يعرض 1 - 13 نتائج من 13 نتيجة بحث عن '"Análisis de imágenes médicas"', وقت الاستعلام: 1.08s تنقيح النتائج
  1. 1
    Dissertation/ Thesis

    المؤلفون: Ali, Mohammed Yousef Salem

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques

    Thesis Advisors: Valls Mateu, Aïda, Abdelnasser Mohamed Mahmoud, Mohamed, Baget Bernaldiz, Marc

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  2. 2
    Dissertation/ Thesis

    المؤلفون: Escorcia Gutierrez, José

    المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques

    Thesis Advisors: Puig Valls, Domènec, Romero Aroca, Pedro, Valls Mateu, Aïda

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 621.3

    وصف الملف: application/pdf

  3. 3
    Dissertation/ Thesis

    المؤلفون: Sánchez Martínez, Sergio

    المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions

    Thesis Advisors: Duchateau, Nicolas, Piella Fenoy, Gemma, Bijnens, Bart

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  4. 4
    Academic Journal
  5. 5
  6. 6
    Dissertation/ Thesis

    المؤلفون: Ali, Mohammed Yousef Salem

    المساهمون: Valls Mateu, Aïda, Abdelnasser Mohamed Mahmoud, Mohamed, Baget Bernaldiz, Marc, Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques

    المصدر: TDX (Tesis Doctorals en Xarxa)

    Time: 004, 62

    وصف الملف: 147 p.; application/pdf

  7. 7
    Dissertation/ Thesis

    المؤلفون: Toledo Cortés, Santiago

    المساهمون: González Osorio, Fabio Augusto, Mindlab, orcid:0000-0003-4172-9263, 0001449836, 57207843310, https://www.researchgate.net/profile/Santiago-Toledo-Cortes-2, https://scholar.google.com/citations?user=M7l6jx4AAAAJ&hl=en

    وصف الملف: xvi, 123 páginas; application/pdf

    Relation: Bireme; Testing for Glaucoma. https://glaucoma.org/learn-about-glaucoma/testing-for-glaucoma/. 2023; Abràmoff, Michael D.; Folk, James C.; Han, Dennis P.; Walker, Jonathan D.; Williams, David F.; Russell, Stephen R.; Massin, Pascale; Cochener, Beatrice; Gain, Philippe; Tang, Li; Lamard, Mathieu; Moga, Daniela C.; Quellec, Gwénolé; Niemeijer, Meindert: Automated analysis of retinal images for detection of referable diabetic retinopathy. In: JAMA Ophthalmology 131 (2013), Nr. 3, S. 351–357. – ISSN 21686165; Adler, Tim J.; Ardizzone, Lynton; Vemuri, Anant; Ayala, Leonardo; Gröhl, Janek; Kirchner, Thomas; Wirkert, Sebastian; Kruse, Jakob; Rother, Carsten; Köthe, Ullrich; Maier-Hein, Lena: Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. In: In- ternational Journal of Computer Assisted Radiology and Surgery 14 (2019), Nr. 6, S. 997–1007. – ISSN 18616429; American Academy of Ophthalmology: International clinical diabetic retinopathy disease severity scale detailed table. In: International Council of Oph- thalmology (2002); Andrearczyk, Vincent; Müller, Henning: Deep multimodal classification of image types in biomedical journal figures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11018 LNCS (2018), S. 3–14. – ISBN 9783319989310; Araújo, Teresa; Aresta, Guilherme; Mendonça, Luı́s; Penas, Susana; Maia, Carolina; Carneiro, Ângela; Mendonça, Ana M.; Campilho, Aurélio: DR—GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images. In: Medical Image Analysis 63 (2020). – ISSN 13618423; Arevalo, John; Solorio, Thamar; Montes-Y-Gómez, Manuel; González, Fabio A.: Gated multimodal units for information fusion. In: 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings (2017); Baccianella, Stefano; Esuli, Andrea; Sebastiani, Fabrizio: Evaluation measures for ordinal regression. In: 2009 Ninth international conference on intelligent systems design and applications IEEE, 2009, S. 283–287; Baltrusaitis, Tadas; Ahuja, Chaitanya; Morency, Louis P.: Multimodal Machine Learning: A Survey and Taxonomy. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019), Nr. 2, S. 423–443. – ISSN 19393539; Bauer, Dominik F.; Russ, Tom; Waldkirch, Barbara I.; Tönnes, Christian; Segars, William P.; Schad, Lothar R.; Zöllner, Frank G.; Golla, Alena K.: Generation of annotated multimodal ground truth datasets for abdominal medical image registration. In: International Journal of Computer Assisted Radiology and Surgery 16 (2021), Nr. 8, S. 1277–1285. – ISSN 18616429; Bayoudh, K; Knani, R; Hamdaoui, F; Mtibaa, A: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. In: Vis Comput 38 (2022), Nr. 8, S. 2939–2970. – Epub 2021 Jun 10; PMID: 34131356; PMCID: PMC8192112; Beckham, Christopher; Pal, Christopher: A simple squared-error reformulation for ordinal classification. (2016), Nr. Nips; Pal, Christopher: Unimodal probability distributions for deep ordinal classification. In: 34th International Conference on Machine Learning, ICML 2017 1 (2017), S. 647–655. ISBN 9781510855144; Benzebouchi, Nacer E.; Azizi, Nabiha; Ashour, Amira S.; Dey, Nilanjan; Sherratt, R. S.: Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis. In: Journal of Experimental and Theoretical Artificial Intelligence 31 (2019), Nr. 6, S. 841–874. – ISSN 13623079; Blunt, Nick S.; Camps, Joan; Crawford, Ophelia; Izsák, Róbert; Leontica, Sebastian; Mirani, Arjun; Moylett, Alexandra E.; Scivier, Sam A.; Sünder- hauf, Christoph; Schopf, Patrick; Taylor, Jacob M.; Holzmann, Nicole: Per- spective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. In: Journal of Chemical Theory and Computation 18 (2022), Nr. 12, S. 7001–7023. – PMID: 36355616; Bradshaw, John; Matthews, Alexander G. de G.; Ghahramani, Zoubin: Ad- versarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks. In: https://arxiv.org/pdf/1707.02476.pdfarXiv:1707.02476v1 eprint (2017), S. 1–33; Bulten, Wouter; Litjens, Geert; Pinckaers, Hans; Ström, Peter; Eklund, Martin; Kartasalo, Kimmo; Demkin, Maggie; Dane, Sohier. The PANDA challenge: Prostate cANcer graDe Assessment using the Gleason grading system. März 2020; Burns, Stephen A.; Elsner, Ann E.; Sapoznik, Kaitlyn A.; Warner, Raymond L.; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), S. 1–30. – ISSN 1350–9462; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), Nr. August 2018, S. 1–30. – ISSN 18731635; Camargo, Jorge E.; Caicedo, Juan C.; Gonzalez, Fabio A.: A kernel-based framework for image collection exploration. In: Journal of Visual Languages and Computing 24 (2013), Nr. 1, S. 53–67. – ISSN 1045926X; González, Fabio A.: Multimodal latent topic analysis for image collection summarization. In: Information Sciences 328 (2016), S. 270–287. – ISSN 00200255; Campochiaro, Peter A.; Mir, Tahreem A.: The mechanism of cone cell death in Retinitis Pigmentosa. In: Progress in Retinal and Eye Research 62 (2018), S. 24–37. – ISSN 1350–9462; In: Castellano, Ginevra; Kessous, Loic; Caridakis, George: Emotion Recog- nition through Multiple Modalities: Face, Body Gesture, Speech. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008, S. 92–103. – ISBN 978–3–540–85099–1; Cerezo, M; Verdon, Guillaume; Huang, Hsin-Yuan; Cincio, Lukasz; Coles, Patrick J.: Challenges and opportunities in quantum machine learning. In: Nature Computational Science 2 (2022), Nr. 9, S. 567–576; Chakravarty, Arunava; Sivaswamy, Jayanthi: Glaucoma classification with a fusion of segmentation and image-based features. In: Proceedings - International Symposium on Biomedical Imaging 2016-June (2016), Nr. i, S. 689–692. – ISBN 9781479923502; Chen, Richard J.; Lu, Ming Y.; Williamson, Drew F.; Chen, Tiffany Y.; Lipkova, Jana; Noor, Zahra; Shaban, Muhammad; Shady, Maha; Williams, Mane; Joo, Bumjin; Mahmood, Faisal: Pan-cancer integrative histology-genomic analysis via multimodal deep learning. In: Cancer Cell 40 (2022), Nr. 8, S. 865–878.e6. – ISSN 18783686; Chen, Yingming; Ratnam, Kavitha; Sundquist, Sanna M.; Lujan, Brandon; Ayyagari, Radha; Gudiseva, V. H.; Roorda, Austin; Duncan, Jacque L.: Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt Disease. In: Investigative Ophthalmology and Visual Science 52 (2011), Nr. 6, S. 3281–3292. – ISSN 01460404; Choi, Joon Y.; Yoo, Tae K.; Seo, Jeong G.; Kwak, Jiyong; Um, Terry T.; Rim, Tyler H.: Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. In: PLOS ONE 12 (2017), 11, Nr. 11, S. 1–16; Chollet, Francois: Image segmentation with a U-Net-like architecture. https:// keras.io/examples/vision/oxford_pets_image_segmentation/. 2020. – [Online; accessed 30-September-2021]; Chollet, Francois [u. a.]: Keras. https://github.com/fchollet/keras. 2015. – [Online; accessed 01-Mar-2022]; Contreras, Victor H.; Lara, Juan S.; Perdomo, Oscar J.; González, Fabio A.: Supervised online matrix factorization for histopathological multimodal retrieval. In: Romero, Eduardo (Hrsg.); Lepore, Natasha (Hrsg.); Brieva, Jorge (Hrsg.): 14th International Symposium on Medical Information Processing and Analysis Bd. 10975 International Society for Optics and Photonics, SPIE, 2018, S. 109750Y; Cross, Nancy; van Steen, Cécile; Zegaoui, Yasmina; Satherley, Andrew; Angelillo, Luigi: Current and Future Treatment of Retinitis Pigmentosa. In: Clinical Ophthalmology 16 (2022), S. 2909–2921. – ISSN 11775483; Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. In: Journal of Healthcare Engineering 2018 (2018). – ISSN 20402309; Cunefare, David: CNN-Cone-Detection. https://github.com/DavidCunefare/ CNN-Cone-Detection. 2017. – [Online; accessed 01-Mar-2022]; Cunefare, David; Fang, Leyuan; Cooper, Robert F.; Dubra, Alfredo; Car- roll, Joseph; Farsiu, Sina: Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. In: Scientific Reports 7 (2017), Nr. 1, S. 1–11. – ISSN 20452322; Huckenpahler, Alison L.; Patterson, Emily J.; Carroll, Joseph; Farsiu, Sina: RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. In: Biomedical Optics Express 10 (2019), Nr. 8, S. 3815. – ISSN 2156–7085; Cutajar, Kurt; Bonilla, Edwin V.; Michiardi, Pietro; Filippone, Maur- izio: Random feature expansions for Deep Gaussian Processes. In: 34th Interna- tional Conference on Machine Learning, ICML 2017 2 (2017), S. 1467–1482. ISBN 9781510855144; Davidson, Benjamin; Kalitzeos, Angelos; Ourselin, Sebastien; Michaelides, Michel; Bergeles, Christos: Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning. In: Scientific Reports 8 (2018), Nr. 1, S. 1–13. – ISBN 4159801826350; Decencière, Etienne; Zhang, Xiwei; Cazuguel, Guy; Laÿ, Bruno; Cochener, Béatrice; Trone, Caroline; Ordóñez-Varela, John R.; Erginay, Ali; Charton, Béatrice; Klein, Jean C.: Feedback on a publicly distributed image database: The Messidor database. In: Image Analysis and Stereology 33 (2014), Nr. 3, S. 231–234. – ISSN 18545165; Diabetic Retinopathy Detection of Kaggle: EyePACS Challenge. www. kaggle.com/c/diabetic-retinopathy-detection/data. – Accessed: 2019-10-15; For Disease Control, Centers; Prevention: Prostate Cancer Statistics. 2022. – Accessed: 2023-06-01; Prevention. Prostate Cancer Incidence by Age and Stage at Diagnosis, United States—20012019. USCS data brief, no 34. 2023; Eladawi, Nabila; Eltanboly, Ahmed; Elmogy, Mohammed; Ghazal, Mo- hammed; Fraiwan, Luay; Aboelfetouh, Ahmed; Riad, Alaa; Keynton, Robert; El-Azab, Magdi; Schaal, Shlomit; El-Baz, Ayman: Diabetic retinopathy early detection based on OCT and OCTA feature fusion. In: Proceedings - Interna- tional Symposium on Biomedical Imaging 2019-April (2019), S. 587–591. – ISBN 9781538636411; Ethem, Alpaydin: Introduction to Machine Learning. 3. The MIT Press, 2014; Faraj, Sheila F.; Bezerra, Stephania M.; Yousefi, Kasra; Fedor, Helen; Glavaris, Stephanie; Han, Misop; Partin, Alan W.; Humphreys, Elizabeth; Tosoian, Jeffrey; Johnson, Michael H.; Davicioni, Elai; Trock, Bruce J.; Schaeffer, Edward M.; Ross, Ashley E.; Netto, George J.: Clinical validation of the 2005 isup gleason grading system in a cohort of intermediate and high risk men undergoing radical prostatectomy. In: PLoS ONE 11 (2016), Nr. 1, S. 1–13. – ISSN 19326203; Frank, Eibe; Hall, Mark: A Simple Approach to Ordinal Classification. In: De Raedt, Luc (Hrsg.); Flach, Peter (Hrsg.): Machine Learning: ECML 2001. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. – ISBN 978–3–540–44795–5, S. 145–156; Garcia Arnal Barbedo, Jayme: A Review on Methods for Automatic Counting of Objects in Digital Images. In: IEEE Latin America Transactions 10 (2012), Nr. 5, S. 2112–2124; Garg, Bhanu; Manwani, Naresh: Robust Deep Ordinal Regression under Label Noise. In: Pan, Sinno J. (Hrsg.); Sugiyama, Masashi (Hrsg.): Proceedings of The 12th Asian Conference on Machine Learning Bd. 129. Bangkok, Thailand : PMLR, 18–20 Nov 2020, S. 782–796; Gargeya, Rishab; Leng, Theodore: Automated Identification of Diabetic Retinopa- thy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, S. 962–969; Gieres, François: Mathematical surprises and Dirac’s formalism in quantum mechan- ics. In: Reports on Progress in Physics 63 (2000), dec, Nr. 12, S. 1893; Golabbakhsh, M.; Rabbani, H.: Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model. In: IET Image Processing 7 (2013), November, Nr. 8, S. 768–776. – ISSN 1751–9667; González, Fabio A.; Ramos-Pollán, Raúl; Gallego-Mejia, Joseph A.: Quan- tum Kernel Mixtures for Probabilistic Deep Learning. (2023); Vargas-Calderón, Vladimir; Vinck-Posada, Herbert: Classification with quantum measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002; González, F.A.; Gallego, A.; Toledo-Cortés, S. [u. a.]: Learning with density matrices and random features. In: Quantum Machine Intelligence 4 (2022), S. 23; Gulshan, Varun; Peng, Lily; Coram, Marc; Stumpe, Martin C.; Wu, Derek; Narayanaswamy, Arunachalam; Venugopalan, Subhashini; Widner, Kasumi; Madams, Tom; Cuadros, Jorge; Kim, Ramasamy; Raman, Rajiv; Nelson, Philip C.; Mega, Jessica L.; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410; Gunawardhana, Piumi L.; Jayathilake, Raviru; Withanage, Yasiru; Gane- goda, Gamage U.: Automatic Diagnosis of Diabetic Retinopathy using Machine Learning: A Review. In: Proceedings of ICITR 2020 - 5th International Conference on Information Technology Research: Towards the New Digital Enlightenment (2020). ISBN 9781665414753; Guo, Z.; Li, X.; Huang, H.; Guo, N.; Li, Q.: Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018. – ISSN 1945–8452, S. 903–907; Li, Q.: Deep Learning-Based Image Segmentation on Multimodal Medical Imaging. In: IEEE Transactions on Radiation and Plasma Medical Sciences 3 (2019), March, Nr. 2, S. 162–169. – ISSN 2469–7303; Gutiérrez, Pedro A.; Pérez-Ortiz, Marı́a; Sánchez-Monedero, Javier; Fernández-Navarro, Francisco; Hervás-Martı́nez, César: Ordinal Regression Methods: Survey and Experimental Study. In: IEEE Transactions on Knowledge and Data Engineering 28 (2016), Nr. 1, S. 127–146. – ISSN 10414347; Gutman, David A.; Cobb, Jake; Somanna, Dhananjaya; Park, Yuna; Wang, Fusheng; Kurc, Tahsin; Saltz, Joel H.; Brat, Daniel J.; Cooper, Lee A.; Kong, Jun: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. In: Journal of the American Medical Informatics Association 20 (2013), Nr. 6, S. 1091–1098; Hashemi, Mehrdad; Zandieh, Mohammad A.; Talebi, Yasmin; Rahmanian, Parham; Shafiee, Sareh S.; Nejad, Melina M.; Babaei, Roghayeh; Sadi, Farzaneh H.; Rajabi, Romina; Abkenar, Zahra O.; Rezaei, Shamin; Ren, Jun; Nabavi, Noushin; Khorrami, Ramin; Rashidi, Mohsen; Hushmandi, Kiavash; Entezari, Maliheh; Taheriazam, Afshin: Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. In: Biomedicine Pharmacotherapy 160 (2023), S. 114392. – ISSN 0753–3322; He, Shenghua; Minn, Kyaw T.; Solnica-Krezel, Lilianna; Anastasio, Mark A.; Li, Hua: Deeply-supervised density regression for automatic cell counting in mi- croscopy images. In: Medical Image Analysis 68 (2021), S. 101892. – ISSN 1361–8415; Huang, Di; Heath Jeffery, Rachael C.; Aung-Htut, May T.; McLenachan, Samuel; Fletcher, Sue; Wilton, Steve D.; Chen, Fred K.: Stargardt disease and progress in therapeutic strategies. In: Ophthalmic Genetics 43 (2022), Nr. 1, S. 1–26. – ISSN 17445094; Huang, Huikang; Situ, Haozhen; Zheng, Shenggen: Bidirectional Information Flow Quantum State Tomography. In: Chinese Physics Letters 38 (2021), Nr. 4, S. 1–6. – ISSN 17413540; Jim, Oscar A.; Cirujeda, Pol; Henning, M: Combining Radiology Images and Meta – data for Multimodal Medical Case – based Retrieval. In: VISCERAL book (2017), S. 1–14; Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning: Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score. In: Medical Imaging 2017: Digital Pathology 10140 (2017), S. 101400O. – ISBN 9781510607255; Kamnitsas, K.; Bai, W.; Ferrante, E.; McDonagh, S.; Sinclair, M.; Pawlowski, N.; Rajchl, M.; Lee, M.; Kainz, B.; Rueckert, D.; Glocker, B.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10670 LNCS (2018), S. 450–462. – ISBN 9783319752372; Karimi, Davood; Nir, Guy; Fazli, Ladan; Black, Peter C.; Goldenberg, Larry; Salcudean, Septimiu E.: Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), may, Nr. 5, S. 1413–1426. – ISSN 21682208; Kaya, Mahmut; Bilge, H.s: Deep Metric Learning: A Survey. In: Symmetry 11 (2019), 08, S. 1066; Kendall, Alex; Gal, Yarin: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems 2017-December (2017), Nr. Nips, S. 5575–5585. – ISSN 10495258; Khani, Ali A.; Fatemi Jahromi, Seyed A.; Shahreza, Hatef O.; Behroozi, Hamid; Baghshah, Mahdieh S.: Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks. In: 5th Iranian Conference on Signal Process- ing and Intelligent Systems, ICSPIS 2019 (2019), Nr. December, S. 18–19. ISBN 9781728153506; Kim, Hee E.; Cosa-Linan, Alejandro; Santhanam, Nandhini; Jannesari, Mah- boubeh; Maros, Mate E.; Ganslandt, Thomas: Transfer learning for medical image classification: a literature review. In: BMC medical imaging 22 (2022), Nr. 1, S. 69; Kim, Tae H.; Jeong, Dae J.; Hahn, Soo Y.; Shin, Jung H.; Oh, Young L.; Ki, Chang S.; Kim, Jong W.; Jang, Ju Y.; Cho, Yoon Y.; Chung, Jae H.; Kim, Sun W.: Triage of patients with AUS/FLUS on thyroid cytopathology: Effectiveness of the multimodal diagnostic techniques. In: Cancer Medicine 5 (2016), Nr. 5, S. 769–777. – ISSN 20457634; Kleesiek, Jens; Urban, Gregor; Hubert, Alexander; Schwarz, Daniel; Maier- Hein, Klaus; Bendszus, Martin; Biller, Armin: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. In: NeuroImage 129 (2016), S. 460–469. – ISSN 10959572; Kong, Jun; Gao, Jingjing; Chisolm, Candace; Sharma, Ashish; Pan, Tony; Van Meir, Erwin G.; Kurc, Tahsin M.; Moreno, Carlos S.; Brat, Daniel J.: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. In: IEEE Transactions on Biomedical Engineering 58 (2011), Nr. 12 PART 2, S. 3469–3474. – ISSN 00189294; Kononenko, Igor: Machine learning for medical diagnosis: History, state of the art and perspective. In: Artificial Intelligence in Medicine 23 (2001), Nr. 1, S. 89–109. – ISSN 09333657; Kovalyk, Oleksandr; Morales-Sánchez, Juan; Verdú-Monedero, Rafael; Sellés-Navarro, Inmaculada; Palazón-Cabanes, Ana; Sancho-Gómez, José Luis: PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. In: Scientific Data 9 (2022), Nr. 1, S. 1–12. – ISBN 4159702201; Krause, Jonathan; Rahimy, Ehsan; Karth, Peter; Corrado, Greg S.; Webster, Dale R.: Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. In: Ophthalmology 125 (2018), Nr. 8, S. 1264–1272. – ISSN 15494713; Krenn, Mario; Malik, Mehul; Fickler, Robert; Lapkiewicz, Radek; Zeilinger, Anton: Automated Search for new Quantum Experiments. In: Phys. Rev. Lett. 116 (2016), S. 090405; Contreras O., Victor H.; Otálora, Sebastián; Müller, Hen- ning; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Martel, Anne L. (Hrsg.); Abol- maesumi, Purang (Hrsg.); Stoyanov, Danail (Hrsg.); Mateus, Diana (Hrsg.); Zuluaga, Maria A. (Hrsg.); Zhou, S. K. (Hrsg.); Racoceanu, Daniel (Hrsg.); Joskowicz, Leo (Hrsg.): Medical Image Computing and Computer Assisted Inter- vention – MICCAI 2020. Cham : Springer International Publishing, 2020. – ISBN 978–3–030–59722–1, S. 572–581; Contreras O, Victor H.; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin- formatics) Bd. 12265 LNCS, 2020. – ISBN 9783030597214, S. 572–581; Lee, Jimmy A.; Liu, Peng; Cheng, Jun; Fu, Huazhu: A Deep Step Pattern Rep- resentation for Multimodal Retinal Image Registration. In: The IEEE International Conference on Computer Vision (ICCV) (2019), S. 5077–5086; Lee, Ki S.; Jung, Seok K.; Ryu, Jae J.; Shin, Sang W.; Choi, Jinwook: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. In: Journal of Clinical Medicine 9 (2020), Nr. 2. – ISSN 20770383; Leibig, Christian; Allken, Vaneeda; Ayhan, Murat S.; Berens, Philipp; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. – ISSN 20452322; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14; Li, Daoliang; Miao, Zheng; Peng, Fang; Wang, Liang; Hao, Yinfeng; Wang, Zhenhu; Chen, Tao; Li, Hui; Zheng, Yingying: Automatic counting methods in aquaculture: A review. In: Journal of the World Aquaculture Society 52 (2021), Nr. 2, S. 269–283; Li, Feng; Liu, Zheng; Chen, Hua; Jiang, Minshan; Zhang, Xuedian; Wu, Zhizheng: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. In: Translational Vision Science and Technology 8 (2019), Nr. 6. – ISSN 21642591; Li, Hongming; Habes, Mohamad; Fan, Yong: Deep Ordinal Ranking for Multi- Category Diagnosis of Alzheimer’s Disease using Hippocampal MRI data. In: arXiv (2017), sep; Li, Yuchun; Huang, Mengxing; Zhang, Yu; Chen, Jing; Xu, Haixia; Wang, Gang; Feng, Wenlong: Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer. In: IEEE Access 8 (2020), S. 117714–117725. – ISSN 21693536; Lim, G.; Bellemo, V.; Xie, Y. [u. a.]: Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review. In: Eye and Vision 7 (2020), S. 21; Lim, Zhan W.; Lee, Mong L.; Hsu, Wynne; Wong, Tien Y.: Building Trust in Deep Learning System towards Automated Disease Detection. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (2018), S. 9516–9521; Liu, Xiaofeng: Ordinal Regression with Neuron Stick-breaking for Medical Diagnosis. 2018. – Forschungsbericht. – 0–0 S; Lucas, Marit; Jansen, Ilaria; Savci-Heijink, C. D.; Meijer, Sybren L.; de Boer, Onno J.; van Leeuwen, Ton G.; de Bruin, Daniel M.; Marquering, Henk A.: Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. In: Virchows Archiv 475 (2019), Nr. 1, S. 77–83. – ISSN 14322307; Ma, Mengmeng; Ren, Jian; Zhao, Long; Testuggine, Davide; Peng, Xi: Are Multimodal Transformers Robust to Missing Modality? (2022), S. 18177–18186; Tulyakov, Sergey; Wu, Cathy; Peng, Xi: SMIL: Multimodal Learning with Severely Missing Modality. In: 35th AAAI Conference on Artificial Intelligence, AAAI 2021 3B (2021), S. 2302–2310. ISBN 9781713835974; Manjula Sri, K.M.M. R.: Novel image pro-cessing techniquesto detect lesion us-ing lab view R. In: India Conference (INDICON), 2011 Annual IEEE (2011); Mcgurk, Harry; Macdonald, John: Hearing lips and seeing voices. In: Nature 264 (1976), Nr. 5588, S. 746–748. – ISSN 00280836; Menze, Bjoern; Reyes, Mauricio; Jakab, Andras; Gerstner, Elisabeth; Fara- hani, Keyvan; Kirby, Justin: Brain Tumor Image Segmentation ( BRATS ) 2013 To cite this version : NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. (2013); MINSALUD: ANÁLISIS DE SITUACIÓN DE SALUD VISUAL EN COLOMBIA 2016. (2015). – ISBN 9780511993398; Miri, Mohammad S.; Lee, Kyungmoo; Niemeijer, Mein- dert; Wang, Jui K.; Kwon, Young H.; Garvin, Mona K.: Multimodal Segmen- tation of Optic Disc and Cup from SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. In: IEEE Transactions on Medical Imaging 34 (2015), Nr. 9, S. 1854–1866. – ISSN 1558254X; Moccia, Sara; Wirkert, Sebastian J.; Kenngott, Hannes; Vemuri, Anant S.; Apitz, Martin; Mayer, Benjamin; De Momi, Elena; Mattos, Leonardo S.; Maier-Hein, Lena: Uncertainty-aware organ classification for surgical data science applications in laparoscopy. In: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 11, S. 2649–2659. – ISSN 15582531; Mookiah, Muthu Rama K.; Acharya, U. R.; Chua, Chua K.; Min, Lim C.; Ng, E. Y.; Mushrif, Milind M.; Laude, Augustinus: Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 227 (2013), Nr. 1, S. 37–49. – ISSN 09544119; Morgan, Jessica I.; Chen, Min; Huang, Andrew M.; Jiang, Yu Y.; Cooper, Robert F.: Cone identification in choroideremia: Repeatability, reliability, and au- tomation through use of a convolutional neural network. In: Translational Vision Science and Technology 9 (2020), Nr. 2, S. 1–13. – ISSN 21642591; Müller, Henning; Ünay, Devrim: Medical Decision Support Using Increasingly Large Multimodal Data Sets. In: Big Data Analytics for Large-Scale Multimedia Search (2019), S. 317–336; Nagpal, Kunal; Foote, Davis; Liu, Yun; Chen, Po Hsuan C.; Wulczyn, Ellery; Tan, Fraser; Olson, Niels; Smith, Jenny L.; Mohtashamian, Arash; Wren, James H.; MacDonald, Robert; Peng, Lily H.; Amin, Mahul B.; Evans, Andrew J.; Sangoi, Ankur R.; Mermel, Craig H.; Hipp, Jason D.; Stumpe, Martin C.: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. In: npj Digital Medicine 2 (2019), dec, Nr. 1, S. 1–10. – ISSN 23986352; Nakatake, Shunji; Murakami, Yusuke; Funatsu, Jun; Koyanagi, Yoshito; Akiyama, Masato; Momozawa, Yukihide; Ishibashi, Tatsuro; Sonoda, Koh H.; Ikeda, Yasuhiro: Early detection of cone photoreceptor cell loss in retinitis pig- mentosa using adaptive optics scanning laser ophthalmoscopy. In: Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 257 (2019), Nr. 6, S. 1169–1181. – ISSN 1435702X; Nie, Dong; Wang, Li; Gao, Yaozong; Shen, Dinggang: FULLY CONVOLU- TIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION Dong. In: Proc IEEE Int Symp Biomed Imaging (2016); Niu, Zhenxing; Zhou, Mo; Wang, Le; Gao, Xinbo; Hua, Gang: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Bd. 2016-Decem, IEEE Computer Society, dec 2016. – ISBN 9781467388504, S. 4920–4928; Perdomo, Oscar; González, Fabio; Müller, Henning: Training Deep Convolutional Neural Networks with Active Learning for Exudate Clas- sification in Eye Fundus Images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Bd. 10552 LNCS, 2017. – ISBN 9783319675336, S. 146–154; Perdomo, Oscar.; Gonzalez, Fabio.: A Systematic Review of Deep Learning Methods Applied to Ocular Images. In: Ciencia e Ingenieria Neogranadina 30 (2019), Nr. 1. ISBN 0000000314251; Otalora, Sebastian; Gonzalez, Fabio A.; Meriaudeau, Fabrice; Muller, Henning: OCT-NET: A convolutional network for automatic clas- sification of normal and diabetic macular edema using sd-oct volumes. In: Proceedings - International Symposium on Biomedical Imaging 2018-April (2018), Nr. Isbi, S. 1423–1426. – ISBN 9781538636367; Perdomo Charry, Oscar J.; González, Fabio A.: Combin- ing morphometric features and convolutional networks fusion for glaucoma diagnosis. (2017), Nr. November, S. 57. – ISBN 9781510616332; Pinz, A.; Bernogger, S.; Datlinger, P.; Kruger, A.: Mapping the human retina. In: IEEE Transactions on Medical Imaging 17 (1998), Aug, Nr. 4, S. 606–619. – ISSN 1558–254X; Piotter, Elena; McClements, Michelle E.; Maclaren, Robert E.: Therapy approaches for stargardt disease. In: Biomolecules 11 (2021), Nr. 8, S. 1–28. – ISSN 2218273X; Polikar, R.; Tilley, C.; Hillis, B.; Clark, C. M.: Multimodal EEG, MRI and PET data fusion for Alzheimer’s disease diagnosis. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010. – ISSN 1558–4615, S. 6058–6061; Rahimi, Ali; Recht, Ben: Random features for large-scale kernel machines. In: Advances in neural information . . . (2007), Nr. 1, S. 1–8. – ISBN 160560352X; Recht, Benjamin: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference, 2009. – ISBN 160560352X; Ramirez, Geovany A.; Baltrušaitis, Tadas; Morency, Louis-Philippe: Modeling Latent Discriminative Dynamic of Multi-dimensional Affective Signals. In: D’Mello, Sidney (Hrsg.); Graesser, Arthur (Hrsg.); Schuller, Björn (Hrsg.); Martin, Jean-Claude (Hrsg.): Affective Computing and Intelligent Interaction. Berlin, Heidel- berg : Springer Berlin Heidelberg, 2011. – ISBN 978–3–642–24571–8, S. 396–406; Rasmussen, Carl E.; Williams, Christopher K. I.: Gaussian processes for machine learning. The MIT Press, 2006. – ISBN 026218253X; Hacihaliloglu, Ilker; Singer, Eric A.; Foran, David J.; Qi, Xin: Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images. In: Frontiers in Bioengineering and Biotechnology 7 (2019), Nr. May, S. 1–12. – ISSN 2296–4185; Ritter, N.; Owens, R.; Cooper, J.; Eikelboom, R. H.; Van Saarloos, P. P.: Registration of stereo and temporal images of the retina. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 404–418. – ISSN 1558–254X; Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas: U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Sci- ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9351 (2015), S. 234–241. – ISBN 9783319245737; Romero-Borja, Fernando; III, William J. D.; Queener, Hope; Hebert, Thomas J.; Campbell, Melanie C.: Adaptive optics scanning laser ophthalmoscopy. In: Opt. Express 10 (2002), May, Nr. 9, S. 405–412; Russakovsky, Olga; Deng, Jia; Su, Hao; Satheesh, Sanjeev; Ma, Sean; Huang, Zhiheng; Karpathy, Andrej; Khosla, Aditya; Bernstein, Michael; Berg, Alexander C.; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, S. 211–252; Sahran, Shahnorbanun; Albashish, Dheeb; Abdullah, Azizi; Shukor, Nor- dashima A.; Hayati Md Pauzi, Suria: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. In: Artificial Intelligence in Medicine 87 (2018), S. 78–90. – ISSN 18732860; Salam, Anum A.; Khalil, Tehmina; Akram, M. U.; Jameel, Amina; Basit, Imran: Automated detection of glaucoma using structural and non structural features. In: SpringerPlus 5 (2016), Nr. 1. – ISSN 21931801; Wazir, Kamran; Anwar, Syed M.; Majid, Muhammad: Autonomous Glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: 2015 IEEE International Symposium on Signal Pro- cessing and Information Technology, ISSPIT 2015 (2016), Nr. c, S. 370–374. ISBN 9781509004805; Schlegl, Thomas; Waldstein, Sebastian; Vogl, Wolf-Dieter; Schmidt- Erfurth, Ursula; Langs, Georg: Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks. In: Information Processing in Medical Imaging 9123 (2015), Nr. Chapter 58, S. 733–745. – ISBN 978–3–319–19991–7; Schmidhuber, Jürgen: Deep Learning in neural networks: An overview. In: Neural Networks 61 (2015), S. 85–117. – ISBN 0893–6080; Shah, Mital; Roomans Ledo, Ana; Rittscher, Jens: Automated classification of normal and Stargardt disease optical coherence tomography images using deep learn- ing. In: Acta Ophthalmologica 98 (2020), Nr. 6, S. e715–e721; Shawe-Taylor, John; Cristianini, Nello: Kernel Methods for Pattern Analysis. New York, New York, USA : Cambridge University Press, 2004. – ISBN 9780521813976; Singh, Amitojdeep; Sengupta, Sourya; Lakshminarayanan, Vasudevan: Ex- plainable deep learning models in medical image analysis. In: Journal of Imaging 6 (2020), Nr. 6, S. 1–19. – ISSN 2313433X; Society, American C. Key Statistics for Prostate Cancer. 2023; Stolte, Skylar; Fang, Ruogu: A survey on medical image analysis in diabetic retinopathy. In: Medical Image Analysis 64 (2020), S. 101742. – ISSN 13618423; Olsson, Henrik; Solorzano, Leslie; De- lahunt, Brett; Berney, Daniel M.; Bostwick, David G.; Grignon, David J.; Humphrey, Peter A.; Iczkowski, Kenneth A.; Kench, James G.; Kristiansen, Glen; van der Kwast, Theodorus H.; Leite, Katia R.; McKenney, Jesse K.; Oxley, Jon; Pan, Chin C.; Samaratunga, Hemamali; Srigley, John R.; Takahashi, Hiroyuki; Tsuzuki, Toyonori; Varma, Mu- rali; Zhou, Ming; Lindberg, Johan; Lindskog, Cecilia; Ruusuvuori, Pekka; Wählby, Carolina; Grönberg, Henrik; Rantalainen, Mattias; Egevad, Lars; Eklund, Martin: Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. In: The Lancet Oncology 21 (2020), Nr. 2, S. 222–232. – ISSN 14745488; Summerfield, Quentin: L ipreading and audio-visual speech perception. In: Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 335 (1992), Nr. 1273, S. 71–78; Sun, Yunlian; Tang, Jinhui; Sun, Zhenan; Tistarelli, Massimo: Facial Age and Expression Synthesis Using Ordinal Ranking Adversarial Networks. In: IEEE Transactions on Information Forensics and Security 15 (2020), S. 2960–2972. – ISSN 15566021; Szegedy, Christian; Vanhoucke, Vincent; Ioffe, Sergey; Shlens, Jon; Wojna, Zbigniew: Rethinking the Inception Architecture for Computer Vision. In: Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December (2016), S. 2818–2826. – ISBN 9781467388504; Tang, Yehui; Yan, Junchi; Hu, Guoqiang; Zhang, Baohua; Zhou, Jinzan: Recent progress and perspectives on quantum computing for finance. In: Service Oriented Computing and Applications 16 (2022), Nr. 4, S. 227–229; Teng, Q.; Liu, Z.; Song, Y.; Han, K.; Lu, Y.: A survey on the interpretability of deep learning in medical diagnosis. In: Multimed Syst 28 (2022), Nr. 6, S. 2335–2355; Threatt, Jennifer; Williamson, Jennifer F.; Huynh, Kyle; Davis, Richard M.: Ocular disease, knowledge and technology applications in patients with diabetes. In: American Journal of the Medical Sciences 345 (2013), Nr. 4, S. 266–270. – ISSN 00029629; Tian, Li; Ma, Liyan; Wen, Zhijie; Xie, Shaorong; Xu, Yupeng: Learning Dis- criminative Representations for Fine-Grained Diabetic Retinopathy Grading. (2020); Toledo-Cortés, Santiago; De La Pava, Melissa; Perdómo, Oscar; González, Fabio A.: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification. In: Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol 12069. Springer, Cham., 2020, S. 206–215; Toledo-Cortés, Santiago: AOSLO-CNN Diagnosis and Counting. https:// github.com/stoledoc/AOSLO-CNN_Diagnosis_Counting. 2022. – [Online; accessed 01-Mar-2022]; Toledo-Cortés, Santiago: DQOR Code for Medical Image Grading with Deep Quan- tum Ordinal Regression. https://github.com/stoledoc/DQOR. 2022. – [Online; ac- cessed 01-Mar-2022]; Dubis, Adam M.; Müller, Henning: Deep Density Estimation for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning Light Ophthalmoscope Images. In: Transla- tional Vision Science Technology 12 (2023), 11, Nr. 11, S. 25–25. – ISSN 2164–2591; Useche, Diego H.; González, Fabio A.: Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. In: Computers in Biology and Medicine 145 (2022), S. 105472. – ISSN 0010–4825; Tolkach, Yuri; Dohmgörgen, Tilmann; Toma, Marieta; Kristiansen, Glen: High-accuracy prostate cancer pathology using deep learning. In: Nature Machine Intelligence 2 (2020), jul, Nr. 7, S. 411–418. – ISSN 25225839; In: Tsang, Stephen H.; Sharma, Tarun: Stargardt Disease. Cham : Springer International Publishing, 2018, S. 139–151. – ISBN 978–3–319–95046–4; Uppamma, P.; Bhattacharya, S.: Deep Learning and Medical Image Process- ing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends. In: J Healthc Eng 2023 (2023), S. 2728719; Urban, G.; Bendszus, M.; Hamprecht, Fred A.; Kleesiek, J.: Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. In: MIC- CAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, S. 31–35; Vaghefi, Ehsan; Hill, Sophie; Kersten, Hannah M.; Squirrell, David: Mul- timodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration : A Feasibility Study. 2020 (2020); Vaicenavicius, Juozas; Widmann, David; Andersson, Carl; Lindsten, Fredrik; Roll, Jacob; Schön, Thomas: Evaluating model calibration in classification. In: Chaudhuri, Kamalika (Hrsg.); Sugiyama, Masashi (Hrsg.): Proceedings of Machine Learning Research Bd. 89, PMLR, 16–18 Apr 2019, S. 3459–3467; Van Grinsven, Mark J.; Buitendijk, Gabriëlle H.S.; Brussee, Corina; Van Ginneken, Bram; Hoyng, Carel B.; Theelen, Thomas; Klaver, Caroline C.; Sánchez, Clara I.: Automatic identification of reticular pseudodrusen using multi- modal retinal image analysis. In: Investigative Ophthalmology and Visual Science 56 (2015), Nr. 1, S. 633–639. – ISSN 15525783; Vanegas, Jorge A.: Large-scale Non-linear Multimodal Semantic Embedding Large- scale Non-linear Multimodal Semantic Embedding, Dissertation, 2017; Voets, Mike; Møllersen, Kajsa; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. – ISBN 1111111111; Wang, Daihou; Zhong, Hua; Kim, Isaac Y.; Qi, Xin: Exploring automatic prostate histopathology image gleason grading via local structure modeling. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem (2015), S. 2649–2652. – ISBN 9781424492718; Wang, Weisen; Xu, Zhiyan; Yu, Weihong; Zhao, Jianchun; Yang, Jingyuan; He, Feng; Yang, Zhikun; Chen, Di; Ding, Dayong; Chen, Youxin; Li, Xirong: Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization. (2019), S. 156–164. – ISBN 9783030322380; Wells, John A.; Glassman, Adam R.; Ayala, Allison R.; Jampol, Lee M.; Bressler, Neil M.; Bressler, Susan B.; Brucker, Alexander J.; Ferris, Fred- erick L.; Hampton, G. R.; Jhaveri, Chirag; Melia, Michele; Beck, Roy W.: Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema Two-Year Re- sults from a Comparative Effectiveness Randomized Clinical Trial. In: Ophthalmology 123 (2016), Nr. 6, S. 1351–1359; Wilkinson, C. P.; Ferris, Frederick L.; Klein, Ronald E.; Lee, Paul P.; Agardh, Carl D.; Davis, Matthew; Dills, Diana; Kampik, Anselm; Pararajasegaram, R.; Verdaguer, Juan T.; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682; Wilson, Andrew; Nickisch, Hannes: Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP). In: Proceedings of the 32nd International Conference on Machine Learning, JMLR: W&CP. Lille, France, 2015; World Health Organisation: World report on vision. 2019 ( 14). – Forschungs- bericht. – 180–235 S. – ISBN 9789241516570; Wynne, Niamh; Duncan, Jacque L.: Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). In: Progress in Retinal and Eye Research (2021), Nr. October, S. 100920. – ISSN 18731635; Xie, Weidi; Noble, J. A.; Zisserman, Andrew: Microscopy cell counting and de- tection with fully convolutional regression networks. In: Computer Methods in Biome- chanics and Biomedical Engineering: Imaging and Visualization 6 (2018), Nr. 3, S. 283–292. – ISSN 21681171; Xin, Qiu; Elliot, Meyerson; Miikkulainen, Risto: Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel. In: ICLR 2020., 2019, S. 1–17. Addis Ababa, Ethiopia; Yang, Jialiang; Ju, Jie; Guo, Lei; Ji, Binbin; Shi, Shufang; Yang, Zixuan; Gao, Songlin; Yuan, Xu; Tian, Geng; Liang, Yuebin; Yuan, Peng: Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. In: Computational and Structural Biotechnology Journal 20 (2022), S. 333–342. – ISSN 2001–0370; Yap, Jordan; Yolland, William; Tschandl, Philipp: Multimodal skin lesion classification using deep learning. In: Experimental Dermatology 27 (2018), Nr. 11, S. 1261–1267. – ISSN 16000625; Yau, Joanne W.; Rogers, Sophie L.; Kawasaki, Rho; Lamoureux, Ecosse L.; Kowalski, Jonathan W.; Bek, Toke; Chen, Shih J.; Dekker, Jacqueline M.; Fletcher, Astrid; Grauslund, Jakob; Haffner, Steven; Hamman, Richard F.; Ikram, M. K.; Kayama, Takamasa; Klein, Barbara E.; Klein, Ronald; Krish- naiah, Sannapaneni; Mayurasakorn, Korapat; O’Hare, Joseph P.; Orchard, Trevor J.; Porta, Massimo; Rema, Mohan; Roy, Monique S.; Sharma, Tarun; Shaw, Jonathan; Taylor, Hugh; Tielsch, James M.; Varma, Rohit; Wang, Jie J.; Wang, Ningli; West, Sheila; Zu, Liang; Yasuda, Miho; Zhang, Xinzhi; Mitchell, Paul; Wong, Tien Y.: Global prevalence and major risk factors of diabetic retinopathy. In: Diabetes Care 35 (2012), Nr. 3, S. 556–564; Ramasubramanian, Bhoopalan; Selvaperumal, Sundaramoorthy; Kim, Deok W.: The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. In: Medical and Biological Engineering and Computing 57 (2019), Nr. 3, S. 677–687. – ISSN 17410444; Zadeh, Amir; Chen, Minghai; Cambria, Erik; Poria, Soujanya; Morency, Louis P.: Tensor fusion network for multimodal sentiment analysis. In: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings (2017), S. 1103–1114. ISBN 9781945626838; Zana, F.; Klein, J. C.: A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 419–428. – ISSN 1558–254X; Zeng, Xianglong; Chen, Haiquan; Luo, Yuan; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. In: IEEE Access 7 (2019), Nr. c, S. 30744–30753; Zhang, Daoqiang; Wang, Yaping; Zhou, Luping; Yuan, Hong: Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. In: Neuroimage (2011). – ISBN 6176321972; Zhang, Yao; Ni, Qiang: Recent advances in quantum machine learning. In: Quantum Engineering 2 (2020), Nr. 1, S. e34; https://repositorio.unal.edu.co/handle/unal/85336; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  8. 8
  9. 9
    Dissertation/ Thesis

    المؤلفون: Cano Ramírez, Fabián Alberto

    المساهمون: Cruz Roa, Angel Alfonso

    وصف الملف: 74 páginas; application/pdf

    Relation: Agencia de Noticias UN. (2017). Especialistas médicos, calidad antes que cantidad. Retrieved from http://agenciadenoticias.unal.edu.co/detalle/article/especialistas-medicos-calidad-antes-que-cantidad.html; Angel Arul Jothi, J., & Mary Anita Rajam, V. (2017). A survey on automated cancer diagnosis from histopathology images. Artificial Intelligence Review, 48(1), 31–81. https://doi.org/10.1007/s10462-016-9494-6; Arévalo, J., Cruz-Roa, A., & Gonzalez O, F. A. (2014). Histopathology image representation for automatic analysis: a state-of-the-art review. Rev. Fac. Med. Bogotá, 22(2), 79–91. Retrieved from http://www.scielo.org.co/pdf/med/v22n2/v22n2a09.pdf; Bracey, T. (2017). Digital pathology. The Bulletin of the Royal College of Surgeons of England, 99(3), 93–96. https://doi.org/10.1308/rcsbull.2017.93; Cruz-Roa, A., Diaz, G., & González, F. (2011). A framework for semantic analysis of histopathological images using nonnegative matrix factorization. In 2011 6th Colombian Computing Congress (CCC) (pp. 1–7). IEEE. https://doi.org/10.1109/COLOMCC.2011.5936285; Cruz Roa, A., Romero, E., & González, F. (2013). An adaptive image representation learned from data for cervix cancer tumor detection, 8676, 86760Q. https://doi.org/10.1117/12.2007081; Daniel, C., Macary, F., García, M., Klossa, J., Laurinavičius, A. (2011). Recent advances in standards for collaborative Digital Anatomic Pathology. Diagnostic Pathology. https://doi.org/10.1186/1746-1596-6-S1-S17; Demir, C., & Yener, B. (2005). Automated cancer diagnosis based on histopathological images: a systematic survey. Dept. Comput. Sci., Rensselaer Polytechnic Inst., Troy, NY, USA, Tech. Rep., TR-05-09 (February), 1–16. https://doi.org/10.1.1.61.1199; Doyle, S., Monaco, J., Feldman, M., Tomaszewski, J., & Madabhushi, A. (2011). An active learning based classification strategy for the minority class problem: Application to histopathology annotation. BMC Bioinformatics, 12. https://doi.org/10.1186/1471-2105-12-424; Fuchs, T. J., & Buhmann, J. M. (2011, October). Computational pathology: Challenges and promises for tissue analysis. Computerized Medical Imaging and Graphics. https://doi.org/10.1016/j.compmedimag.2011.02.006; García, M., Bueno, G., Peces, C., González, J., Carbajo, M. (2005). Preparaciones digitales en los servicios de Anatomía Patológica (II). Análisis de soluciones existentes. Revista Española de Patología, Vol. 38, n.o 4. Retrieved from http://www.patologia.es/volumen38/vol38-num4/38-4n03.htm; García, G., & Sánchez, F. (2012). Enteritis necrótica en aves de ornato. Universidad Nacional Autónoma de México. Retrieved from https://www.engormix.com/avicultura/articulos/enteritis-necrotica-aves-ornato-t29602.htm; Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255). IEEE. https://doi.org/10.1109/CVPRW.2009.5206848; Komura, D., & Ishikawa, S. (2017). Machine learning methods for histopathological image analysis. Retrieved from https://arxiv.org/pdf/1709.00786.pdf; Lake, B. M., Salakhutdinov, R. R., Gross, J., & Tenenbaum, J. B. (2011). One shot learning of simple visual concepts. Proceedings of the 33rd Annual Conference of the Cognitive Science Society (CogSci 2011), 172, 2568–2573. Retrieved from http://palm.mindmodeling.org/cogsci2011/papers/0601/paper0601.pdf; Megías, P., & Molist, P. (2018). Técnicas histológicas, Proceso histológico. Atlas de histología vegetal y animal. Departamento de Biología Funcional y Ciencias de la Salud. Facultad de Biología. Universidad de Vigo, España. Retrieved from https://mmegias.webs.uvigo.es/6-tecnicas/1-proceso.php; Meyer, J., & Paré, G. (2015). Telepathology impacts and implementation challenges. In Archives of Pathology and Laboratory Medicine (Vol. 139, pp. 1550–1557). College of American Pathologists. https://doi.org/10.5858/arpa.2014-0606-RA; Nimo, Ana María. (2016). La patología digital revoluciona el proceso de diagnóstico. Retrieved from http://www.innovacionensalud.elmundo.es/salud-digital/la-patologia-digital-revoluciona-el-proceso-de-diagnostico; Padmanabhan, R. 1984-. (2014). Active and Transfer learning Methods for Computational Histology. Retrieved from https://uh-ir.tdl.org/uh-ir/handle/10657/787; Pantanowitz, L., Evans, A., Pfeifer, J., Collins, L., Valenstein, P., Kaplan, K., … Colgan, T. (2011). Review of the current state of whole slide imaging in pathology. Journal of Pathology Informatics, 2(1), 36. https://doi.org/10.4103/2153-3539.83746; Journal of Pathology Informatics, 2(1), 36. https://doi.org/10.4103/2153-3539.83746 21. Pardo, C., de Vries, E., Duarte, J. M., & Piñeros, M. (2015). Cáncer en la Unidad de Cáncer del Hospital Departamental de Villavicencio, Colombia, 2006-2008. Revista Colombiana de Cancerología, 19(3), 125–132. https://doi.org/10.1016/j.rccan.2015.06.005; Puerto, M., Vargas, T., & Cruz-Roa, A. (2016). A Digital Pathology application for whole-slide histopathology image analysis based on genetic algorithm and Convolutional Networks. In 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (pp. 1–7). IEEE. https://doi.org/10.1109/LA-CCI.2016.7885738; Redacción de El País. (2016). ¿Faltan más especialistas médicos en Cali?. Retrieved from www.elpais.com.co/colombia/faltan-mas-especialistas-medicos-en-cali.html; Ross, M. H., Pawlina, W., & Negrete, J. H. (2007). Histología : texto y atlas color con biología celular y molecular. Médica Panamericana.; Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y; Treanor, D., Gallas, B. D., Gavrielides, M. A., & Hewitt, S. M. (2015). Evaluating whole slide imaging: A working group opportunity. Journal of Pathology Informatics, 6, 4. Retrieved from http://www.jpathinformatics.org/text.asp?2015/6/1/4/151880; Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., & Wierstra, D. (2016). Matching Networks for One Shot Learning. https://doi.org/10.1109/CVPR.2016.95; Wright, A., Magee, D., Quirke, P., & Treanor, D. E. (2014). Towards automatic patient selection for chemotherapy in colorectal cancer trials. In M. N. Gurcan & A. Madabhushi (Eds.) (p. 90410A). https://doi.org/10.1117/12.2043220; Pardo, Constanza, de Vries, Esther, Duarte, José María, & Piñeros, Marion. (2015). Cáncer en la Unidad de Cáncer del Hospital Departamental de Villavicencio, Colombia, 2006-2008. Revista Colombiana de Cancerología, 19(3), 125-132.; Piñeros, M., Sánchez, R., Perry, F., García, O., Ocampo, R., & Cendales, R. (2011). Demoras en el diagnóstico y tratamiento de mujeres con cáncer de mama en Bogotá, Colombia. Salud Pública de México, 53(6), 478-485.; Bromley, J., Bentz, J., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Sackinger, E., & Shah, R. (1993). Signature verification using a siamese time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7 (04):669–688.; Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese Neural Networks for One-shot Image Recognition. Department of Computer Science, University of Toronto. Toronto, Ontario, Canada. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37; Computer Vision. (2018). Siamese Neural Networks. Lugar de publicación: Computer Vision, Tecnalia. https://computervision.tecnalia.com/es/2018/08/siamese-neural-networks/; Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., Gonzalez, F., & Madabhushi, A. (2017). Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent. In: Scientific Reports 7, 46450. https://doi.org/https://doi.org/doi:10.1038/srep46450; Cruz-Roa, A., Arevalo, J., Judkinsc, A., Madabhushid, A., and Gonzalez, F. (2015). A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning, 11th International Symposium on Medical Information Processing and Analysis 9681; Krizhevsky, A., Sutskever, I. Hinton, G. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems 25, 1106-1114; Ciresan, D., Giusti, A., Gambardella, L. Schmidhuber, J. (2013). Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, 8150, 411-418; Wang, H. et al. (2014). Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. In: Journal of Medical Imaging 1, 34003; Cruz-Roa, A. et al. (2014). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: Proc. SPIE 9041, 904103-904115; DeSantis, C., Ma, J., Bryan, L. Jemal. (2014). A. Breast Cancer Statistics, 2013. In: A Cancer Journal for Clinicians 64(1), 52-62.; DeSantis, C., Siegel, R., Bandi, P. Jemal. (2011). A. Breast cancer statistics, 2011. In: A Cancer Journal for Clinicians 61, 408-418; Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. (2013). Decaf: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531; Byra, M., Styczynski, G., Szmigielski, C., Kalinowski, P., Michałowski, Ł., Paluszkiewicz, R., Nowicki, A. (2018). Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. International journal of computer assisted radiology and surgery, 13(12), 1895–1903. doi:10.1007/s11548-018-1843-2; Huynh BQ, Li H, Giger ML. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging. doi:10.1117/1.JMI.3.3.034501.; Deshpande, A. (n.d.). A Beginner's Guide To Understanding Convolutional Neural Networks. Recuperado de https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/; Hong, S. (2017). A Vision for Making Deep Learning Simple From Machine Learning Practitioners to Business Analysts. Databricks. Recuperado de https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-learning.html; Cano, F., Madabhushi, A., & Cruz-Roa, A. (2018). A comparative analysis of sensitivity of convolutional neural networks for histopathology image classification in breast cancer. Proc. SPIE 10975, 14th International Symposium on Medical Information Processing and Analysis, 109750W; doi:10.1117/12.2511647; https://doi.org/10.1117/12.2511647; Neurohive. (2018). VGG16 – Convolutional Network for Classification and Detection. Recuperado de https://neurohive.io/en/popular-networks/vgg16/; Recuperado de https://neurohive.io/en/popular-networks/vgg16/ 49. Lamba, H. (2019). One Shot Learning with Siamese Networks using Keras. Publicado en: Towards Data Science. Recuperado de https://towardsdatascience.com/one-shot-learning-with-siamese-networks-using-keras-17f34e75bb3d; Freitas, T. (2018). Implementation of Siamese Neural Networks for One-shot Image Recognition. Recuperado de https://github.com/Goldesel23/Siamese-Networks-for-One-Shot-Learning; Rao, S. (2018). MITOS-RCNN: A Novel Approach to Mitotic Figure Detection in Breast Cancer Histopathology Images using Region Based Convolutional Neural Networks. Elsevier Medical Image Analysis Journal. https://arxiv.org/abs/1807.01788; https://repositorio.unillanos.edu.co/handle/001/4561; Universidad de los Llanos; Repositorio digital Universidad de los Llanos; https://repositorio.unillanos.edu.co

  10. 10
  11. 11
    Dissertation/ Thesis

    المؤلفون: Cárdenas Peña, David Augusto

    المساهمون: Castellanos Domínguez, César Germán (Thesis advisor)

    وصف الملف: application/pdf

    Relation: Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación Ingeniería Electrónica; Ingeniería Electrónica; Cárdenas Peña, David Augusto (2016) Kernel-based image analysis towards MRI segmentation and classification. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.; https://repositorio.unal.edu.co/handle/unal/56541; http://bdigital.unal.edu.co/52348/

  12. 12
  13. 13