estadios del cáncer de mama. CancerHelp Institute. http://cancerhelpessentiahealth.org/Cancer_Types_Spanish/breast_200013S1_02.html; Casciato, D., & Territo, M. (2013). Manual de Oncología Clínica (7.a ed.). Lippincott Williams & Wilkins. https://bbibliograficas.ucc.edu.co:2280/es/ereader/ucc/125327?page=303; Cavazza, M., Banks, H., Ercolanoni, M., Cukaj, G., Bianchi, G., Capri, G., & Longo, F. (2020). Factors influencing adherence to adjuvant endocrine therapy in breast cancer-treated women: Using real-world data to inform a switch from acute to chronic disease management. Breast Cancer Research and Treatment, 183(1), 189-199. https://doi.org/10.1007/s10549-020-05748-6; Cheung, W. Y., Lai, E. C.-C., Ruan, J. Y., Chang, J. T., & Setoguchi, S. (2015). Comparative adherence to oral hormonal agents in older women with breast cancer. Breast Cancer Research and Treatment, 152(2), 419-427. https://doi.org/10.1007/s10549-015-3455-7; Cluze, C., Rey, D., Huiart, L., BenDiane, M. K., Bouhnik, A. D., Berenger, C., Carrieri, M. P., & Giorgi, R. (2012). Adjuvant endocrine therapy with tamoxifen in young women with breast cancer: Determinants of interruptions vary over time. Annals of Oncology, 23(4), 882-890. https://doi.org/10.1093/annonc/mdr330; Degu, A., & Kebede, K. (2020). Drug-related problems and its associated factors among breast cancer patients at the University of Gondar Comprehensive Specialized Hospital, Ethiopia: A hospital-based retrospective cross-sectional study: Journal of Oncology Pharmacy Practice, 27(1), 88-98. https://doi.org/10.1177/1078155220914710; Díaz, J., Ruibal Morell, Á., & Tejerina, A. (2012). Cáncer de mama: Aspectos de interés actual (1.a ed.). Ademas Comunicación Gráfica. https://www.master-mastologia.com/wp-content/uploads/2014/07/DOCUMENTO-PDF-LIBRO-FEMA-web.pdf; Farias, A. J., & Du, X. L. (2017). Association Between Out-Of-Pocket Costs, Race/Ethnicity, and Adjuvant Endocrine Therapy Adherence Among Medicare Patients With Breast Cancer. Journal of Clinical Oncology, 35(1), 86-95. https://doi.org/10.1200/JCO.2016.68.2807; Fernández, Á., & Reigosa, A. (2016). Cáncer de mama hereditario. Comunidad y Salud, 14(1), 52-60. http://ve.scielo.org/pdf/cs/v14n1/art08.pdf; Fink, A. K., Gurwitz, J., Rakowski, W., Guadagnoli, E., & Silliman, R. A. (2004). Patient Beliefs and Tamoxifen Discontinuance in Older Women With Estrogen Receptor—Positive Breast Cancer. Journal of Clinical Oncology, 22(16), 3309-3315. https://doi.org/10.1200/JCO.2004.11.064; Gaitán, D. B., & Amaya, C. F. R. (2018). Estudio de consumo y Reacciones Adversas a Tamoxifeno en Colombia en el Periodo 2010-2015 [Facultad de Ciencias, Universidad de Ciencias Aplicadas y Ambientales].https://repository.udca.edu.co/bitstream/handle/11158/1110/ESTUDIO%20DE%20CONSUMO%20Y%20REACCIONES%20ADVERSAS%20A%20TAMOXIFENO%20EN%20COLOMBIA%20EN%20EL%20PERIODO%202010-2015.pdf?sequence=1&isAllowed=y; Gallups, S. F., Connolly, M. C., Bender, C. M., & Rosenzweig, M. Q. (2018). Predictors of Adherence and Treatment Delays among African American Women Recommended to Receive Breast Cancer Chemotherapy. Women’s Health Issues, 28(6), 553-558. https://doi.org/10.1016/j.whi.2018.08.001; García, J., González, S., Gascón, A., Hernández, L., Barrera, F., & Lavín, R. (2016). Lesiones BIRADS 3 y 4 vistas por ultrasonido y no vistas por mamografía digital y tomosíntesis. Anales de Radiología México, 15(3), 205-213. https://www.webcir.org/revistavirtual/articulos/2017/4_noviembre/mx/lesiones_esp.pdf; García-Reza, C., López, M. L., Zeitoune, R. C. G., Solano-Solano, G., Ávila, L. A., & Pilar, M. M. D. (2012). Rol socioeconómico y la adhesión al tratamiento de pacientes con hipertensión arterial—Contribución de enfermería. Revista Cuidarte, 3(1), 1-7. https://doi.org/10.15649/cuidarte.v3i1.22; Garrido, E. (2016). Neoplasia de mama (1.a ed., Vol. 1). El Cid Editor. https://bbibliograficas.ucc.edu.co:2280/es/ereader/ucc/27607?page=1; Gonzalez, F., Zuluaga-Liberato, A., Lopez-Correa, P., Velasquez, J. C., Gonzalez, C. B., Sánchez-Castillo, O., Cervera-Bonilla, S., Bruges, R., Contreras-Mejía, F., Guzman-Abisaab, L., Lehmann-Mosquera, C., Garcia-Mora, M., Angel-Aristizabal, J., Duarte, C., & Casas, S. E. D. (2021). Manejo sistémico adyuvante en pacientes con cáncer de mama y enfermedad residual invasiva posterior a quimioterapia neoadyuvante. Actualización de la Evidencia y Abordaje Terapéutico en el Instituto Nacional de Cancerología, Bogotá-Colombia. Revista Colombiana de Cancerología, 25(1), 160-166. https://doi.org/10.35509/01239015.745; Guedes, J. B. R., Guerra, M. R., Alvim, M. M., & Leite, I. C. G. (2017). Factors associated with adherence and persistence to hormonal therapy in women with breast cancer [Fatores associados à adesão e à persistência na hormonioterapia em mulheres com câncer de mama]. Revista Brasileira de Epidemiologia, 20(4), 636-649. https://doi.org/10.1590/1980-5497201700040007; He, W., Eriksson, L., Törnberg, S., Strand, F., Hall, P., & Czene, K. (2019). Discontinuation of adjuvant hormone therapy among breast cancer patients not previously attending mammography screening. BMC Medicine, 17(1), 24. https://doi.org/10.1186/s12916-019-1252-6; He, W., Fang, F., Varnum, C., Eriksson, M., Hall, P., & Czene, K. (2015). Predictors of Discontinuation of Adjuvant Hormone Therapy in Patients With Breast Cancer. Journal of Clinical Oncology, 33(20), 2262-2269. https://doi.org/10.1200/JCO.2014.59.3673; Hernández, Á. H. C. (2015). Calidad de vida y adherencia al tratamiento de personas con enfermedad crónica oncológica. Revista Cuidarte, 6(1), 906-913. https://doi.org/10.15649/cuidarte.v6i1.146; Herrera, Á., Ñamendys, S., & Meneses, A. (2017). Manual de Oncología: Procedimientos medico quirúrgicos (F. Valenzuela & M. Bernal, Eds.; 6.a ed.). McGraw-Hill Interamericana Editores, S. A. de C.V. https://bbibliograficas.ucc.edu.co:2308/stage.aspx?il=5217&pg=&ed=; Herrera, M. P. J. (2019). Informe de evento cáncer de mama y cuello uterino en colombia, 2018 (Informe de evento N.o 4; pp. 2-15). Instituto Nacional de Salud. https://www.ins.gov.co/buscador-eventos/Informesdeevento/C%C3%81NCER%20DE%20MAMA%20Y%20CUELLO%20UTERINO_2018.pdf; Hershman, D. L., Kushi, L. H., Hillyer, G. C., Coromilas, E., Buono, D., Lamerato, L., Bovbjerg, D. H., Mandelblatt, J. S., Tsai, W.-Y., Zhong, X., Jacobson, J. S., Wright, J. D., & Neugut, A. I. (2016). Psychosocial Factors Related to Non-persistence with Adjuvant Endocrine Therapy among Women with Breast Cancer: The Breast Cancer Quality of Care Study (BQUAL). Breast cancer research and treatment, 157(1), 133-143. https://doi.org/10.1007/s10549-016-3788-x; Hershman, D. L., Kushi, L. H., Shao, T., Buono, D., Kershenbaum, A., Tsai, W.-Y., Fehrenbacher, L., Lin Gomez, S., Miles, S., & Neugut, A. I. (2010). Early Discontinuation and Nonadherence to Adjuvant Hormonal Therapy in a Cohort of 8,769 Early-Stage Breast Cancer Patients. Journal of Clinical Oncology, 28(27), 4120-4128. https://doi.org/10.1200/JCO.2009.25.9655; Hsieh, K.-P., Chen, L.-C., Cheung, K.-L., & Yang, Y.-H. (2015). Risks of nonadherence to hormone therapy in Asian women with breast cancer. The Kaohsiung Journal of Medical Sciences, 31(6), 328-334. https://doi.org/10.1016/j.kjms.2015.04.002; Huiart, L., Bouhnik, A.-D., Rey, D., Tarpin, C., Cluze, C., Bendiane, M. K., Viens, P., & Giorgi, R. (2012). Early discontinuation of tamoxifen intake in younger women with breast cancer: Is it time to rethink the way it is prescribed? European Journal of Cancer, 48(13), 1939-1946. https://doi.org/10.1016/j.ejca.2012.03.004; Instituto Nacional del Cáncer. (2021, octubre 25). Terapias dirigidas contra el cáncer—Instituto Nacional del Cáncer (nciglobal,ncienterprise) [CgvArticle]. cancer.gov. https://www.cancer.gov/espanol/cancer/tratamiento/tipos/terapia-dirigida/hoja-informativa-terapias-dirigidas; Jacob Arriola, K. R., Mason, T. A., Bannon, K. A., Holmes, C., Powell, C. L., Horne, K., & O’Regan, R. (2014). Modifiable risk factors for adherence to adjuvant endocrine therapy among breast cancer patients. Patient Education and Counseling, 95(1), 98-103. https://doi.org/10.1016/j.pec.2013.12.019; Kemp, A., Preen, D. B., Saunders, C., Boyle, F., Bulsara, M., Malacova, E., & Roughead, E. E. (2014). Early discontinuation of endocrine therapy for breast cancer: Who is at risk in clinical practice? SpringerPlus, 3(1), 282. https://doi.org/10.1186/2193-1801-3-282; Kroenke, C. H., Hershman, D. L., Gomez, S. L., Adams, S. R., Eldridge, E. H., Kwan, M. L., Ergas, I. J., Kubo, A., & Kushi, L. H. (2018). Personal and clinical social support and adherence to adjuvant endocrine therapy among hormone receptor-positive breast cancer patients in an integrated health care system. Breast Cancer Research and Treatment, 170(3), 623-631. https://doi.org/10.1007/s10549-018-4774-2; Lee, J. Y., & Min, Y. H. (2018). Relationships between determinants of adjuvant endocrine therapy adherence in breast cancer. BMC Women’s Health, 18(1), 48. https://doi.org/10.1186/s12905-018-0522-3; Majlis D, S. (2008). FEMALE HORMONES AND BREAST CÁNCER: CONTROVERSIES AND EVIDENCES AT 2008. WHAT TO ANSWER TO OUR PATIENTS? Revista chilena de radiología, 14(3), 113-121. https://doi.org/10.4067/S0717-93082008000300003; Martínez, A. E., Lozano, A., Rodríguez, A. L., Galindo, Ó., & Alvarado, S. (2014). Impacto psicológico del cáncer de mama y la mastectomía. Gaceta Mexicana de Oncología, 13(1), 53-58. https://www.elsevier.es/es-revista-gaceta-mexicana-oncologia-305-articulo-impacto-psicologico-del-cancer-mama-X1665920114278797; Mathelin, C., Antoni, D., Lodi, M., Chenard, M.-P., & Molière, S. (2021). Carcinoma ductal in situ. EMC - Ginecología-Obstetricia, 57(1), 1-12. https://doi.org/10.1016/S1283-081X(20)44698-3; McCart Reed, A. E., Kalinowski, L., Simpson, P. T., & Lakhani, S. R. (2021). Invasive lobular carcinoma of the breast: The increasing importance of this special subtype. Breast Cancer Research, 23(1), 1-16. https://doi.org/10.1186/s13058-020-01384-6; Minh, L. D., Quang, B. V., Mai, D. N. L., Quyen, L. L., Gia, N. H., Hang, N. T., & Giang, K. B. (2022). Health Literacy of Newly-Admitted Cancer Patients in Vietnam: Difficulties Understanding Treatment Options and Processing Health-Related Information: Health Services Insights, 15(1), 1-10. https://doi.org/10.1177/11786329211067325; Ministerio de Salud. (s. f.). Cáncer de mama. Minsalud. Recuperado 17 de noviembre de 2021, de https://www.minsalud.gov.co/salud/publica/ssr/Paginas/Cancer-de-mama.aspx Resolución 8430 de 1993—Colombia, Pub. L. No. 8430, 1 (1993). https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF; Miñambres, R., Pita Macpherson, G., Sánchez Guiu, M. I., Serra Esteve, D., Rosa Ferrero, R., Rubio Solsona, E., Palacios Gil-Antuñano, S., Llaneza-Folgueras, A., Marrón, P. I., Hoyas Calvo, S., Lluch Hernández, A., Cano Sánchez, A., Gonzalez-Neira, A., Triviño Pardo, J. C., & Benítez Ortiz, J. (2019). Predicción de riesgo de cáncer de mama en mujeres sanas de población española basado en el estudio de variantes genéticas. Revista de Senología y Patología Mamaria, 32(3), 94-99. https://doi.org/10.1016/j.senol.2019.07.001; Nadrljanski, M. M., & Milosevic, Z. C. (2020). Tumor texture parameters of invasive ductal breast carcinoma in neoadjuvant chemotherapy: Early identification of non-responders on breast MRI. Clinical Imaging, 65(1), 119-123. https://doi.org/10.1016/j.clinimag.2020.04.016; Neugut, A. I., Zhong, X., Wright, J. D., Accordino, M., Yang, J., & Hershman, D. L. (2016). Nonadherence to Medications for Chronic Conditions and Nonadherence to Adjuvant Hormonal Therapy in Women With Breast Cancer. JAMA Oncology, 2(10), 1326-1332. https://doi.org/10.1001/jamaoncol.2016.1291; Olivera-Fernandez, R., Fernández-Ribeiro, F., Piñeiro-Corrales, G., & Crespo-Diz, C. (2014). Adherence to oral antineoplastic therapy. Farmacia Hospitalaria, 38(6), 475-481. https://doi.org/10.7399/FH.2014.38.6.8061; Oliveros, C. M. B., Losada, S. M. C., Gutiérrez, N. G., & Sanchez, L. M. (2019). Experiencia y afrontamiento de mujeres con cáncer de mama, mediante la teoría de Callista Roy. Revista Navarra Médica, 5(1), 40-48. https://journals.uninavarra.edu.co/index.php/navarramedica/article/view/195; OMS. (2021, marzo 26). Cáncer de mama. Organización Mundial de la Salud. https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer; wusu, C., Buist, D. S. M., Field, T. S., Lash, T. L., Thwin, S. S., Geiger, A. M., Quinn, V. P., Frost, F., Prout, M., Yood, M. U., Wei, F., & Silliman, R. A. (2008). Predictors of Tamoxifen Discontinuation Among Older Women With Estrogen Receptor–Positive Breast Cancer. Journal of Clinical Oncology, 26(4), 549-555. https://doi.org/10.1200/JCO.2006.10.1022; PAHO & OMS. (2015). Prevención: Factores de riesgo y prevención del cáncer de mama. Organización Panamericana de la Salud. https://www.paho.org/hq/dmdocuments/2015/prevencion-factores-riesgo.pdf; Peng, M.-T., Chen, S.-C., Shen, W.-C., Lin, Y.-C., & Chang, H.-K. (2016). The adherence and tolerance of adjuvant endocrine therapy in geriatric breast cancer patients. Journal of Cancer Research and Practice, 3(3), 69-72. https://doi.org/10.1016/j.jcrpr.2016.05.002; Pistilli, B., Paci, A., Ferreira, A. R., Di Meglio, A., Poinsignon, V., Bardet, A., Menvielle, G., Dumas, A., Pinto, S., Dauchy, S., Fasse, L., Cottu, P. H., Lerebours, F., Coutant, C., Lesur, A., Tredan, O., Soulie, P., Vanlemmens, L., Jouannaud, C., … Vaz-Luis, I. (2020). Serum Detection of Nonadherence to Adjuvant Tamoxifen and Breast Cancer Recurrence Risk. Journal of Clinical Oncology, 38(24), 2762-2772. https://doi.org/10.1200/JCO.19.01758; Quersi, G., Warren, R., & Benson, J. (2015). Cáncer de Mama. Marban Libros. http://www.marbanlibros.mx/muestras/9788416042104/files/basic-html/page4.html; Rivera, E., Fornaris, A., Mariño, E., Díaz, K., Ledesma, R., & Abreu, I. (2019). Factores de riesgo del cáncer de mama en un consultorio de la Atención Primaria de Salud. Revista Habanera de Ciencias Médicas, 18(2), 308-319.; Rivers, A. S., Sanford, K., Elkins, G., Carpenter, J. S., Rand, K. L., & Ellis, R. J. B. (2020). Attitudinal and social predictors of adherence to oral endocrine therapy: A psychometrically-informed model: Journal of Health Psychology, 27(4), 913-922. https://doi.org/10.1177/1359105320982039; Robinson, B., Dijkstra, B., Davey, V., Tomlinson, S., & Frampton, C. (2018). Adherence to Adjuvant Endocrine Therapy in Christchurch Women with Early Breast Cancer. Clinical Oncology, 30(1), e9-e15. https://doi.org/10.1016/j.clon.2017.10.015; Sabadell, M. D., Izquierdo Sanz, M., Prats de Puigs, M., & Modolell Roig, A. (2017). Factores pronósticos y predictivos en cáncer de mama: Una visión evolutiva de la morfología a la genética (8.a ed., Vol. 1). Fundación Española de Senología y Patología Mamaria. https://www.sespm.es/wp-content/uploads/2018/06/MONOGRAFIA-SESPM-2017-Ebook.pdf; Sánchez, E., Sánchez, C., & Erazo, M. (2015). Cáncer de mama: Actualidades y controversias (B. Flores, I. Paiz, A. Delgado, A. Rentería, & J. Paiz, Eds.; 1.a ed., Vol. 1). Editorial Alfil S. A. de C. V. https://bbibliograficas.ucc.edu.co:2280/es/ereader/ucc/117535?page=1; Santiá, P., Jansana, A., del Cura, I., Padilla-Ruiz, M., Domingo, L., Louro, J., Comas, M., Sanz, T., Duarte-Salles, T., Redondo, M., Ibañez, B., Prados-Torres, A., Castells, X., Sala, M., & SURBCAN Group. (2022). Adherence of long-term breast cancer survivors to follow-up care guidelines: A study based on real-world data from the SURBCAN cohort. Breast Cancer Research and Treatment, 193(2), 455-465. https://doi.org/10.1007/s10549-022-06563-x; Santos, L., Barragán, D., Sánchez, L., & Cruz, A. (2020). Resonancia magnética dinámica contrastada en pacientes con recurrencia locorregional de cáncer de mama. Anales de Radiología México, 19(4), 138-145. https://doi.org/10.24875/ARM.20000028; Sheppard, V. B., Sutton, A. L., Hurtado-de-Mendoza, A., He, J., Dahman, B., Edmonds, M. C., Hackney, M. H., & Tadesse, M. G. (2021). Race and Patient-reported Symptoms in Adherence to Adjuvant Endocrine Therapy: A Report from the Women’s Hormonal Initiation and Persistence Study. Cancer Epidemiology, Biomarkers & Prevention, 30(4), 699-709. https://doi.org/10.1158/1055-9965.EPI-20-0604; Silva, J. L. da, Paula, B. H. R. de, Small, I. A., Thuler, L. C. S., & Melo, A. C. de. (2020). Sociodemographic, Clinical, and Pathological Factors Influencing Outcomes in Locally Advanced Triple Negative Breast Cancer: A Brazilian Cohort: Breast Cancer: Basic and Clinical Research, 14(1), 1-12. https://doi.org/10.1177/1178223420962488; Soca, P. E., González, I. A., & González, M. P. (2016). Genetic factors for breast carcinogenesis. Revista Finlay, 6(4), 299-311. https://www.medigraphic.com/pdfs/finlay/fi-2016/fi164g.pdf; Suad, A. K., Bahaaeldin, B., Laila, A. B., & Mahmud, N. (2021). Compliance with Oral Hormonal Therapy for Breast Cancer at Oman National Oncology Center; Descriptive Study. The Gulf journal of oncology, 1(37), 56-61. https://bbibliograficas.ucc.edu.co:2526/35152196/; Teba, V. C. (2015). Cuidados de enfermería en pacientes con cáncer de mama sometidas a radioterapia. Fuandación Dialnet, 20(49), 35-42. https://dialnet.unirioja.es/servlet/articulo?codigo=5408067; Torres, G., & Ángeles, A. (2009). Factores reproductivos y cáncer de mama: Principales hallazgos en América Latina y el mundo. Salud Pública de México, 51(2), 165-169.; Vasquez, L. S. C. (2020). Estilo de vida asociado a cáncer de mama en el Hospital Nacional Luis N. Sáenz, 2019 [Tesis para optar el título profesional de Médico Cirujano, Universidad Ricardo Palma]. http://repositorio.urp.edu.pe/bitstream/handle/URP/2986/LCARRION.pdf?sequence=1&isAllowed=y; Vázquez, C. (2016). Cirugía del cáncer de mama. Técnicas quirúrgicas de tratamiento y de reconstrucción, momento y tiempos de recuperación. Medicina y Seguridad del Trabajo, 62(1), 116-124. https://scielo.isciii.es/pdf/mesetra/v62sextra/ponencias12.pdf; Villarreal-Garza, C., Mesa-Chavez, F., Ferrigno, A., De la Garza-Ramos, C., Fonseca, A., Villanueva-Tamez, K., Campos-Salgado, J. Y., Cruz-Ramos, M., Rodriguez-Gomez, D. O., Ruiz-Cruz, S., & Cabrera-Galeana, P. (2021). Adjuvant endocrine therapy for premenopausal women with breast cancer: Patient adherence and physician prescribing practices in Mexico. The Breast, 59(31), 8-15. https://doi.org/10.1016/j.breast.2021.05.013; Vogsen, M., Bille, C., Jylling, A. M. B., Jensen, M.-B., & Ewertz, M. (2020). Adherence to treatment guidelines and survival in older women with early-stage breast cancer in Denmark 2008–2012. Acta Oncologica, 59(7), 741-747. https://doi.org/10.1080/0284186X.2020.1757148; Wong, F. Y., Wong, R. X., Zhou, S., Ong, W. S., Pek, P. P., Yap, Y.-S., Tan, B. K. T., Ngeow, J. Y. Y., Tan, V. K. M., Sim, Y., Tan, S.-M., Lim, S. H., Madhukumar, P., Tan, T. J. Y., Loh, K. W.-J., Ong, M. E. H., & Wong, T. H. (2021). Effects of housing value and medical subsidy on treatment and outcomes of breast cancer patients in Singapore: A retrospective cohort study. The Lancet Regional Health – Western Pacific, 6(1), 1-11. https://doi.org/10.1016/j.lanwpc.2020.100065; Wuensch, P., Hahne, A., Haidinger, R., Meißler, K., Tenter, B., Stoll, C., Senf, B., & Huebner, J. (2015). Discontinuation and non-adherence to endocrine therapy in breast cancer patients: Is lack of communication the decisive factor? Journal of Cancer Research and Clinical Oncology, 141(1), 55-60. https://doi.org/10.1007/s00432-014-1779-z; Wulaningsih, W., Garmo, H., Ahlgren, J., Holmberg, L., Folkvaljon, Y., Wigertz, A., Van Hemelrijck, M., & Lambe, M. (2018). Determinants of non-adherence to adjuvant endocrine treatment in women with breast cancer: The role of comorbidity. Breast Cancer Research and Treatment, 172(1), 167-177. https://doi.org/10.1007/s10549-018-4890-z; Yussof, I., Mohd Tahir, N. A., Hatah, E., & Mohamed Shah, N. (2022). Factors influencing five-year adherence to adjuvant endocrine therapy in breast cancer patients: A systematic review. The Breast, 62(1), 22-35. https://doi.org/10.1016/j.breast.2022.01.012; Zamora, P. (2019). Hormonoterapia [Sociedad]. seom.org. https://seom.org/163-informacion-al-publico-guia-de-tratamientos/hormonoterapiaRobi; Zhang, H., Ge, X.-Y., & Qiao, H.-Q. (2021). Analysis of prognostic risk factors in 3427 patients with invasive ductal carcinoma of breast: Results based on the SEER database. Asian Journal of Surgery, 44(3), 577-579. https://doi.org/10.1016/j.asjsur.2020.12.014; Zheng, C., & Chagpar, A. B. (2022). Contribution of cost to treatment nonadherence in the US breast cancer survivors: A population-based analysis. Breast Cancer Research and Treatment, 192(2), 369-373. https://doi.org/10.1007/s10549-022-06510-w; https://hdl.handle.net/20.500.12494/47126; López Martínez, A. D. Serrano Ortiz, I. A. Valderrama Sánchez A. S. Gil García. Y. L. (2022). Factores que Interfieren en la Adherencia al Tratamiento Farmacológico en Mujeres Adultas con Cáncer de Seno. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/47126

  12. 12
  13. 13
    Academic Journal
  14. 14
  15. 15
    Dissertation/ Thesis

    المؤلفون: Vera Delgado, Karen Alejandra

    المساهمون: Méndez Callejas, Gina Marcela, dir.

    وصف الملف: application/pdf; application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

    Relation: American Cancer Society (2019). Estadísticas importantes sobre el cáncer colorectal. Recuperado de https://www.cancer.org/es/cancer/cancer-de-colon-o-recto/acerca/estadisticas-clave.html; Angosto, M. C. (2003). Bases moleculares de la apoptosis. In Anales de la Real Academia Nacional de Farmacia (Vol. 69, No. 1).; Arboleda, G., & Sánchez, R. M. (2008). Mitocondria y muerte celular. Nova, 6(10), 190-200.; Báez Espinoza, G. A., & Olaya Soto, J. P. (2018). Evaluación de la actividad citotóxica y genotóxica de los flavonoides aislados de las hojas de Chromolaena tacotana RM King & H. Rob sobre las líneas celulares MDA-MB 231, PC3 y MRC5 (Tesis de pregrado). Universidad de Ciencias Aplicadas y Ambientales, Bogota, Colombia.; Balaguer, F., Piñol, V., & Castells, A. (2012). Intestino delgado y colon. Gastroenterologia y Hepatologia Problemas Comunes En La Practica Clinica. 2a Edición, 617–621. Retrieved from https://www.aegastro.es/sites/default/files/archivos/ayudas-practicas/41_Cancer_colorrectal.pdf; Bhat MK, et al. Tumor suppressor p53 is a negative regulator in thyroid hormone receptor signaling pathways. J. Biol. Chem. 272: 28989-28993, 1997. PubMed: 9360971; Batra, P., & Sharma, A. K. (2013). Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech. https://doi.org/10.1007/s13205-013-0117-5; Bello, A., & Camargo, M. (2018). Identificación de flavonoides en inflorescencias de Chromolaena tacotana (klatt) RM King & H. Rob y determinación de su actividad antioxidante. Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia.; Borrego, P. et al, (2016). EVALUACIÓN DE LA ACTIVIDAD CITOTÓXICA DE EXTRACTOS Y FRACCIONES DE LAS ESPECIES Conyza trihecatactis y Ageratina vacciniaefolia. Universidad Militar Nueva Granada. Recuperado de https://revistas.unimilitar.edu.co/index.php/rfcb/article/download/2029/1837/; Brentnall, M., Rodríguez-Menocal, L., De Guevara, R. L., Cepero, E., & Boise, L. H. (2013). Caspase9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC cell biology, 14(1), 32.; Cartaya, O., & Reynaldo, I. (2001). Reseña bibliográfica FLAVONOIDES : CARACTERISTICAS QUÍMICAS Y APLICACIONES O. Cultivos Tropicales, 22(2), 5–14.; Castro, E. Á., & Cambeiro, F. O. (2003). Actividad biológica de los flavonoides (I). Acción frente al cáncer. Bioquímica. OFFARM, 22(10).; Cortez, K. M. (2016). Determinación del antígeno KI67 y del gen P53 como factores pronóstico de sobrevida en pacientes con glioblastoma multiforme. Universidad Ricardo Palma, Lima, Perú.; Das, M., & Manna, K. (2016). Chalcone scaffold in anticancer armamentarium: a molecular insight. Journal of toxicology, 2016.; Delgado, L. (2015) Mecanismos de acción implicados en la bioactividad de flavonoides. Caenorhabditis elegans y líneas celulares como sistemas modelo. Recuperado de https://gredos.usal.es/jspui/bitstream/10366/129389/1/DQANB_LauraDelgadoCiruelos.pdf; Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of immunological methods, 89(2), 271-277.; De Toro, G. (2006). Muerte celular programada. Revisión del paradigma apoptosis-necrosis y formas alternativas de muerte celular. Actas Hispanoamericanas de patología, 1, 1-6.; Fernández, l. y Chacón, M. (2012). Especies vegetales aromáticas de la Provincia de Sumapaz y la cuenca del rio Chicamocha en Colombia. Recuperado de http://www.rjb.csic.es/jardinbotanico/ficheros/documentos/pdf/pubinv/JLF/2012%20EspVegAro maSumChiColom2012re.pdf; Fondo Colombiano de Enfermedades de Alto Costo ,CAC (2018). Día Mundial de la Lucha contra el cáncer de colon y recto. Boletín de información técnica especializada. Vol. 4 (5); G-Biosciences (sf). JC‐10 Mitochondrial Membrane Potential Assay. Recuperado de https://www.gbiosciences.com/image/pdfs/protocol/JC10%20Mitochondrial%20Membrane%20Potential%20Assay.pdf; Globocan (2018). Colorectal cáncer. Recuperado de https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9- Colorectum-fact-sheet.pdf; Goodson HV, Jonasson EM. 2018. Microtubules and microtubule-associated proteins. Cold Spring Harbor Perspective in Biology. 10:a022608. Recuperado de https://mmegias.webs.uvigo.es/5- celulas/7-microtubulos.php; Gómez, L. M., & Gutiérrez, A. C. (2016). Actividad antioxidante de flavonoides de las hojas de Chromolaena tacotana (Klatt) RM King & H. Rob (Tesis de pregrado) . Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia.; Instituto Nacional de Cancerología & Ministerio de Salud y Protección Social (2013). Guía de práctica clínica (GPC) para la detección temprana, diagnóstico, tratamiento, seguimiento y rehabilitación de pacientes con diagnóstico de cáncer de colon y recto. Sistema General de Seguridad Social en Salud – Colombia Versión para profesionales de la salud. Guía No. GPC-2013-20.; Instituto Nacional de Cancerología (2013). El cáncer. Aspectos básicos sobre su biología, clínica, prevención, diagnóstico y tratamiento. Recuperado de http://www.cancer.gov.co/documentos/Cartillas/Elcancer.pdf; Instituto Nacional de Cancerología (2015). Manual para la detección temprana del cáncer de colon y recto. Bogotá. Colombia. Recuperado de: https://www.cancer.gov.co/files/libros/archivos/Colon; Johnson, M. (2012). Controles de carga en experimentos de Western blot. Recuperado de http://www.labome.es/method/Loading-Controls-for-Western-Blots.html; Juárez, C. I., & Rosales, M. A. (2014). Cáncer colorrectal (CCR): alteraciones genéticas y moleculares. Gaceta Médica de México, 150(2), 154-164.; Karthikeyan, C., SH Narayana Moorthy, N., Ramasamy, S., Vanam, U., Manivannan, E., Karunagaran, D., & Trivedi, P. (2015). Advances in chalcones with anticancer activities. Recent patents on anti-cancer drug discovery, 10(1), 97-115.; Kim, W. K., Bang, M. H., Kim, E. S., Kang, N. E., Jung, K. C., Cho, H. J., & Park, J. H. (2005). Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. The Journal of nutritional biochemistry, 16(3), 155-162.; Lamkanfi, M., & Kanneganti, T. D. (2010). Caspase-7: a protease involved in apoptosis and inflammation. The international journal of biochemistry & cell biology, 42(1), 21-24.; León, E., Gamboa, Ó., lo Lozano, T., Gamboa, C., Gil, M., & Fuentes, J. (2013). Estudio de costo de la enfermedad en pacientes con cáncer de colon y recto en Colombia. Revista Colombiana de Cancerología, 17(4), 184.doi:10.1016/s0123-9015(13)70209-9; Lucía, C., Arango, M., Consuelo, M., & Flórez, J. (2011). Modo de acción de la chalcona caracterización inicial mediante espectrometría de masas, 1–118.; Martín Gordo, D. A. (2018). Los Compuestos Fenólicos, Un Acercamiento A Su Biosíntesis, Síntesis Y Actividad Biológica. Revista de Investigación Agraria y Ambiental, 9(1), 81–104. https://doi.org/10.22490/21456453.1968; Martínez-Maqueda, D., Miralles, B. y Recio, I. (2015). Línea celular HT29. En The Impact of Food Bioactives on Health (pp. 113-124). Springer, Cham.; McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology, 5(4), a008656.; Méndez,G. M., Leone, S., Tanzarella, C., & Antoccia, A. (2014). Combretastatin A‐4 induces p53 mitochondrial‐relocalisation independent‐apoptosis in non‐small lung cancer cells. Cell biology international, 38(3), 296-308.; Ministerio de Salud y Protección Social (2012). Cáncer. Recuperado de https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Prevenciondel-cancer.aspx; Organización Mundial de la Salud (2014). Cáncer colorectal en las Américas. Recuperado de https://www.paho.org/hq/dmdocuments/2014/OPS-Nota- Informativa-Cancer-Colorrecto2014.pdf; Organización Mundial de la Salud (2018). Cáncer. Recuperado de https://www.who.int/es/newsroom/fact-sheets/detail/cancer; Patiño, J. C. H., Palacio, G. V., Castro, J. L. R., & Peña, C. M. M. (2004). Papel del gen TP53 en la oncogénesis. Revista Salud UIS, 36(2); PB-L (sf). Kit para identificar proteínas totales. Recuperado de http://www.pb-l.com.ar/wpcontent/uploads/2016/07/RA03-qPROTEIN.pdf; Ramírez, M. E., Barajas, L., Pérez, C., Sáenz , A., & Silva, S. Y. (2012). Synthesis and biological activity of chalcones. Revista Mexicana de Ciencias Farmaceuticas, 43(4), 7–14.; Rangel-López, A., Piña-Sánchez, P., & Salcedo, M. (2006). Variaciones genéticas del gen supresor de tumores TP53: relevancia y estrategias de análisis. Revista de investigación clínica, 58(3), 254-264.; Reyes, A. I., & Téllez Ariza, L. C. (2016). Evaluación de la actividad citotóxica de flavonoides aislados de las hojas de Chromolaena tacotana (Klatt) RM King & H. Rob sobre líneas celulares cancerosas (Tesis de pregrado). Universidad de Ciencias Aplicadas y Ambientales. Bogota, Colombia.; Rodríguez, B. V., Díaz-Pihedrahíta, S., & Parra-O., C. (2014). Chromolaena (Asteraceae: Eupatorieae). Flora de Colombia 31 (Vol. 31).; Rodriguez, J. et al. (2018). Chromolaena tacotana (Klatt) R. M. King and H. Rob. Source of Flavonoids with Antiproliferative and Antioxidant Activity. Indian Journal of Science and Technology, 11, 19. DOI:10.17485/ijst/2018/v11i19/122872; Saldanha, F., & Jalali, M. (2017). Basic Science Methods for Clinical Researchers. (M. Jalali, Ed.). Chennai, India: Academic Press.; Trigili, C. (2013). Estudio y caracterización del mecanismo de acción bioquímico y celular de compuestos antitumorales dirigidos contra el citoesqueleto (Tesis doctoral). Universidad Complutense de Madrid, Madrid, España.; Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30(1), 87.; Yan, J., Sun, L.-R., Zhou, Z.-Y., Chen, Y.-C., Zhang, W.-M., Dai, H.-F., & Tan, J.(2012). Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry, 80, 37; Zavala, D., Quispe, A., Posso, M., Rojas, J., & Vaisberg, A. (2006). Efecto citotóxico de Physalis peruviana (capulí) en cáncer de colon y leucemia mieloide crónica. In Anales de la Facultad de Medicina (Vol. 67, No. 4, pp. 283-289). UNMSM. Facultad de Medicina.; https://repository.udca.edu.co/handle/11158/3407

  16. 16

    المؤلفون: Larissa Shiozawa Turri

    المساهمون: Carvalho, João Ernesto de, 1954, Ruiz, Ana Lucia Tasca Gois, 1972, Foglio, Mary Ann, 1960, Lima, Carmen Silvia Passos, Marcondes, Fernanda Klein, Longato, Giovanna Barbarini, Alves, Maria Jose Queiroz de Freitas, Universidade Estadual de Campinas. Faculdade de Odontologia de Piracicaba, Programa de Pós-Graduação em Odontologia, UNIVERSIDADE ESTADUAL DE CAMPINAS

    المصدر: Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
    Universidade Estadual de Campinas (UNICAMP)
    instacron:UNICAMP

    وصف الملف: application/pdf; 1 recurso online (220 p.) : il., digital, arquivo PDF.

  17. 17

    المصدر: Molecules, Vol 22, Iss 5, p 705 (2017)
    Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry

  18. 18
    Dissertation/ Thesis

    المؤلفون: BARBOSA, Helloana Azevedo

    Thesis Advisors: CARVALHO, Diogo Teixeira, VIANA, Gustavo Henrique Ribeiro, DIAS, Danielle Ferreira

    المصدر: Biblioteca Digital de Teses e Dissertações da UNIFALUniversidade Federal de AlfenasUNIFAL.

    وصف الملف: application/pdf

  19. 19
    Dissertation/ Thesis

    Thesis Advisors: IONTA, Marisa, OLIVEIRA, Jaqueline Carvalho de, GAMERO, Angel Maurício Castro, SANTOS, Tiago Góss dos

    المصدر: Biblioteca Digital de Teses e Dissertações da UNIFALUniversidade Federal de AlfenasUNIFAL.

    وصف الملف: application/pdf

  20. 20
    Dissertation/ Thesis