يعرض 1 - 20 نتائج من 27 نتيجة بحث عن '"Analisis composicional"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Academic Journal
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    المصدر: Agronomía Colombiana; Vol. 40 Núm. 2 (2022); 155-164 ; Agronomía Colombiana; Vol. 40 No. 2 (2022); 155-164 ; Agronomía Colombiana; v. 40 n. 2 (2022); 155-164 ; 2357-3732 ; 0120-9965

    جغرافية الموضوع: Colombia

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/agrocol/article/view/98948/84265; Acosta, O., & Chaparro, A. (2008). Genetically modified food crops and public health. Acta Biológica Colombiana, 13(3), 3–26.; Agriculture and Food Systems Institute – AFSI. (2020, December 30). Crop Composition Database Version 9.0. www.cropcomposition.org; Anderson, J. A., Hong, B., Moellring, E., TeRonde, S., Walker, C., Wang, Y., & Maxwell, C. (2019). Composition of forage and grain from genetically modified DP202216 maize is equivalent to non-modified conventional maize (Zea mays L.). GM Crops & Food, 10(2), 77–89. https://doi.org/10.1080/21645698.2019.1609849; Basso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science, 11, Article 509. https://doi.org/10.3389/fpls.2020.00509; Bell, E., Nakai, S., & Burzio, L. A. (2018). Stacked genetically engineered trait products produced by conventional breeding reflect the compositional profiles of their component single trait products. Journal of Agricultural and Food Chemistry, 66, 7794–7804. https://doi.org/10.1021/acs.jafc.8b02317; Bevan, M. W., Flavell, R. B., & Chilton, M. D. (1983). A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature, 304, 184–187. https://doi.org/10.1038/304184a0; Brookes, G., & Barfoot, P. (2018). Farm income and production impacts of using GM crop technology 1996–2016. GM Crops & Food, 9(2), 59–89. https://doi.org/10.108/21645698.2018.1464866; Brookes, G., & Barfoot, P. (2020). GM Crops: Global socio-economic and environmental impacts 1996-2018. PG Economics Ltd. https://pgeconomics.co.uk/pdf/globalimpactfinalreportJuly2020.pdf; Brookes, G. (2020). Genetically modified (GM) crop use in Colombia: farm level economic and environmental contributions. GM Crops & Food, 11(3), 140–153. https://doi.org/10.1080/21645698.2020.1715156; Carpenter, J. E. (2010). Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nature Biotechnology, 28(4), 319–321. https://doi.org/10.1038/nbt0410-319; Cerdeira, A. L., Gazziero, D. L. P., Duke, S. O., & Matallo, M. B. (2011). Agricultural impacts of glyphosate-resistant soybean cultivation in South America. Journal of Agricultural and Food Chemistry, 59(11), 5799–5807. https://doi.org/10.1021/jf102652y; Cheng, K. C., Beaulieu, J., Iquira, E., Belzile, F. J., Fortin, M. G., & Strömvik, M. V. (2008). Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. Journal of Agricultural and Food Chemistry, 56(9), 3057–3067. https://doi.org/10.1021/jf073505i; Codex Alimentarius Commission. (2009). Foods derived from modern biotechnology (2nd ed.). Food and Agriculture Organization of the United Nations, World Health Organization. http://www.fao.org/3/a-a1554e.pdf; Cong, B., Maxwell, C., Luck, S., Vespestad, D., Richard, K., Mickelson, J., & Zhong, C. (2015). Genotypic and environmental impact on natural variation of nutrient composition in 50 non genetically modified commercial maize hybrids in North America. Journal of Agricultural and Food Chemistry, 63(22), 5321–5334. https://doi.org/10.1021/acs.jafc.5b01764; Duke, S. O., & Cerdeira, A. L. (2010). Transgenic crops for herbicide resistance. In C. Kole, C. H. Michler, A. G. Abbott, & T. C. Hall (Eds.), Transgenic crop plants. Springer. https://doi.org/10.1007/978-3-642-04812-8_3; Fraley, R. (2015). GE Crops, Impact on Production Agriculture. Presentation to the National Academy of Sciences. https://vimeo.com/album/3192610/video/115717420; Food Safety Commission of Japan-FSCJ. (2016). Soybean lines generated through cross-breeding of MON 87705, MON 87708, and MON 89788. Food Safety, 4(4), 169−172. https://doi.org/10.14252/foodsafetyfscj.2016025s; Gómez, J., Guevara, J., Cuartas, P., Espinel, C., & Villamizar, L. (2013). Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and effect on arthropod populations in maize. Biocontrol Science and Technology, 23(7), 829–846. https://doi.org/10.1080/09583157.2013.802288; Goodwin, L., Hunst, P., Burzio, L., Rowe, L., Money, S., & Chakravarthy, S. (2021). Stacked trait products are as safe as nongenetically modified (GM) products developed by conventional breeding practices. Journal of Regulatory Science, 9(1), 22–25. https://doi.org/10.21423/jrs-v09I1goodwin; Harrigan, G. G., Glenn, K. C., & Ridley, W. P. (2010). Assessing the natural variability in crop composition. Regulatory Toxicology and Pharmacology, 58(3, Supplement), S13–S20. https://doi.org/10.1016/j.yrtph.2010.08.023; Harrigan, G. G., Lundry, D., Drury, S., Berman, K., Riordan, S. G., Nemeth, M. A., Ridley, W. P., & Glenn, K. C. (2010). Natural variation in crop composition and the impact of transgenesis. Nature Biotechnology, 28(5), 402–404. https://doi.org/10.1038/nbt0510-402; Herman, R. A., Phillips, A. M., Collins, R. A., Tagliani, L. A., Claussen, F. A., Graham, C. D., Bickers, B. L., Harris, T. A., & Prochaska, L. M. (2004). Compositional equivalency of Cry1F corn event TC6275 and conventional corn (Zea mays L.). Journal of Agricultural and Food Chemistry, 52(9), 2726–2734. https://doi.org/10.1021/jf049969n; Herman, R. A., & Price, W. D. (2013). Unintended compositional changes in genetically modified (GM) crops: 20 years of research. Journal of Agricultural and Food Chemistry, 61(48), 11695–11701. https://doi.org/10.1021/jf400135r; Herrera-Estrella, L., Depicker, A., Van Montagu, M., & Schell, J. (1983). Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature, 303, 209–213. https://doi.org/10.1038/303209a0; Instituto Colombiano Agropecuario–ICA. (2011). Resolución 003662. Por la cual se autoriza el empleo del maíz SmartStax TM (MON-89Ø34-3 x DAS- Ø15Ø7-1 x MON- 88Ø17-3 x DAS-59122-7), para consumo directo y/o como materia prima para la producción de alimentos para animales domésticos. https://www.ica.gov.co/getattachment/3bcf82f7-262e-4760-9218-71a08261e92b/2011R3662.aspx; Instituto Colombiano Agropecuario–ICA. (2013). Resolución 003050. Por la cual se autoriza el uso del maíz MON89034 x 1507 x NK603 (MON-89Ø34-3 x DAS- Ø15Ø7-1 x MONØØ6Ø3-6) para consumo directo y/o como materia prima para la producción de alimentos para animales domésticos. https://www.ica.gov.co/getattachment/3b3a12fe-8289-4c02-88e4-a8998cb7bec4/2013R3050.aspx; Instituto Nacional de Vigilancia de Medicamentos y Alimentos–INVIMA. (2018). Resolución No. 2018027808. Por la cual se autoriza el uso de Maíz TC1507 x MIR604 x NK603 (DAS-01507-1 x SYN-IR604-5 x MON-00603-6) como materia prima para la producción de alimentos para consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resoluci%C3%B3n%202018027808%20de%202018.pdf; ISAAA. (2018). Pocket K No. 56: Substantial equivalence of GM and Non-GM crops. International Service for the Acquisition of Agri-biotech Applications (ISAAA). http://www.isaaa.org/resources/publications/pocketk/56/default.asp; ISAAA. (2019). Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio-economic development and sustainable environment in the new frontier. ISAAA (Brief No. 55). International Service for the Acquisition of Agri-biotech Applications (ISAAA). https://www.isaaa.org/resources/publications/briefs/55/; Jaramillo-Barrios, C. I., Quijano, E. B., Andrade, B. M., Jaramillo-Barrios, C. I., Quijano, E. B., & Andrade, B. M. (2019). Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) cause significant damage to genetically modified corn crops. Revista Facultad Nacional de Agronomía Medellín, 72(3), 8953–8962. https://doi.org/10.15446/rfnam.v72n3.75730; Jiménez-Barreto, J., Chaparro-Giraldo, A., Mora-Oberlaender, J., & Vargas-Sánchez, J. E. (2016). Molecular characterization and freedom to operate analysis of maize hybrids from genetically modified and Colombian varieties. Agronomía Colombiana, 34(3), 309–316. https://doi.org/10.15446/agron.colomb.v34n3.60350; Kok, E. J., Pedersen, J., Onori, R., Sowa, S., Schauzu, M., De Schrijver, A., & Teeri, T. H. (2014). Plants with stacked genetically modified events: To assess or not to assess? Trends in Biotechnology, 32(2), 70–73. https://doi.org/10.1016/j.tibtech.2013.12.001; Lundry, D. R., Burns, J. A., Nemeth, M. A., & Riordan, S. G. (2013). Composition of grain and forage from insect-protected and herbicide-tolerant corn, MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax), is equivalent to that of conventional corn (Zea mays L.). Journal of Agricultural and Food Chemistry, 61(8), 1991–1998. https://doi.org/10.1021/jf304005n; McDougall, P. (2011). The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Consultancy Study for Crop Life International.; Ministerio de Salud y Protección Social–MSPS. (2012a). Resolución 1486. Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x HRW x NK603 (DAS-15Ø7-1 x DAS-59122-7 x MON-ØØ6Ø3-6) como alimento o materia prima para la producción de alimentos de consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201486%20de%202012.pdf; Ministerio de Salud y Protección Social–MSPS. (2012b). Resolución 1487. Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x MON810 (DAS-Ø15Ø7-1 x MONØØ81Ø- 6) como alimento o materia prima para la producción de alimentos para consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201487%20de%202012.pdf; Ministerio de Salud y Protección Social–MSPS. (2012c). Resolución 1488. Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x MON810 x NK603 (DAS-Ø15Ø7-1 x MON-ØØ81Ø-6 x MON-ØØ6Ø3-6) como alimento o materia prima para la producción de alimentos para consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201488%20de%202012.pdf; Ministerio de Salud y Protección Social–MSPS. (2014). Resolución 1861. Por la cual se autoriza el uso de Maíz MON89034 x TC1507 x NK603 (MON-89034-3 x DAS-01507-1 x MON-00603-6) como alimento o materia prima para la elaboración de alimentos de consumo humano. http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201861%20de%202014.pdf; OECD. (2002). Consensus document on the biology of Zea mays subsp. mays (Maize). Series on Harmonisation of Regulatory Oversight in Biotechnology, Organization for Economic Cooperation and Development. https://www.oecd.org/env/ehs/biotrack/46815758.pdf; Parrott, W., Chassy, B., Ligon, J., Meyer, L., Petrick, J., Zhou, J., Herman, R., Delaney, B., & Levine, M. (2010). Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food and Chemical Toxicology, 48(7), 1773–1790. https://doi.org/10.1016/j.fct.2010.04.017; Pilacinski, W., Crawford, A., Downey, R., Harvey, B., Huber, S., Hunst, P., Lahman, L. K., MacIntosh, S., Pohl, M., Rickard, C., Tagliani, L., & Weber, N. (2011). Plants with genetically modified events combined by conventional breeding: An assessment of the need for additional regulatory data. Food and Chemical Toxicology, 49(1), 1–7. https://doi.org/10.1016/j.fct.2010.11.004; Privalle, L. S., Gillikin, N., & Wandelt, C. (2013). Bringing a transgenic crop to market: Where compositional analysis fits. Journal of Agricultural and Food Chemistry, 61(35), 8260–8266. https://doi.org/10.1021/jf400185q; R Core Team. (2021). The R project for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org; Ridley, W. P., Shillito, R. D., Coats, I., Steiner, H.-Y., Shawgo, M., Phillips, A., Dussold, P., & Kurtyka, L. (2004). Development of the international life sciences institute crop composition database. Journal of Food Composition and Analysis, 17(3-4), 423–438. https://doi.org/10.1016/j.jfca.2004.03.006; Rojas, A. C. A., Palacio, J. L., Chaparro-Giraldo, A., & López-Pazos, S. A. (2017). Patents and genetically modified soybean for glyphosate resistance. World Patent Information, 48, 47–51. https://doi.org/10.1016/j.wpi.2017.01.002; Rüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., & Heijde, M. (2018). Off-Patent transgenic events: Challenges and opportunities for new actors and markets in agriculture. Frontiers in Bioengineering and Biotechnology, 6, Article 71. https://doi.org/10.3389/fbioe.2018.00071; Steiner, H.-Y., Halpin, C., Jez, J. M., Kough, J., Parrott, W., Underhill, L., Weber, N., & Hannah, L. C. (2013). Editor’s choice: evaluating the potential for adverse interactions within genetically engineered breeding stacks. Plant Physiology, 161(4), 1587–1594. https://doi.org/10.1104/pp.112.209817; Taylor, M., Bickel, A., Mannion, R., Bell, E., & Harrigan, G. G. (2017). Dicamba-tolerant soybeans (Glycine max L.) MON 87708 and MON 87708 × MON 89788 are compositionally equivalent to conventional soybean. Journal of Agricultural and Food Chemistry, 65(36), 8037–8045. https://doi.org/10.1021/acs.jafc.7b03844; Watson, S. A. (1982). Corn: amazing maize. General properties. In I. A. Wolff (Ed.), CRC handbook of processing and utilization in agriculture (pp. 3–29). CRC Press.; https://revistas.unal.edu.co/index.php/agrocol/article/view/98948

  5. 5
    Academic Journal
  6. 6
  7. 7
    Academic Journal

    المصدر: Estudios sobre el Mensaje Periodístico; Vol. 24 No. 2 (2018); 1121-1146 ; Estudios sobre el Mensaje Periodístico; Vol. 24 Núm. 2 (2018); 1121-1146 ; 1988-2696 ; 1134-1629

    وصف الملف: application/pdf

    Relation: https://revistas.ucm.es/index.php/ESMP/article/view/62205/4564456548500; Cummings, James J. & Bailenson, Jeremy N. (2015): "How immersive is enough? A metaanalysis of the effect of immersive technology on user presence". Media Psychology, 19 (2), 272-309. Doi:10.1080/15213269.2015.1015740.; De la Peña, Nonny; Weil, Peggy; Llobera, Joan; Giannopoulos, Elias; Pomés, Ausiàs; Spanlang, Bernhard & Slater, Mel (2010): “Immersive journalism: Immersive virtual reality for the first-person experience of news”. Presence: Teleoperators and Virtual Environments, 19 (4), 291-301. Doi:10.1162/PRES_a_00005.; Dolan, Devon & Parets, Michael (2016): “Redefining the axiom of story: The VR and 360 video complex”. Techcrunch, 14 de enero. En: https://techcrunch.com/2016/01/14/redefining-the-axiom-of-story-the-vr-and-360- video-complex/; Domínguez, Eva (2017): "Going beyond the classic news narrative convention: The background to and challenges of immersion in journalism". Frontiers in Digital Humanities, 4, 10. Doi:10.3389/fdigh.2017.00010.; Domínguez-Martín, Eva (2015): "Periodismo inmersivo o cómo la realidad virtual y el videojuego influyen en la interfaz e interactividad del relato de actualidad". El Profesional de la Información, 24 (4), 413-423. Doi:10.3145/epi.2015.jul.08.; Gifreu, Arnau (2013): El documental interactivo como nuevo género audiovisual. Estudio de la aparición del nuevo género, aproximación a su definición y propuesta de taxonomía y de modelo de análisis a efectos de evaluación, diseño y producción. Tesis doctoral, Universidad Pompeu Fabra. En: http://agifreu.com/interactive_documentary/TesisArnauGifreu2012.pdf. [Consulta: 10 de octubre de 2017]; Hardee, Gary M. & McMahan, Ryan P. (2017): "FiJi: a Framework for the immersion- Journalism intersection". Frontiers in ICT, 4 (21). Doi:10.3389/fict.2017.00021.; López Hidalgo, Antonio y Fernández Barrero, Ángeles (2017): “Retos para la consolidación del reportaje inmersivo. Estudio de caso de las experiencias pioneras en España de El Mundo y El País”. Mediatika. Cuadernos de Medios de Comunicación, 15, 125-140.; Jenkins, Henry (2006): Convergence culture: Where old and new media collide. New York, New York University Press.; Jones, Sarah (2017): “Disrupting the narrative: Immersive journalism in virtual reality”. Journal of Media Practice. Doi:10.1080/14682753.2017.1374677.; Kool, Hollis (2016): "The ethics of immersive journalism: A rhetorical analysis of news storytelling with virtual reality technology". Intersect: The Stanford Journal of Science, Technology and Society, 9 (3), 1-11.; Manovich, Lev (2001): The language of new media. Cambridge, MIT Press.; McRoberts, Jamie (2017): "Are we there yet? Media content and sense of presence in nonfiction virtual reality". Studies in Documentary Film, 1-18. Doi:10.1080/17503280.2017.1344924; Migielicz, Gery & Zacharia, Janine (2016): “Stanford journalism program’s guide to using virtual reality for storytelling : Dos & don’ts”. Medium, 1 de agosto. En: ttps://medium.com/@StanfordJournalism/stanford-journalism-programs-guide-to-usingvirtual- reality-for-storytelling-dos-don-ts-f6ca15c7ef3c.; Murray, Janet (1997): Hamlet on the Holodeck: The future of narrative in cyberspace. Cambridge, MIT Press.; Nash, Kate (2017): "Virtual reality witness: Exploring the ethics of mediated presence". Studies in Documentary Film, 1-13. Doi:10.1080/17503280.2017.1340796.; Newton, Kate y Soukup, Karin (2016): "The storyteller’s guide to the virtual reality audience". Medium, 6 de abril: https://medium.com/stanford-d-school/the-storyteller-sguide- to-the-virtual-reality-audience-19e92da57497.; Pérez Seijo, Sara & Campos Freire, Francisco (2017): “Las técnicas inmersivas en televisiones públicas: aplicaciones y evolución”. En Túñez López, Miguel; Campos Freire, Francisco & Silva Rodríguez, Alba (Eds.): Estudios sobre financiación, legislación e innovación en la Televisión Pública. Cuadernos Artesanos de Comunicación, cac126, pp. 101-126. La Laguna (Tenerife), Latina. Doi:10.4185/cac126.; Peters, John (2011): “Witnessing”. En Frosh, Paul & Pinchevski, Amit (Eds.): Media Witnessing: Testimony in the age of mass communication. Nueva York, Palgrave Macmillan, pp. 23–48.; Scolari, Carlos (2014): Narrativas transmedia: nuevas formas de comunicar en la era digital. En Celaya, Javier (Ed.): Anuario AC/E de cultura digital. Focus 2014: Uso de las nuevas tecnologías en las artes escénicas. Madrid, AC/E, pp. 71-81.; Serrano, Ana; Sitzmann, Vincent; Ruiz-Borau, Jaime; Wetzstein, Gordon; Gutiérrez, Diego & Masia, Belén (2017): "Movie editing and cognitive event segmentation in virtual reality video". ACM Transactions on Graphics, 36 (4), 47. Doi:10.1145/3072959.3073668; Shin, Donghee & Biocca, Frank (2017): "Exploring immersive experience in journalism". New Media & Society. Doi:10.1177/1461444817733133.; Slater, Mel & Sánchez-Vives, María V. (2016): "Enhancing our lives with immersive virtual reality". Frontiers in Robotics and AI, 3. Doi:10.3389/frobt.2016.00074.; Slater, Mel & Wilbur, Sylvia (1997): "A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments". Presence: Teleoperators and virtual environments, 6 (6), 603-616. Doi:10.1162/pres.1997.6.6.603; Smith, Will (2015): "Stop calling Google Cardboard’s 360-degree videos ‘VR’", en Wired, 16 de noviembre. En: https://www.wired.com/2015/11/360-video-isnt-virtual-reality/; Sundar, S. Shyam; Kang, Jin; and Oprean, Danielle (2017): "Being there in the midst of the story: How immersive journalism affects our perceptions and cognitions". Cyberpsychology, Behavior, and Social Networking, 20 (11), 672-682. Doi:10.1089/cyber.2017.0271; Owen, Taylor; Pitt, Fergus; Aronson-Rath, Raney; and Milward, James (2015): “Virtual reality journalism. Columbia Journalism Review, 11 de noviembre. En: https://www.cjr.org/tow_center_reports/virtual_reality_journalism.php; Vázquez-Herrero, Jorge; Negreira-Rey, María Cruz; y Pereira-Fariña, Xosé (2017): “Interactive documentary contributions to the renewal of journalistic narratives: Realities and challenges”. Revista Latina de Comunicación Social, 72, 397-414. Doi:10.4185/RLCS-2017-1171en.; Watson, Zillah (2016): VR for news: The new reality? Reuters Institute for the Study of Journalism. https://reutersinstitute.politics.ox.ac.uk/our-research/vr-news-new-reality; Westlund, Oscar (2013): "Mobile news: A review and model of journalism in an age of mobile media". Digital Journalism, 1(1), 6-26. Doi:10.1080/21670811.2012.740273.; https://revistas.ucm.es/index.php/ESMP/article/view/62205

  8. 8
  9. 9
    Academic Journal

    المصدر: Gestión y Ambiente; Vol. 19 Núm. 2 (2016); 240-251 ; Gestión y Ambiente; Vol. 19 No. 2 (2016); 240-251 ; 2357-5905 ; 0124-177X

    وصف الملف: text/html; application/pdf; application/epub+zip

    Relation: https://revistas.unal.edu.co/index.php/gestion/article/view/58492/60350; https://revistas.unal.edu.co/index.php/gestion/article/view/58492/61120; https://revistas.unal.edu.co/index.php/gestion/article/view/58492/60351; Congreso de la República de Colombia. 2013. Ley 1672 de 19 de Julio de 2013 “Por la cual se establecen los lineamientos para la adopción de una política pública de gestión integral de residuos de aparatos eléctricos y electrónicos (RAEE), y se dictan otras disposiciones”. Bogotá.; Freitas, M., Celante, V., Pietre, M., 2010. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. J. Power Sources 195, 3309-3315. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.jpowsour.2009.11.131" 10.1016/j.jpowsour.2009.11.131 /a; García, E., 2011. Manual molino o pulverizador de disco. Departamento de Ingeniería Metalúrgica y de Materiales - Universidad de Antioquia, Medellín, Colombia.; Ghosh, B., Ghosh, M., Parhi, P., Mukherjee, P., Mishra, B., 2015. Waste printed circuit boards recycling: an extensive assessment of current status. J. Clean. Prod. 94, 5-19. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.jclepro.2015.02.024" 10.1016/j.jclepro.2015.02.024 /a; Kang, H.-Y., Schoenung, J., 2005. Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour. Conserv. Recycl. 45, 368-400. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.resconrec.2005.06.001" 10.1016/j.resconrec.2005.06.001 /a; Kaya, M. 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage. 57, 64-90. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.wasman.2016.08.004" 10.1016/j.wasman.2016.08.004 /a; Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia (MAVDT). 2010a. Lineamientos técnicos para el manejo de residuos de aparatos eléctricos y electrónicos. Bogotá. 100 p. Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia (MAVDT). 2010b. Resolución 1297 de 8 julio de 2010 "Por la cual se establecen los Sistemas de Recolección Selectiva y Gestión Ambiental de Residuos de Pilas y/o Acumuladores y se adoptan otras disposiciones". Bogotá.; Osorio, A., Restrepo, G., Marín, J., 2013. Operaciones de reducción de tamaño: trituración primaria y secundaria. Departamento de Ingeniería Química - Universidad de Antioquia, Medellín, Colombia. 1-5 pp.; Revelo, R. 2008a. Manual de la trituradora de cuchillas. Departamento de Ingeniería Metalúrgica y de Materiales - Universidad de Antioquia, Medellín, Colombia.; Revelo, R. 2008b. Manual de la trituradora de rodillos. Departamento de Ingeniería Metalúrgica y de Materiales - Universidad de Antioquia, Medellín, Colombia.; Richa, K., Babbitt, C., Gaustad, G., Wang, X., 2014. A future perspective on lithium-ion battery waste flows from electric vehicles. Resour. Conserv. Recycl. 83, 63-76. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.resconrec.2013.11.008" 10.1016/j.resconrec.2013.11.008 /a; Ruan, J., Xu, Z., 2016. Constructing environment-friendly return road of metals from e-waste: Combination of physical separation technologies. Renew. Sustain. Energy Rev. 54, 745-760. DOI 10.1016/j.rser.2015.10.114 /p; Thompson, S. 2011. Large format EV battery recycling: challenges and opportunities. En: 4th U.S.-China Electric Vehicle and Battery Technology Workshop. US Department of Energy; China Ministry of Science and Technology; Argonne National Laboratory, Argonne, IL.; Wang, M.-M., Zhang, C.-C., Zhang, F.-S. 2016. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Manage. 51, 239-244. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.wasman.2016.03.006" 10.1016/j.wasman.2016.03.006 /a; Zeng, X., Li, J., Singh, N., 2014. Recycling of spent lithium-ion battery: a critical review. Crit. Rev. Environ. Sci. Technol. 44, 1129-1165. DOI: a target="_blank" href="http://dx.doi.org/10.1080/10643389.2013.763578" 10.1080/10643389.2013.763578 /a; Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., Li, H. 2014. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manage. 34, 1051-1058. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.wasman.2014.01.002" 10.1016/j.wasman.2014.01.002 /a; Zhang, L., Xu, Z., 2016. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 127, 19-36. DOI: a target="_blank" href="http://dx.doi.org/10.1016/j.jclepro.2016.04.004" 10.1016/j.jclepro.2016.04.004 /a; https://revistas.unal.edu.co/index.php/gestion/article/view/58492

  10. 10
    Academic Journal

    وصف الملف: application/pdf

    Relation: https://revistas.unal.edu.co/index.php/gestion/article/view/58492; Universidad Nacional de Colombia Revistas electrónicas UN Gestión y Ambiente; Gestión y Ambiente; Sánchez-Echeverri, Juan Pablo and Betancur-Pulgarín, Juan Fernando and Ocampo-Carmona, Luz Marina (2016) Conminución y análisis para un proceso de recuperación de cobalto de baterías recicladas de celulares. Gestión y Ambiente, 19 (2). pp. 240-251. ISSN 2357-5905; https://repositorio.unal.edu.co/handle/unal/64546; http://bdigital.unal.edu.co/65474/

  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14
    Academic Journal
  15. 15
    Dissertation/ Thesis

    المساهمون: Chaparro Giraldo, Alejandro, Acosta Losada, Orlando, Ingeniería Genética de Plantas

    وصف الملف: xi, 74 páginas; application/pdf

    Relation: AFSI (2020) Crop Composition Database, Version 8.0, Agriculture & Food Systems Institute www.cropcomposition.org; Anderson, J. A., Hong, B., Moellring, E., TeRonde, S., Walker, C., Wang, Y., & Maxwell, C. (2019). Composition of forage and grain from genetically modified DP202216 maize is equivalent to non-modified conventional maize ( Zea mays L.). GM Crops & Food, 10(2), 77-89. https://doi.org/10.1080/21645698.2019.1609849; Anon. (2007). EPPO Guideline for the efficacy Evaluation of plant protection products: Design and Analysis of Efficacy Evaluation Trials, PP 1/152(3). EPPO/OEPP, Paris. pp. 139–145.; Baker, J. M., Hawkins, N. D., Ward, J. L., Lovegrove, A., Napier, J. A., Shewry, P. R., & Beale, M. H. (2006). A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnology Journal, 4(4), 381-392. https://doi.org/10.1111/j.1467-7652.2006.00197.x; Baktavachalam, G. B., Delaney, B., Fisher, T. L., Ladics, G. S., Layton, R. J., Locke, M. E., Schmidt, J., Anderson, J. A., Weber, N. N., Herman, R. A., & Evans, S. L. (2015). Transgenic maize event TC1507: Global status of food, feed, and environmental safety. GM Crops & Food, 6(2), 80-102. https://doi.org/10.1080/21645698.2015.1054093; Bell, E., Nakai, S., & Burzio, L. A. (2018). Stacked Genetically Engineered Trait Products Produced by Conventional Breeding Reflect the Compositional Profiles of Their Component Single Trait Products. Journal of Agricultural and Food Chemistry, 66(29), 7794-7804. https://doi.org/10.1021/acs.jafc.8b02317; Bevan, M., Flavell, R. B., and Chilton, M. D. (1983). A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187. doi:10.1038/304184a0; Brent, P., Bittisnich, D., Brooke-Taylor, S., Galway, N., Graf, L., Healy, M., & Kelly, L. (2003). Regulation of genetically modified foods in Australia and New Zealand. Food Control, 14(6), 409-416. https://doi.org/10.1016/S0956-7135(03)00037-9; Brookes, G. & Barfoot, P. (2018). Farm income and production impacts of using GM crop technology 1996–2016, GM Crops & Food, 9:2, 59-89; Carpenter, J. E. (2010). Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotech 28, 319–321.; Cerdeira, A. L., Gazziero, D. L. P., Duke, S. O., & Matallo, M. B. (2011). Agricultural Impacts of Glyphosate-Resistant Soybean Cultivation in South America. Journal of Agricultural and Food Chemistry, 59(11), 5799-5807. https://doi.org/10.1021/jf102652y; Cheng, K. C., Beaulieu, J., Iquira, E., Belzile, F. J., Fortin, M. G., & Strömvik, M. V. (2008). Effect of Transgenes on Global Gene Expression in Soybean Is within the Natural Range of Variation of Conventional Cultivars. Journal of Agricultural and Food Chemistry, 56(9), 3057-3067. https://doi.org/10.1021/jf073505i; Chrispeels, M.J., (2014). Global production and consumption of genetically engineered crops. J. Huazhong Agric. Univ. 33, 120–132.; Codex Alimentarius. (2003). Codex principles and guidelines on foods derived from biotechnology. Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, FAO, Rome.; Codex Alimentarius Commission (2013). Codex Standard for Named Vegetable Oils. Rome (Italy): Codex Alimentarius;. p. 16.; Cong, B., Maxwell, C., Luck, S., Vespestad, D., Richard, K., Mickelson, J., & Zhong, C. (2015). Genotypic and Environmental Impact on Natural Variation of Nutrient Composition in 50 Non Genetically Modified Commercial Maize Hybrids in North America. Journal of Agricultural and Food Chemistry, 63(22), 5321-5334. https://doi.org/10.1021/acs.jafc.5b01764; Duke, S. O. & Cerdeira, A. L. (2010). Transgenic crops for herbicide resistance, Vol. 2. Springer: Heidelberg, Germany.; EFSA Application for renewal: Feed produced from 1507 maize. Summary of the application for renewal of authorisation of existing products according to article 23 of regulation (EC) no 1829/2003. Feed produced from genetically modified 1507 maize (DAS-Ø15Ø7-1). [internet] (2004). Disponible en: https://euginius.eu/euginius/api/literature/pdf/9095514491964051003; EFSA Opinion of the scientific panel on genetically modified organisms on a request from the commission related to the notification (Reference C/NL/00/10) for the placing on the market of insect-tolerant genetically modified maize 1507, for import and processing, under Part C of Directive 2001/18/EC from Pioneer Hi-Bred International/ Mycogen Seeds (Question No EFSA-Q-2004-011). EFSA J (2004a); 124: 1–18; http://dx.doi.org/10.2903/j.efsa.2004.124; EFSA Opinion of the Scientific Panel on Genetically Modified Organisms on an application (reference EFSA-GMO-NL-2004-02) for the placing on the market of insect-tolerant genetically modified maize 1507, for food use, under Regulation (EC) No 1829/2003 from Pioneer Hi-Bred International/Mycogen Seeds, The EFSA Journal (2005) 182, 1-22. [Internet]. Disponible en: https://euginius.eu/euginius/api/literature/pdf/-1436758519488164233; EFSA Scientific Opinion of the Panel on Genetically Modified Organisms on an application (EFSA-GMO-RX-1507) for renewal of authorisation for the continued marketing of existing products produced from maize 1507 for feed use, under Regulation (EC) No 1829/2003 from Pioneer Hi-Bred International, Inc. / Mycogen Seeds. EFSA J (2009). a; 1138:1–11; http://dx.doi.org/10.2903/j.efsa.2009.1138; EFSA GMO Panel (EFSA Panel on genetically modified organisms), Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messe an A, Nielsen EE, Nogue F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal J-M , Alvarez F, Ardizzone M, Mestdagh S and Ramon M, 2017. Scientific opinion on an application for renewal of authorisation for continued marketing of maize 1507 and derived food and feed submitted under Articles 11 and 23 of Regulation (EC) No 1829/2003 by Pioneer Overseas Corporation and Dow AgroSciences LLC. EFSA Journal (2017);15(1):4659, 11 pp. doi:10.2903/j.efsa.2017.4659; FAO/OMS. (1996). Biotecnología e inocuidad de los alimentos. Informe de una Consulta FAO/OMS, 30 de septiembre-4 de octubre de 1996. Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma y Organización Mundial de la Salud, Ginebra.; FAO/OMS. (2000). Aspectos relativos a la inocuidad de los alimentos de origen vegetal modificados genéticamente. Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma, y Organización Mundial de la Salud, Ginebra.; FAO. (2010). Food Quality and Standards Service has published GM food safety assessment: Tools for trainers’, Pesticide & Toxic Chemical News, no. 12; Fraley, R. (2015). Presentation to the National Academy of Sciences. Disponible en:https://vimeo.com/album/3192610/video/115717420; FSANZ. Food Standards Australia New Zealand. Food derived from insect-protected and glufosinate-ammonium tolerant corn line 1507. A safety assessment. Technical report series no. 32. [Internet]. 2004. Disponible en: https://www.foodstandards.gov.au/publications/documents/32_TRX%20A446%20-%20Corn%20line%201507.pdf; FSANZ. Food Standards Australia New Zealand. Draft assessment. Report application a446 food derived from insect-protected and glufosinate-ammonium tolerant corn line 1507. [Internet]. 2002. Disponible en: https://www.foodstandards.gov.au/code/applications/documents/A446%20DAR%20-%20GM%20Corn.pdf; FSANZ. Food Standards Australia New Zealand. Final assessment report application a446 insect-protected and glufosinate ammonium-tolerant corn line 1507. [Internet]. 2003. Disponible en: http://www.fao.org/fileadmin/user_upload/gmfp/docs/ACF18.pdf; Goodman, R.E., (2014). Biosafety: evaluation and regulation of genetically modified (GM) crops in the United States. J. Huazhong Agric. Univ. 33, 85–114.; Harlander, S. K. (2002). The evolution of modern agriculture and its future with biotechnology. J. Am. Coll. Nutr. 21, 161S165S.; Harrigan, G. G., Glenn, K. C., & Ridley, W. P. (2010). Assessing the natural variability in crop composition. Regulatory Toxicology and Pharmacology, 58(3, Supplement), S13-S20. https://doi.org/10.1016/j.yrtph.2010.08.023; Harrigan, G. G., Lundry, D., Drury, S., Berman, K., Riordan, S. G., Nemeth, M. A., Ridley, W. P., & Glenn, K. C. (2010a). Natural variation in crop composition and the impact of transgenesis. Nature Biotechnology, 28(5), 402-404. https://doi.org/10.1038/nbt0510-402; Herman, R. A., & Price, W. D. (2013). Unintended Compositional Changes in Genetically Modified (GM) Crops: 20 Years of Research. Journal of Agricultural and Food Chemistry, 61(48), 11695-11701. https://doi.org/10.1021/jf400135r; Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J. (1983). Expression of chimeric genes transferred into plant cells using a Ti-plasmid derived vector. Nature 303, 209–213. doi:10.1038/303209a0; Hothorn L.A. and Oberdoerfer R. (2006). Statistical analysis used in the nutritional assessment of novel food using the proof of safety. Regulatory Toxicology and Pharmacology, 44: 125-135.; ICA Instituto Colombiano Agropecuario. Resolución No. 003745 (15 de diciembre de 2006 ). Por la cual se establece que el maíz con la tecnología Herculex I®, evento TC 1507 es apto para consumo como alimento de animales domésticos en Colombia. Bogotá, Colombia. [Internet] Disponible en: https://www.ica.gov.co/getattachment/f1b4c01b-b802-4cff-ae51-db9787833a4d/3745.aspx; ICA Instituto Colombiano Agropecuario. Resolución 000879 (2008). Por la cual no se autoriza la importación de semillas de maíz MON- 88017-3 (CCR) al país. Bogotá, Colombia. [Internet] Disponible en: https://www.ica.gov.co/getattachment/fdbea15a-b473-4d08-bb1d-aec81acf405b/2008R879.aspx; ICA Instituto Colombiano Agropecuario. Resolución 003662 (2011). Por la cual se autoriza el empleo del maíz SmartStax TM (MON-89Ø34-3 x DAS- Ø15Ø7-1 x MON- 88Ø17-3 x DAS-59122-7), para consumo directo y/o como materia prima para la producción de alimentos para animales domésticos. Bogotá, Colombia. [Internet] Disponible en: https://www.ica.gov.co/getattachment/3bcf82f7-262e-4760-9218-71a08261e92b/2011R3662.aspx; ICA Instituto Colombiano Agropecuario. Resolución 003050 (2013). Por la cual se autoriza el uso del maíz MON89034 x 1507 x NK603 (MON-89Ø34-3 x DAS- Ø15Ø7-1 x MONØØ6Ø3-6) para consumo directo y/o como materia prima para la producción de alimentos para animales domésticos. Bogotá, Colombia. [Internet] Disponible en: https://www.ica.gov.co/getattachment/3b3a12fe-8289-4c02-88e4-a8998cb7bec4/2013R3050.aspx; INVIMA Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Acta 05/06 (2006). Comisión revisora de medicamentos y productos biológicos, de alimentos y bebidas alcohólicas, de insumos para la salud y productos varios. Conceptuar sobre el empleo del producto: granos de maíz, provenientes de híbridos de maíz con tecnología Bt Herculex I. (2006). Bogotá, Colombia. [Internet]. Disponible en: http://bch.biodiv.org/database/attachedfile.aspx?id=1036; INVIMA Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Resolución No. 2018027808 (2018). Por la cual se autoriza el uso de Maíz TC1507 x MIR604 x NK603 (DAS-01507-1 x SYN-IR604-5 x MON-00603-6) como materia prima para la producción de alimentos para consumo humano. Bogotá, Colombia. [Internet]. Disponible en: http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resoluci%C3%B3n%202018027808%20de%202018.pdf; James C (2010) In Global Status of Commercialized Biotech/GM Crops. ISAAA Briefs No. 42. ISAAA, Ithaka, NY; Jefferson, D. J., Graff, G. D., Chi-Ham, C. L., and Bennet, A. B. (2015). The emergence of AgBiogenerics. Nat. Biotechnol. 33, 819–823.; Jiménez-Barreto, Jenny, Chaparro-Giraldo, Alejandro, Mora-Oberlaender, Julián, & Vargas-Sánchez, José Ever. (2016). Molecular characterization and Freedom to Operate analysis of maize hybrids from genetically modified and Colombian varieties. Agronomía Colombiana, 34(3), 309-316. https://dx.doi.org/10.15446/agron.colomb.v34n3.60350; Jonas, D.A., Antignac, E., Antoine, J.M., Classen, H.G., Huggett, A., Knudsen, I., Mahler, J., Ockhuizen, T., Smith, M., Teuber, M., Walker, R., De Vogel, P., (1996). The safety assessment of novel foods. Guidelines prepared by ILSI Europe Novel Food Task Force. Food Chem. Toxicol. 34, 931–940.; Kok, E. J., Pedersen, J. W., Onori, R., Sowa, S., Schauzu, M., De Schrijver, A., & Teeri, T. H. (2014). Plants with stacked genetically modified events: To assess or not to assess?. Trends in Biotechnology, 32(2), 70-73. https://doi.org/10.1016/j.tibtech.2013.12.001; Kowalski S., Ebora R., Kryder R., Potter R. (2002). Transgenic crops, biotechnology and ownership rights: what scientists need to know? Plant Journal. 31(4): 407-421.; König, A., Cockburn, A., Crevel, R. W. R., Debruyne, E.,Grafstroem, R., Hammerling, U., Kimber, I., Knudsen, I.,Kuiper, H. A., Peijnenburg, A.A.C.M., Penninks, A. H.,P Oulsen, M., Schauza,M.&Wal, J. M. (2004). Assessment of the safety of foods derived from genetically modified (GM) crops. Food and Chemical Toxicology 42, 1047–1088; Kryder, R, Kowalski, S, Krattiger, A. (2000). The Intellectual and Technical Property Components of pro-Vitamin A Rice (GoldenRiceTM): A Preliminary Freedom-To-Operate Review. ISAAA Briefs No. 20.ISAAA: Ithaca, NY. P 56.; Lai, F.-M., Privalle, L., Mei, K., Ghoshal, D., Shen, Y., Klucinec, J., Daeschner, K., Mankin, L. S., Chen, N., Cho, S., & Jones, T. (2011). Evaluation of the E. colid-serine ammonia lyase gene (Ec. DsdA) for use as a selectable marker in maize transformation. In Vitro Cellular & Developmental Biology - Plant, 47(4), 467. https://doi.org/10.1007/s11627-011-9351-x; Lundry, D. R., Burns, J. A., Nemeth, M. A., & Riordan, S. G. (2013). Composition of Grain and Forage from Insect-Protected and Herbicide-Tolerant Corn, MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax), Is Equivalent to That of Conventional Corn (Zea mays L.). Journal of Agricultural and Food Chemistry, 61(8), 1991-1998. https://doi.org/10.1021/jf304005n; McDougall, P. (2011). The Cost and Time Involved in the Discovery, Development and Authorisation of a New Plant Biotechnology Derived Trait. Disponible en: https://croplife.org/wp-content/uploads/pdf_files/Getting-a-BiotechCrop-to-Market-Phillips-McDougall-Study.pdf; MSPS Ministerio de Salud y Protección Social. Resolución 1486 (2012). Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x HRW x NK603 (DAS-15Ø7-1 x DAS-59122-7 x MON-ØØ6Ø3-6) como alimento o materia prima para la producción de alimentos de consumo humano. Bogotá, Colombia. [Internet] Disponible en: http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201486%20de%202012.pdf; MSPS Ministerio de Salud y Protección Social. Resolución 1487 (2012a). Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x MON810 (DAS-Ø15Ø7-1 x MON-ØØ81Ø-6) como alimento o materia prima para la producción de alimentos para consumo humano. Bogotá, Colombia. [Internet] Disponible en: http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201487%20de%202012.pdf; MSPS Ministerio de Salud y Protección Social. Resolución 1488 (2012b). Por la cual se autoriza el uso de granos de maíz, provenientes de híbridos de maíz genéticamente modificado, con la tecnología HX1 x MON810 x NK603 (DAS-Ø15Ø7-1 x MON-ØØ81Ø-6 x MON-ØØ6Ø3-6) como alimento o materia prima para la producción de alimentos para consumo humano. Bogotá, Colombia. [Internet] Disponible en: http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201488%20de%202012.pdf; MSPS Ministerio de Salud y Protección Social. Resolución 1861 (2014) Por la cual se autoriza el uso de Maíz MON89034 x TC1507 x NK603 (MON-89034-3 x DAS-01507-1 x MON-00603-6) como alimento o materia prima para la elaboración de alimentos de consumo humano. Bogotá, Colombia. [Internet] Disponible en: http://www.fao.org/fileadmin/user_upload/gmfp/docs/Resolucion%201861%20de%202014.pdf; Newman M.C. (2008). “What exactly are you inferring?” A loser look at hypothesis testing. Environmental Toxicology and Chemistry, 27: 1013-1019.; Noushahi, H. A., & Hussain, M. (2020). Risk Assessment of Genetically Modified Plants: A Review. Asian Journal of Research in Crop Science, 1. https://doi.org/10.9734/ajrcs/2020/v5i330095; Novak, W. K., & Haslberger, A. G. (2000). Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food and Chemical Toxicology, 38(6), 473-483. https://doi.org/10.1016/S0278-6915(00)00040-5; Oberdoerfer R.B., Shillito R.D., de Beuckeleer M and Mitten D.H. (2005). Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart. Journal of Agricultural and Food Chemistry, 53: 1457-1465; OECD. (1993) Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles. Recuperado 18 de noviembre de 2020, de https://www.iatp.org/sites/default/files/Safety_Evaluation_of_Foods_Derived_by_Modern_B.htm; OECD, (1996). Food Safety and Evaluation. Organisation for Economic Co-operation and Development, Paris, France.; OECD, (1997). Report of OECD Workshop on the Toxicological and Nutritional Testing of Novel Foods. Organisation for Economic Co-operation and Development, Paris, France.; OECD. (1999) Consensus document on general information concerning the genes and their enzymes that confer tolerance to phosphinothricin herbicide. Series on harmonisation of regulatory oversight in biotechnology, number 11, ENV/JM/MONO(99)13. Paris: Organisation for Economic Co-operation and Development.; OECD, (2001a). Consensus document on key nutrients and key toxicants in low erucic acid rapeseed (canola). In: Environmental Directorate: Joint Meeting of Chemical Committee and the Working Party on Chemicals, Pesticides and Biotechnology: Series on the Safety of Novel Foods and Feeds. Organisation for Economic Co-operation and Development, Paris, France.; OECD, (2001b). Consensus document on compositional considerations for new varieties of soybean: key food and feed nutrients and anti-nutrients. In: Environmental Directorate: Joint meeting of Chemical Committee and the Working Party on Chemicals, Pesticides and Biotechnology: Series on the Safety of Novel Foods and Feeds. Organisation for Economic Co-operation and Development, Paris, France.; OECD (2002) Module II: herbicide biochemistry, herbicide metabolism and the residues in glufosinate-ammonium (phosphinothricin)-tolerant transgenic plants. Series on Harmonisation of Regulatory Oversight in Biotechnology, Number 25, ENV/JM/MONO 14. Paris: Organisation for Economic Co-operation and Development.; OECD (2003) Consensus document on the biology of Zea mays subsp. mays (Maize). Series on Harmonisation of Regulatory Oversight in Biotechnology, Number 27, ENV/JM/MONO(2003)11. Paris: Organisation for Economic Co-operation and Development; OECD, (2004a). Consensus document on compositional considerations for new varieties of rice (Oryza sativa): key food and feed nutrients and anti-nutrients. In: Environmental Directorate: Joint meeting of Chemical Committee and the Working Party on Chemicals, Pesticides and Biotechnology: Series on the Safety of Novel Foods and Feeds. Organisation for Economic Co-operation and Development, Paris, France.; OECD, (2004b). Consensus document on compositional considerations for new varieties of cotton (Gossypium hirsutum and Gossypium barbadense): key food and feed nutrients and anti-nutrients. In: Environmental Directorate: Joint meeting of Chemical Committee and the Working Party on Chemicals, Pesticides and Biotechnology: Series on the Safety of Novel Foods and Feeds. Organisation for Economic Co-operation and Development, Paris, France.; OECD. (2007) Consensus document on safety information on transgenic plants expressing Bacillus thuringiensis-derived insect control proteins. Series on Harmonisation of Regulatory Oversight in Biotechnology, Number 42. ENV/JM/MONO(2007)14. Paris: Organisation for Economic Co-operation and Development; Parrott, W., Chassy, B., Ligon, J., Meyer, L., Petrick, J., Zhou, J., Herman, R., Delaney, B., & Levine, M. (2010). Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food and Chemical Toxicology, 48(7), 1773-1790. https://doi.org/10.1016/j.fct.2010.04.017; Pilacinski, W., Crawford, A., Downey, R., Harvey, B., Huber, S., Hunst, P., Lahman, L. K., MacIntosh, S., Pohl, M., Rickard, C., Tagliani, L., & Weber, N. (2011). Plants with genetically modified events combined by conventional breeding: an assessment of the need for additional regulatory data. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 49(1), 1–7. https://doi.org/10.1016/j.fct.2010.11.004; Price, W. D., & Underhill, L. (2013). Application of Laws, Policies, and Guidance from the United States and Canada to the Regulation of Food and Feed Derived from Genetically Modified Crops: Interpretation of Composition Data. Journal of Agricultural and Food Chemistry, 61(35), 8349-8355. https://doi.org/10.1021/jf401178d; Privalle, L. S., Gillikin, N., & Wandelt, C. (2013). Bringing a Transgenic Crop to Market: Where Compositional Analysis Fits. Journal of Agricultural and Food Chemistry, 61(35), 8260-8266. https://doi.org/10.1021/jf400185q; Reed, J., Privalle, L., Powell, M. L., Meghji, M., Dawson, J., Dunder, E., Sutthe, J., Wenck, A., Launis, K., Kramer, C., Chang, Y.-F., Hansen, G., & Wright, M. (2001). Phosphomannose isomerase: An efficient selectable marker for plant transformation. In Vitro Cellular & Developmental Biology - Plant, 37(2), 127-132. https://doi.org/10.1007/s11627-001-0024-z; Ridley, W.P., Harrigan, G.G., Breeze, M.L., Nemeth, M.A., Sidhu, R.S., Glenn, K.C., (2011). Evaluation of compositional equivalence for multitrait biotechnology crops. J. Agric. Food Chem. 59, 5865–5876.; Rüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., & Heijde, M. (2018). Off-Patent Transgenic Events: Challenges and Opportunities for New Actors and Markets in Agriculture. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00071; Spilke J., Piepho H.P. and Hu X. (2005). A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data. Journal of Agricultural, Biological and Environmental Statistics, 10: 374-389; Stauffer C, Zeph L (2000). Compositional analysis of maize MPS hybrid line 1507. Johnston, IA: Pioneer Hi-Bred International, Inc; and Des Moines, IA: Woodson-Tenet Laboratories, Inc; Jul. 34p. Technical Report No.: 98-09-RA-NGLP-012; Sult, T., Barthet, V. J., Bennett, L., Edwards, A., Fast, B., Gillikin, N., Launis, K., New, S., Rogers-Szuma, K., Sabbatini, J., Srinivasan, J. R., Tilton, G. B., & Venkatesh, T. V. (2016). Report: Release of the International Life Sciences Institute Crop Composition Database Version 5. Journal of Food Composition and Analysis, 51, 106-111. https://doi.org/10.1016/j.jfca.2016.05.002; Taylor, M., Bickel, A., Mannion, R., Bell, E., & Harrigan, G. G. (2017). Dicamba-Tolerant Soybeans ( Glycine max L.) MON 87708 and MON 87708 × MON 89788 Are Compositionally Equivalent to Conventional Soybean. Journal of Agricultural and Food Chemistry, 65(36), 8037-8045. https://doi.org/10.1021/acs.jafc.7b03844; Tempelman R.J. (2004). Experimental design and statistical methods for classical and bioequivalence hypothesis testing with an application to dairy nutrition studies. Journal of Animal Science, 82: E162-E172.; USDA APHIS Petition for the determination of non-regulated status B.t. Cry1F insect resistant, glufosinate tolerant maize line. Washington DC: United States Department of Agriculture, Animal and Plant Health Inspection Service; [IRecuperado 18 de noviembre de 2020] 2000. Disponible en: http://www.aphis.usda.gov/brs/aphisdocs/00_13601p.pdf; USDA APHIS Decision on Mycogen Seeds c/o Dow AgroSciences LLC and Pioneer Hi-Bred International, Inc. petition 00-136-01P seeking a determination of non-regulated status for Bt Cry1F insect resistant, glufosinate tolerant corn line 1507[ Recuperado 18 de noviembre de 2020] 2001. Disponible en: https://www.aphis.usda.gov/brs/aphisdocs2/00_13601p_com.pdf; USDA APHIS Application for an Extension of the Determination of Nonregulated Status for B.t. Cry1F insect-Resistant, Glufosinate-Tolerant Maize (00-136-01p): Maize Line 6275. [Recuperado 18 de noviembre de 2020] 2004. Disponible en: https://www.aphis.usda.gov/brs/aphisdocs/03_18101p.pdf; VKM (2017) Risk assessment of insect-resistant and herbicide-tolerant genetically modified maize 1507 for cultivation, import, processing, food and feed uses under Directive 2001/18/EC (C/ES/01/01, C/NL/00/10) and Regulation (EC) No 1829/2003 (EFSA/GMO/NL/2004/02, EFSA/GMO/RX/1507). Opinion of the Panel on Genetically Modified Organisms of the Norwegian Scientific Committee for Food Safety, Oslo, Norway. ISBN: 978-82 -8259-278-9; Watson SA. (1982). Corn: amazing Maize. General Properties. In: Wolff IA, editor. CRC Handbook of Processing and Utilization in Agriculture. Boca Raton (FL): CRC Press;. p. 3–29.; Wellek S. (2002). Testing Statistical Hypotheses of Equivalence. CRC Press, ISBN: 1584881607, 284 pp.; Walters S.J. (2008). Consultants’ forum: should post hoc sample size calculations be done? Pharmaceutical Statistics, published online DOI:10.1002/pst.334.; Wolff T. (2008). Freedom-to-Operate: my six basic rules. Searcher Magazine 16: 34-39.; https://repositorio.unal.edu.co/handle/unal/80731; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  16. 16
    Academic Journal
  17. 17
    Academic Journal
  18. 18
    Dissertation/ Thesis

    المؤلفون: Soto-Marín, Manuela

    المساهمون: Gonzalez Penagos, Felipe, German Rodriguez-Charry, Geología (Categoría C)

    وصف الملف: application/pdf

    Relation: Aitchison, J. (1982). The Statistical Analysis of Compositional Data. In Source: Journal of the Royal Statistical Society. Series B (Methodological) (Vol. 44, Issue 2).; Aitchison, J., Greenacre, M., 2002. Biplots of compositional data. Appl. Stat. 51, 375e392; Alfonso, C. A., P. E. Sacks, D. T. Secor, J. Rine, y V. Pérez, 1994, A Tertiary fold and thrust belt in the Valle del Cauca Basin, Colombian Andes: Journal of South American Earth Sciences, v. 7/3-4, p. 387-402.; Álvarez, E. & González, H., 1978. Geología y geoquímica del Cuadrángulo I–7 (Urrao). INGEOMINAS. Informe 1761. 347p. Mapa escala 1:100.000. Medellín; Andrés, S., Loret, C., Julieth, K., & Sarmiento, M. (2015). Evaluación de la calidad del agua del acuífero de Morroa-Sucre, mediante Análisis Fisicoquímico y Microbiológico: Plan de Seguimiento y Monitoreo Ambiental. https://biblioteca.utb.edu.co/notas/tesis/0068219.pdf; Appelo, C. A. J., & Postma, Dieke. (2005). Geochemistry, groundwater and pollution. Balkema; Aspden, J.A. 1984. The geology of the Western Cordillera, Department of Valle, Colombia (Sheets 261, 278, 279, 280 & 299). . INGEOMINAS-Misión Británica (British Geological Survey), Report No. 4 (Inédito). Cali.; Barrero, D. 1979. Geology of the central Western Cordillera, West of Buga and Roldanillo, Colombia. Publicaciones Geológicas Especiales de INGEOMINAS, 4, 75p; Bedoya Agudelo, E. L., & Giraldo Becerra, D. F. (2009). Estratigrafía detallada de la Formación La Paila en la seccion Buga-La Habana (municipio de Buga-Valle del Cauca). https://www.anh.gov.co/Informacion-Geologica-y Geofisica/bibliotecaTesisDeGrado/Estratigrafia_Fm_La_Paila_seccion_Buga_La_Habana.pdf; Bernal, Eufrasio. (2013). “El río Magdalena: escenario primordial de la patria”, en Revista Credencial, edición julio 7 de 2013, consultada el 7 de mayo de 2015, en http://www.revistacredencial.com/credencial/content/el-r-omagdalena-escenario-primordial-dela-patria; Bikundia, D. S., & Mohan, D. (2014). Major ion chemistry of the ground water at the Khoda Village, Ghaziabad, India. Sustainability of Water Quality and Ecology, 3, 133–150. https://doi.org/10.1016/j.swaqe.2014.12.001; Blake, S., Henry, T., Murray, J., Flood, R., Muller, M. R., Jones, A. G., & Rath, V. (2016). Compositional multivariate statistical analysis of thermal groundwater provenance: A hydrogeochemical case study from Ireland. Applied Geochemistry, 75, 171–188. https://doi.org/10.1016/j.apgeochem.2016.05.008; Blasco Duatis, M., & Pagès Parra, R. (2017). El modelo composicional (CoDA) en la representación de la teoría de la agenda setting. http://openaccess.uoc.edu/webapps/o2/bitstream/10609/65107/6/budisTFG0617memoria.pdf; Buccianti, A., Lima, A., Albanese, S., Cannatelli, C., Esposito, R., & de Vivo, B. (2015). Exploring topsoil geochemistry from the CoDA (Compositional Data Analysis) perspective: The multi-element data 105 archive of the Campania Region (Southern Italy). Journal of Geochemical Exploration, 159, 302– 316. https://doi.org/10.1016/j.gexplo.2015.10.006; Camacho, J. (1995): Análisis multivariado con SPSS/PC+. Editorial EUB. Barcelona: 1-348.; Chávez, C. (2011). Detección de metales pesados en el agua [Instituto Nacional de Astrofísica óptica y Electrónica]. https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/671/1/ChavezVC.pdf; Centro Internacional de Agricultura Tropical (CIAT). (2018). Plan integral de Cambio Climático para el Valle del Cauca PICC. chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://ecopedia.cvc.gov.co/sites/default/files/ar chivosAdjuntos/plan_integral_de_cambio_climetico_para_el_valle_del_cauca.pdf; Claude, B., & Boyd, E. (2017). Conductividad Electrica del agua, parte 2. https://www.aquaculturealliance.org/advocate/conductividad-electrica-del-agua-parte2/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA; CVC. (2001). Caracterización del río Cauca y tributarios tramo Salvajina- La Virginia. https://ecopedia.cvc.gov.co/sites/default/files/archivosAdjuntos/informe_ejecutivo_proyecto_m odelacion_del_río_cauca_cvc-univalle_0.pdf; Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. Article in Journal of the Geological Society of India, 47, 179–188. https://www.researchgate.net/publication/260719502; De Armas, M. 1985. Mapa Geológico de Colombia - escala 1:100.000, Plancha 261- Tuluá. INGEOMINAS. Bogotá.; De Porta, J., 1974. Lexique stratigraphique international. Vol. 5 Amérique latine, Fasc. 4b. Centre National de la recherche scientifique, Paris.; Domapielle, W. (2013). University of Ghana Hydrogeochemical analysis of groundwater in the sawla-tunakalba district of the northern region of Ghana. http://ugspace.ug.edu.gh; Dunia, M., & Heredia, R. (2017). Intoxicación ocupacional por metales pesados Occupational poisoning due to heavy metals. MEDISAN, 21(12), 3372. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017001200012; Ecofluidos Ingenieros S.A. (2012). Estudio de la Calidad de Fuentes Utilizada para Consumo Humano y Plan de Mitigación por Contaminación por uso Doméstico y Agroquímicos en Apurímac y Cusco. https://www1.paho.org/per/images/stories/PyP/PER37/15.pdf; Edmunds, W. M., Cook, J. M., Darling, W. G., Kinniburgh, D. G., Miles, D. L., Thames, M.-J., Authority, W., Reading, U. K., & Andrews, J. N. (1987). Baseline geochemical conditions in the Chalk aquifer, Berkshire, U.K.: a basis for groundwater quality management. In Applied Geochemistry (Vol. 2).; Freeze, R. A., y Cherry, J. A. (1979). Groundwater, New Jersey, USA: Prentice Hall. Inc., Englewood Cliffs.; Gabriel, K.R., 1971. The biplot-graphic display of matrices with application to principal component analysis. Biometrika 58, 453e467.; García, M., Sánchez, F. D., Guzmán, H., Verdugo, N., Domínguez, E., Vargas, O., Panizzo, L., Sanchez, N., Gómez, J., & Cortés, G. (s.f.). El agua. Retrieved May 19, 2022; Gómez Rave, J. C. (2009). Geología, Geofísica, hidrogeoquímica e isótopos, como herramienta para definir un modelo conceptual hidrogeológico, caso de aplicación: acuífero costero municipio de Turbo.; Gonzales, S. del M., Rojas, C. A., Cortez, M. Y., Londoño, M., Carvajal, D., & Giraldo, V. (2010). Hacia una Ciudad-Región Sustentable.; Grandjean P, Andersen O, Nielsen G (1988) Carcinogenecity of occupational nickel exposures: an evaluation of the epidemiological evidence. Am. J. Ind. Med 13:193-209; Grosse, E., 1935. Acerca de la geología del sur de Colombia, Patía y Nariño. Compilación de los estudios geológicos oficiales en Colombia – 1917 a 1933, III, 133-231. Imprenta Nacional, Bogotá; Grosse, E., 1926, El Terciario carbonífero de Antioquia, en la parte occidental de la Cordillera Central de Colombia entre el río Arma y Sacaojal: Berlin.; Güler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10(4), 455– 474. https://doi.org/10.1007/s10040-002-0196-6; Hernandez, V., & Nélida, C. (2018). El río y su territorio. Espacio de libertad: un concepto de gestión. https://www.redalyc.org/articulo.oa?id=72157132006; Instituto de Hidrología, Meteorología y Adecuación de Tierras, HIMAT. (1978). Resolución 0337 por medio de la cual se adopta un sistema de codificación para las estaciones hidrometeorológicas; Holguín, C., Rubio, H., Olave, M., Saucedo, R., Gutiérrez, M., & Bautista, R. (2006). Calidad del agua del río Cochos en la región de Ojinaga Chihuahua: parámetros fisicoquímicos, metales y metaloides. Universidad y Ciencia, 27.; Hurtado Escobar, P. A. (2014). 2.3 VALLE DEL CAUCA. http://www.todacolombia.com/departamentos/valledelcauca.html; Instituto Colombiano de Normas Técnicas y Certificación, ICONTEC. (1995). NTC-ISO: 5667-1: Gestión ambiental. Calidad del Agua. Muestreo. Directrices para el diseño de programas de muestreo. 17.; Instituto de Hidrología Meteorología y estudios Ambientales, IDEAM. (2013). Zonificación y codificación de cuencas hidrográficas e hidrogeológicas de Colombia. www.imprenta.gov.co; Lameli, C. H., & Custodio-Gimena, E. (2001). Caracterización Hidrogeoquímica del Macizo de Betancuria, Fuerteventura. https://www.tdx; https://repositorio.ucaldas.edu.co/handle/ucaldas/17843; Universidad de Caldas; Repositorio Universidad de Caldas; https://repositorio.ucaldas.edu.co/mydspace

  19. 19
    Academic Journal
  20. 20
    Academic Journal