-
1Dissertation/ Thesis
المؤلفون: Ali, Mohammed Yousef Salem
المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques
Thesis Advisors: Valls Mateu, Aïda, Abdelnasser Mohamed Mahmoud, Mohamed, Baget Bernaldiz, Marc
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: aprenentatge profund, visió per computador, Anàlisi d'imatges mèdiques, aprendizaje profundo, visión por computador, Análisis de imágenes médicas, deep learning, computer vision, Medical image analysis, Enginyeria i arquitectura
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/687502
-
2Dissertation/ Thesis
المؤلفون: Escorcia Gutierrez, José
المساهمون: University/Department: Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques
Thesis Advisors: Puig Valls, Domènec, Romero Aroca, Pedro, Valls Mateu, Aïda
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Retinopatia diabètica, Anàlisi d'imatges mèdiques, Segmentació de la imatge del fons, Retinopatía diabética, Análisis de imágenes médicas, Segmentación de la imagen del fondo de ojo, Diabetic retinopathy, Medical image analysis, Fundus image segmentation, Ingeniería y arquitectura
Time: 621.3
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/671543
-
3Dissertation/ Thesis
المؤلفون: Sánchez Martínez, Sergio
المساهمون: University/Department: Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
Thesis Advisors: Duchateau, Nicolas, Piella Fenoy, Gemma, Bijnens, Bart
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: Machine learning, Medical image analysis, Pattern recognition, Multiple kernel learning, Dimensionality reduction, Echocardiography, Early diagnosis, Heart failure, Cardiac resynchronization therapy, Aprendizaje automático, Análisis de imágenes médicas, Reconocimiento de patrones, Aprendizaje de kernel múltiple, Ecocardiografía, Diagnóstico temprano, Insuficiencia cardíaca, Tratamiento de re-sincronización cardíaca
وصف الملف: application/pdf
URL الوصول: http://hdl.handle.net/10803/663748
-
4Academic Journal
المصدر: ACI Avances en Ciencias e Ingenierías; Vol. 13 No. 2 (2021); 19 ; ACI Avances en Ciencias e Ingenierías; Vol. 13 Núm. 2 (2021); 19 ; 2528-7788 ; 1390-5384 ; 10.18272/aci.v13i2
مصطلحات موضوعية: Convolutional Neural Networks, Deep Learning, Bayesian Optimization, Medical Image Analysis, Data Augmentation, Hyperparameters, redes neuronales convolucionales, aprendizaje profundo de máquina, optimización bayesiana, análisis de imágenes médicas, aumento sintético de datos, hiperparámetros
وصف الملف: application/pdf; text/html; text/xml
Relation: https://revistas.usfq.edu.ec/index.php/avances/article/view/2288/2754; https://revistas.usfq.edu.ec/index.php/avances/article/view/2288/3236; https://revistas.usfq.edu.ec/index.php/avances/article/view/2288/2918; https://revistas.usfq.edu.ec/index.php/avances/article/view/2288
-
5Dissertation/ Thesis
المؤلفون: Ariza López, Luis, Sanz Ramos, Álvaro
المساهمون: Sánchez Ruiz-Granados, Antonio Alejandro
مصطلحات موضوعية: 004(043.3), Deep learning, Convolutional neural networks, Classification, Computer vision, Diabetic retinopathy, Vision Transformers, Transfer learning, Model calibration, Model interpretability, Medical image analysis, Aprendizaje profundo, Redes neuronales convolucionales, Clasificación, Visión artificial, Retinopatía diabética, Aprendizaje transferido, Calibración del modelo, Interpretabilidad, Análisis de imágenes médicas, Informática (Informática), 33 Ciencias Tecnológicas
وصف الملف: application/pdf
-
6Dissertation/ Thesis
المؤلفون: Ali, Mohammed Yousef Salem
المساهمون: Valls Mateu, Aïda, Abdelnasser Mohamed Mahmoud, Mohamed, Baget Bernaldiz, Marc, Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i Matemàtiques
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات موضوعية: aprenentatge profund, visió per computador, Anàlisi d'imatges mèdiques, aprendizaje profundo, visión por computador, Análisis de imágenes médicas, deep learning, computer vision, Medical image analysis, Enginyeria i arquitectura
Time: 004, 62
وصف الملف: 147 p.; application/pdf
Relation: http://hdl.handle.net/10803/687502
الاتاحة: http://hdl.handle.net/10803/687502
-
7Dissertation/ Thesis
المؤلفون: Toledo Cortés, Santiago
المساهمون: González Osorio, Fabio Augusto, Mindlab, orcid:0000-0003-4172-9263, 0001449836, 57207843310, https://www.researchgate.net/profile/Santiago-Toledo-Cortes-2, https://scholar.google.com/citations?user=M7l6jx4AAAAJ&hl=en
مصطلحات موضوعية: 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores, 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas, Histopathology, Ophthalmology, Deep learning, Kernel methods, Medical image analysis, Multimodal learning, Ordinal regression, Probabilistic models, Quantum machine learning, Análisis de imágenes médicas, Histopatologı́a, Métodos de Kernel, Oftalmologı́a, Aprendizaje profundo, Aprendizaje de máquina cuántico, Aprendizaje multimodal, Modelos probabilı́sticos, Regresión ordinal, Teoría de las probabilidades, Inteligencia artificial, Ciencias médicas, Probability theory, Artificial intelligence, Medical sciences
وصف الملف: xvi, 123 páginas; application/pdf
Relation: Bireme; Testing for Glaucoma. https://glaucoma.org/learn-about-glaucoma/testing-for-glaucoma/. 2023; Abràmoff, Michael D.; Folk, James C.; Han, Dennis P.; Walker, Jonathan D.; Williams, David F.; Russell, Stephen R.; Massin, Pascale; Cochener, Beatrice; Gain, Philippe; Tang, Li; Lamard, Mathieu; Moga, Daniela C.; Quellec, Gwénolé; Niemeijer, Meindert: Automated analysis of retinal images for detection of referable diabetic retinopathy. In: JAMA Ophthalmology 131 (2013), Nr. 3, S. 351–357. – ISSN 21686165; Adler, Tim J.; Ardizzone, Lynton; Vemuri, Anant; Ayala, Leonardo; Gröhl, Janek; Kirchner, Thomas; Wirkert, Sebastian; Kruse, Jakob; Rother, Carsten; Köthe, Ullrich; Maier-Hein, Lena: Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. In: In- ternational Journal of Computer Assisted Radiology and Surgery 14 (2019), Nr. 6, S. 997–1007. – ISSN 18616429; American Academy of Ophthalmology: International clinical diabetic retinopathy disease severity scale detailed table. In: International Council of Oph- thalmology (2002); Andrearczyk, Vincent; Müller, Henning: Deep multimodal classification of image types in biomedical journal figures. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11018 LNCS (2018), S. 3–14. – ISBN 9783319989310; Araújo, Teresa; Aresta, Guilherme; Mendonça, Luı́s; Penas, Susana; Maia, Carolina; Carneiro, Ângela; Mendonça, Ana M.; Campilho, Aurélio: DR—GRADUATE: Uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images. In: Medical Image Analysis 63 (2020). – ISSN 13618423; Arevalo, John; Solorio, Thamar; Montes-Y-Gómez, Manuel; González, Fabio A.: Gated multimodal units for information fusion. In: 5th International Conference on Learning Representations, ICLR 2017 - Workshop Track Proceedings (2017); Baccianella, Stefano; Esuli, Andrea; Sebastiani, Fabrizio: Evaluation measures for ordinal regression. In: 2009 Ninth international conference on intelligent systems design and applications IEEE, 2009, S. 283–287; Baltrusaitis, Tadas; Ahuja, Chaitanya; Morency, Louis P.: Multimodal Machine Learning: A Survey and Taxonomy. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 41 (2019), Nr. 2, S. 423–443. – ISSN 19393539; Bauer, Dominik F.; Russ, Tom; Waldkirch, Barbara I.; Tönnes, Christian; Segars, William P.; Schad, Lothar R.; Zöllner, Frank G.; Golla, Alena K.: Generation of annotated multimodal ground truth datasets for abdominal medical image registration. In: International Journal of Computer Assisted Radiology and Surgery 16 (2021), Nr. 8, S. 1277–1285. – ISSN 18616429; Bayoudh, K; Knani, R; Hamdaoui, F; Mtibaa, A: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. In: Vis Comput 38 (2022), Nr. 8, S. 2939–2970. – Epub 2021 Jun 10; PMID: 34131356; PMCID: PMC8192112; Beckham, Christopher; Pal, Christopher: A simple squared-error reformulation for ordinal classification. (2016), Nr. Nips; Pal, Christopher: Unimodal probability distributions for deep ordinal classification. In: 34th International Conference on Machine Learning, ICML 2017 1 (2017), S. 647–655. ISBN 9781510855144; Benzebouchi, Nacer E.; Azizi, Nabiha; Ashour, Amira S.; Dey, Nilanjan; Sherratt, R. S.: Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis. In: Journal of Experimental and Theoretical Artificial Intelligence 31 (2019), Nr. 6, S. 841–874. – ISSN 13623079; Blunt, Nick S.; Camps, Joan; Crawford, Ophelia; Izsák, Róbert; Leontica, Sebastian; Mirani, Arjun; Moylett, Alexandra E.; Scivier, Sam A.; Sünder- hauf, Christoph; Schopf, Patrick; Taylor, Jacob M.; Holzmann, Nicole: Per- spective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. In: Journal of Chemical Theory and Computation 18 (2022), Nr. 12, S. 7001–7023. – PMID: 36355616; Bradshaw, John; Matthews, Alexander G. de G.; Ghahramani, Zoubin: Ad- versarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks. In: https://arxiv.org/pdf/1707.02476.pdfarXiv:1707.02476v1 eprint (2017), S. 1–33; Bulten, Wouter; Litjens, Geert; Pinckaers, Hans; Ström, Peter; Eklund, Martin; Kartasalo, Kimmo; Demkin, Maggie; Dane, Sohier. The PANDA challenge: Prostate cANcer graDe Assessment using the Gleason grading system. März 2020; Burns, Stephen A.; Elsner, Ann E.; Sapoznik, Kaitlyn A.; Warner, Raymond L.; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), S. 1–30. – ISSN 1350–9462; Gast, Thomas J.: Adaptive optics imaging of the human retina. In: Progress in Retinal and Eye Research 68 (2019), Nr. August 2018, S. 1–30. – ISSN 18731635; Camargo, Jorge E.; Caicedo, Juan C.; Gonzalez, Fabio A.: A kernel-based framework for image collection exploration. In: Journal of Visual Languages and Computing 24 (2013), Nr. 1, S. 53–67. – ISSN 1045926X; González, Fabio A.: Multimodal latent topic analysis for image collection summarization. In: Information Sciences 328 (2016), S. 270–287. – ISSN 00200255; Campochiaro, Peter A.; Mir, Tahreem A.: The mechanism of cone cell death in Retinitis Pigmentosa. In: Progress in Retinal and Eye Research 62 (2018), S. 24–37. – ISSN 1350–9462; In: Castellano, Ginevra; Kessous, Loic; Caridakis, George: Emotion Recog- nition through Multiple Modalities: Face, Body Gesture, Speech. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008, S. 92–103. – ISBN 978–3–540–85099–1; Cerezo, M; Verdon, Guillaume; Huang, Hsin-Yuan; Cincio, Lukasz; Coles, Patrick J.: Challenges and opportunities in quantum machine learning. In: Nature Computational Science 2 (2022), Nr. 9, S. 567–576; Chakravarty, Arunava; Sivaswamy, Jayanthi: Glaucoma classification with a fusion of segmentation and image-based features. In: Proceedings - International Symposium on Biomedical Imaging 2016-June (2016), Nr. i, S. 689–692. – ISBN 9781479923502; Chen, Richard J.; Lu, Ming Y.; Williamson, Drew F.; Chen, Tiffany Y.; Lipkova, Jana; Noor, Zahra; Shaban, Muhammad; Shady, Maha; Williams, Mane; Joo, Bumjin; Mahmood, Faisal: Pan-cancer integrative histology-genomic analysis via multimodal deep learning. In: Cancer Cell 40 (2022), Nr. 8, S. 865–878.e6. – ISSN 18783686; Chen, Yingming; Ratnam, Kavitha; Sundquist, Sanna M.; Lujan, Brandon; Ayyagari, Radha; Gudiseva, V. H.; Roorda, Austin; Duncan, Jacque L.: Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt Disease. In: Investigative Ophthalmology and Visual Science 52 (2011), Nr. 6, S. 3281–3292. – ISSN 01460404; Choi, Joon Y.; Yoo, Tae K.; Seo, Jeong G.; Kwak, Jiyong; Um, Terry T.; Rim, Tyler H.: Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. In: PLOS ONE 12 (2017), 11, Nr. 11, S. 1–16; Chollet, Francois: Image segmentation with a U-Net-like architecture. https:// keras.io/examples/vision/oxford_pets_image_segmentation/. 2020. – [Online; accessed 30-September-2021]; Chollet, Francois [u. a.]: Keras. https://github.com/fchollet/keras. 2015. – [Online; accessed 01-Mar-2022]; Contreras, Victor H.; Lara, Juan S.; Perdomo, Oscar J.; González, Fabio A.: Supervised online matrix factorization for histopathological multimodal retrieval. In: Romero, Eduardo (Hrsg.); Lepore, Natasha (Hrsg.); Brieva, Jorge (Hrsg.): 14th International Symposium on Medical Information Processing and Analysis Bd. 10975 International Society for Optics and Photonics, SPIE, 2018, S. 109750Y; Cross, Nancy; van Steen, Cécile; Zegaoui, Yasmina; Satherley, Andrew; Angelillo, Luigi: Current and Future Treatment of Retinitis Pigmentosa. In: Clinical Ophthalmology 16 (2022), S. 2909–2921. – ISSN 11775483; Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. In: Journal of Healthcare Engineering 2018 (2018). – ISSN 20402309; Cunefare, David: CNN-Cone-Detection. https://github.com/DavidCunefare/ CNN-Cone-Detection. 2017. – [Online; accessed 01-Mar-2022]; Cunefare, David; Fang, Leyuan; Cooper, Robert F.; Dubra, Alfredo; Car- roll, Joseph; Farsiu, Sina: Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. In: Scientific Reports 7 (2017), Nr. 1, S. 1–11. – ISSN 20452322; Huckenpahler, Alison L.; Patterson, Emily J.; Carroll, Joseph; Farsiu, Sina: RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. In: Biomedical Optics Express 10 (2019), Nr. 8, S. 3815. – ISSN 2156–7085; Cutajar, Kurt; Bonilla, Edwin V.; Michiardi, Pietro; Filippone, Maur- izio: Random feature expansions for Deep Gaussian Processes. In: 34th Interna- tional Conference on Machine Learning, ICML 2017 2 (2017), S. 1467–1482. ISBN 9781510855144; Davidson, Benjamin; Kalitzeos, Angelos; Ourselin, Sebastien; Michaelides, Michel; Bergeles, Christos: Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning. In: Scientific Reports 8 (2018), Nr. 1, S. 1–13. – ISBN 4159801826350; Decencière, Etienne; Zhang, Xiwei; Cazuguel, Guy; Laÿ, Bruno; Cochener, Béatrice; Trone, Caroline; Ordóñez-Varela, John R.; Erginay, Ali; Charton, Béatrice; Klein, Jean C.: Feedback on a publicly distributed image database: The Messidor database. In: Image Analysis and Stereology 33 (2014), Nr. 3, S. 231–234. – ISSN 18545165; Diabetic Retinopathy Detection of Kaggle: EyePACS Challenge. www. kaggle.com/c/diabetic-retinopathy-detection/data. – Accessed: 2019-10-15; For Disease Control, Centers; Prevention: Prostate Cancer Statistics. 2022. – Accessed: 2023-06-01; Prevention. Prostate Cancer Incidence by Age and Stage at Diagnosis, United States—20012019. USCS data brief, no 34. 2023; Eladawi, Nabila; Eltanboly, Ahmed; Elmogy, Mohammed; Ghazal, Mo- hammed; Fraiwan, Luay; Aboelfetouh, Ahmed; Riad, Alaa; Keynton, Robert; El-Azab, Magdi; Schaal, Shlomit; El-Baz, Ayman: Diabetic retinopathy early detection based on OCT and OCTA feature fusion. In: Proceedings - Interna- tional Symposium on Biomedical Imaging 2019-April (2019), S. 587–591. – ISBN 9781538636411; Ethem, Alpaydin: Introduction to Machine Learning. 3. The MIT Press, 2014; Faraj, Sheila F.; Bezerra, Stephania M.; Yousefi, Kasra; Fedor, Helen; Glavaris, Stephanie; Han, Misop; Partin, Alan W.; Humphreys, Elizabeth; Tosoian, Jeffrey; Johnson, Michael H.; Davicioni, Elai; Trock, Bruce J.; Schaeffer, Edward M.; Ross, Ashley E.; Netto, George J.: Clinical validation of the 2005 isup gleason grading system in a cohort of intermediate and high risk men undergoing radical prostatectomy. In: PLoS ONE 11 (2016), Nr. 1, S. 1–13. – ISSN 19326203; Frank, Eibe; Hall, Mark: A Simple Approach to Ordinal Classification. In: De Raedt, Luc (Hrsg.); Flach, Peter (Hrsg.): Machine Learning: ECML 2001. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. – ISBN 978–3–540–44795–5, S. 145–156; Garcia Arnal Barbedo, Jayme: A Review on Methods for Automatic Counting of Objects in Digital Images. In: IEEE Latin America Transactions 10 (2012), Nr. 5, S. 2112–2124; Garg, Bhanu; Manwani, Naresh: Robust Deep Ordinal Regression under Label Noise. In: Pan, Sinno J. (Hrsg.); Sugiyama, Masashi (Hrsg.): Proceedings of The 12th Asian Conference on Machine Learning Bd. 129. Bangkok, Thailand : PMLR, 18–20 Nov 2020, S. 782–796; Gargeya, Rishab; Leng, Theodore: Automated Identification of Diabetic Retinopa- thy Using Deep Learning. In: Ophthalmology 124 (2017), Nr. 7, S. 962–969; Gieres, François: Mathematical surprises and Dirac’s formalism in quantum mechan- ics. In: Reports on Progress in Physics 63 (2000), dec, Nr. 12, S. 1893; Golabbakhsh, M.; Rabbani, H.: Vessel-based registration of fundus and optical coherence tomography projection images of retina using a quadratic registration model. In: IET Image Processing 7 (2013), November, Nr. 8, S. 768–776. – ISSN 1751–9667; González, Fabio A.; Ramos-Pollán, Raúl; Gallego-Mejia, Joseph A.: Quan- tum Kernel Mixtures for Probabilistic Deep Learning. (2023); Vargas-Calderón, Vladimir; Vinck-Posada, Herbert: Classification with quantum measurements. In: Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002; González, F.A.; Gallego, A.; Toledo-Cortés, S. [u. a.]: Learning with density matrices and random features. In: Quantum Machine Intelligence 4 (2022), S. 23; Gulshan, Varun; Peng, Lily; Coram, Marc; Stumpe, Martin C.; Wu, Derek; Narayanaswamy, Arunachalam; Venugopalan, Subhashini; Widner, Kasumi; Madams, Tom; Cuadros, Jorge; Kim, Ramasamy; Raman, Rajiv; Nelson, Philip C.; Mega, Jessica L.; Webster, Dale R.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: JAMA - Journal of the American Medical Association 316 (2016), Nr. 22, S. 2402–2410; Gunawardhana, Piumi L.; Jayathilake, Raviru; Withanage, Yasiru; Gane- goda, Gamage U.: Automatic Diagnosis of Diabetic Retinopathy using Machine Learning: A Review. In: Proceedings of ICITR 2020 - 5th International Conference on Information Technology Research: Towards the New Digital Enlightenment (2020). ISBN 9781665414753; Guo, Z.; Li, X.; Huang, H.; Guo, N.; Li, Q.: Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018. – ISSN 1945–8452, S. 903–907; Li, Q.: Deep Learning-Based Image Segmentation on Multimodal Medical Imaging. In: IEEE Transactions on Radiation and Plasma Medical Sciences 3 (2019), March, Nr. 2, S. 162–169. – ISSN 2469–7303; Gutiérrez, Pedro A.; Pérez-Ortiz, Marı́a; Sánchez-Monedero, Javier; Fernández-Navarro, Francisco; Hervás-Martı́nez, César: Ordinal Regression Methods: Survey and Experimental Study. In: IEEE Transactions on Knowledge and Data Engineering 28 (2016), Nr. 1, S. 127–146. – ISSN 10414347; Gutman, David A.; Cobb, Jake; Somanna, Dhananjaya; Park, Yuna; Wang, Fusheng; Kurc, Tahsin; Saltz, Joel H.; Brat, Daniel J.; Cooper, Lee A.; Kong, Jun: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. In: Journal of the American Medical Informatics Association 20 (2013), Nr. 6, S. 1091–1098; Hashemi, Mehrdad; Zandieh, Mohammad A.; Talebi, Yasmin; Rahmanian, Parham; Shafiee, Sareh S.; Nejad, Melina M.; Babaei, Roghayeh; Sadi, Farzaneh H.; Rajabi, Romina; Abkenar, Zahra O.; Rezaei, Shamin; Ren, Jun; Nabavi, Noushin; Khorrami, Ramin; Rashidi, Mohsen; Hushmandi, Kiavash; Entezari, Maliheh; Taheriazam, Afshin: Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. In: Biomedicine Pharmacotherapy 160 (2023), S. 114392. – ISSN 0753–3322; He, Shenghua; Minn, Kyaw T.; Solnica-Krezel, Lilianna; Anastasio, Mark A.; Li, Hua: Deeply-supervised density regression for automatic cell counting in mi- croscopy images. In: Medical Image Analysis 68 (2021), S. 101892. – ISSN 1361–8415; Huang, Di; Heath Jeffery, Rachael C.; Aung-Htut, May T.; McLenachan, Samuel; Fletcher, Sue; Wilton, Steve D.; Chen, Fred K.: Stargardt disease and progress in therapeutic strategies. In: Ophthalmic Genetics 43 (2022), Nr. 1, S. 1–26. – ISSN 17445094; Huang, Huikang; Situ, Haozhen; Zheng, Shenggen: Bidirectional Information Flow Quantum State Tomography. In: Chinese Physics Letters 38 (2021), Nr. 4, S. 1–6. – ISSN 17413540; Jim, Oscar A.; Cirujeda, Pol; Henning, M: Combining Radiology Images and Meta – data for Multimodal Medical Case – based Retrieval. In: VISCERAL book (2017), S. 1–14; Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning: Convolutional neural networks for an automatic classification of prostate tissue slides with high-grade Gleason score. In: Medical Imaging 2017: Digital Pathology 10140 (2017), S. 101400O. – ISBN 9781510607255; Kamnitsas, K.; Bai, W.; Ferrante, E.; McDonagh, S.; Sinclair, M.; Pawlowski, N.; Rajchl, M.; Lee, M.; Kainz, B.; Rueckert, D.; Glocker, B.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10670 LNCS (2018), S. 450–462. – ISBN 9783319752372; Karimi, Davood; Nir, Guy; Fazli, Ladan; Black, Peter C.; Goldenberg, Larry; Salcudean, Septimiu E.: Deep Learning-Based Gleason Grading of Prostate Cancer from Histopathology Images - Role of Multiscale Decision Aggregation and Data Augmentation. In: IEEE Journal of Biomedical and Health Informatics 24 (2020), may, Nr. 5, S. 1413–1426. – ISSN 21682208; Kaya, Mahmut; Bilge, H.s: Deep Metric Learning: A Survey. In: Symmetry 11 (2019), 08, S. 1066; Kendall, Alex; Gal, Yarin: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems 2017-December (2017), Nr. Nips, S. 5575–5585. – ISSN 10495258; Khani, Ali A.; Fatemi Jahromi, Seyed A.; Shahreza, Hatef O.; Behroozi, Hamid; Baghshah, Mahdieh S.: Towards Automatic Prostate Gleason Grading Via Deep Convolutional Neural Networks. In: 5th Iranian Conference on Signal Process- ing and Intelligent Systems, ICSPIS 2019 (2019), Nr. December, S. 18–19. ISBN 9781728153506; Kim, Hee E.; Cosa-Linan, Alejandro; Santhanam, Nandhini; Jannesari, Mah- boubeh; Maros, Mate E.; Ganslandt, Thomas: Transfer learning for medical image classification: a literature review. In: BMC medical imaging 22 (2022), Nr. 1, S. 69; Kim, Tae H.; Jeong, Dae J.; Hahn, Soo Y.; Shin, Jung H.; Oh, Young L.; Ki, Chang S.; Kim, Jong W.; Jang, Ju Y.; Cho, Yoon Y.; Chung, Jae H.; Kim, Sun W.: Triage of patients with AUS/FLUS on thyroid cytopathology: Effectiveness of the multimodal diagnostic techniques. In: Cancer Medicine 5 (2016), Nr. 5, S. 769–777. – ISSN 20457634; Kleesiek, Jens; Urban, Gregor; Hubert, Alexander; Schwarz, Daniel; Maier- Hein, Klaus; Bendszus, Martin; Biller, Armin: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. In: NeuroImage 129 (2016), S. 460–469. – ISSN 10959572; Kong, Jun; Gao, Jingjing; Chisolm, Candace; Sharma, Ashish; Pan, Tony; Van Meir, Erwin G.; Kurc, Tahsin M.; Moreno, Carlos S.; Brat, Daniel J.: Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. In: IEEE Transactions on Biomedical Engineering 58 (2011), Nr. 12 PART 2, S. 3469–3474. – ISSN 00189294; Kononenko, Igor: Machine learning for medical diagnosis: History, state of the art and perspective. In: Artificial Intelligence in Medicine 23 (2001), Nr. 1, S. 89–109. – ISSN 09333657; Kovalyk, Oleksandr; Morales-Sánchez, Juan; Verdú-Monedero, Rafael; Sellés-Navarro, Inmaculada; Palazón-Cabanes, Ana; Sancho-Gómez, José Luis: PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. In: Scientific Data 9 (2022), Nr. 1, S. 1–12. – ISBN 4159702201; Krause, Jonathan; Rahimy, Ehsan; Karth, Peter; Corrado, Greg S.; Webster, Dale R.: Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. In: Ophthalmology 125 (2018), Nr. 8, S. 1264–1272. – ISSN 15494713; Krenn, Mario; Malik, Mehul; Fickler, Robert; Lapkiewicz, Radek; Zeilinger, Anton: Automated Search for new Quantum Experiments. In: Phys. Rev. Lett. 116 (2016), S. 090405; Contreras O., Victor H.; Otálora, Sebastián; Müller, Hen- ning; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Martel, Anne L. (Hrsg.); Abol- maesumi, Purang (Hrsg.); Stoyanov, Danail (Hrsg.); Mateus, Diana (Hrsg.); Zuluaga, Maria A. (Hrsg.); Zhou, S. K. (Hrsg.); Racoceanu, Daniel (Hrsg.); Joskowicz, Leo (Hrsg.): Medical Image Computing and Computer Assisted Inter- vention – MICCAI 2020. Cham : Springer International Publishing, 2020. – ISBN 978–3–030–59722–1, S. 572–581; Contreras O, Victor H.; González, Fabio A.: Multimodal Latent Semantic Alignment for Automated Prostate Tissue Classification and Retrieval. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin- formatics) Bd. 12265 LNCS, 2020. – ISBN 9783030597214, S. 572–581; Lee, Jimmy A.; Liu, Peng; Cheng, Jun; Fu, Huazhu: A Deep Step Pattern Rep- resentation for Multimodal Retinal Image Registration. In: The IEEE International Conference on Computer Vision (ICCV) (2019), S. 5077–5086; Lee, Ki S.; Jung, Seok K.; Ryu, Jae J.; Shin, Sang W.; Choi, Jinwook: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. In: Journal of Clinical Medicine 9 (2020), Nr. 2. – ISSN 20770383; Leibig, Christian; Allken, Vaneeda; Ayhan, Murat S.; Berens, Philipp; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14. – ISSN 20452322; Wahl, Siegfried: Leveraging uncertainty information from deep neural networks for disease detection. In: Scientific Reports 7 (2017), Nr. 1, S. 1–14; Li, Daoliang; Miao, Zheng; Peng, Fang; Wang, Liang; Hao, Yinfeng; Wang, Zhenhu; Chen, Tao; Li, Hui; Zheng, Yingying: Automatic counting methods in aquaculture: A review. In: Journal of the World Aquaculture Society 52 (2021), Nr. 2, S. 269–283; Li, Feng; Liu, Zheng; Chen, Hua; Jiang, Minshan; Zhang, Xuedian; Wu, Zhizheng: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. In: Translational Vision Science and Technology 8 (2019), Nr. 6. – ISSN 21642591; Li, Hongming; Habes, Mohamad; Fan, Yong: Deep Ordinal Ranking for Multi- Category Diagnosis of Alzheimer’s Disease using Hippocampal MRI data. In: arXiv (2017), sep; Li, Yuchun; Huang, Mengxing; Zhang, Yu; Chen, Jing; Xu, Haixia; Wang, Gang; Feng, Wenlong: Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer. In: IEEE Access 8 (2020), S. 117714–117725. – ISSN 21693536; Lim, G.; Bellemo, V.; Xie, Y. [u. a.]: Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review. In: Eye and Vision 7 (2020), S. 21; Lim, Zhan W.; Lee, Mong L.; Hsu, Wynne; Wong, Tien Y.: Building Trust in Deep Learning System towards Automated Disease Detection. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (2018), S. 9516–9521; Liu, Xiaofeng: Ordinal Regression with Neuron Stick-breaking for Medical Diagnosis. 2018. – Forschungsbericht. – 0–0 S; Lucas, Marit; Jansen, Ilaria; Savci-Heijink, C. D.; Meijer, Sybren L.; de Boer, Onno J.; van Leeuwen, Ton G.; de Bruin, Daniel M.; Marquering, Henk A.: Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies. In: Virchows Archiv 475 (2019), Nr. 1, S. 77–83. – ISSN 14322307; Ma, Mengmeng; Ren, Jian; Zhao, Long; Testuggine, Davide; Peng, Xi: Are Multimodal Transformers Robust to Missing Modality? (2022), S. 18177–18186; Tulyakov, Sergey; Wu, Cathy; Peng, Xi: SMIL: Multimodal Learning with Severely Missing Modality. In: 35th AAAI Conference on Artificial Intelligence, AAAI 2021 3B (2021), S. 2302–2310. ISBN 9781713835974; Manjula Sri, K.M.M. R.: Novel image pro-cessing techniquesto detect lesion us-ing lab view R. In: India Conference (INDICON), 2011 Annual IEEE (2011); Mcgurk, Harry; Macdonald, John: Hearing lips and seeing voices. In: Nature 264 (1976), Nr. 5588, S. 746–748. – ISSN 00280836; Menze, Bjoern; Reyes, Mauricio; Jakab, Andras; Gerstner, Elisabeth; Fara- hani, Keyvan; Kirby, Justin: Brain Tumor Image Segmentation ( BRATS ) 2013 To cite this version : NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. (2013); MINSALUD: ANÁLISIS DE SITUACIÓN DE SALUD VISUAL EN COLOMBIA 2016. (2015). – ISBN 9780511993398; Miri, Mohammad S.; Lee, Kyungmoo; Niemeijer, Mein- dert; Wang, Jui K.; Kwon, Young H.; Garvin, Mona K.: Multimodal Segmen- tation of Optic Disc and Cup from SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. In: IEEE Transactions on Medical Imaging 34 (2015), Nr. 9, S. 1854–1866. – ISSN 1558254X; Moccia, Sara; Wirkert, Sebastian J.; Kenngott, Hannes; Vemuri, Anant S.; Apitz, Martin; Mayer, Benjamin; De Momi, Elena; Mattos, Leonardo S.; Maier-Hein, Lena: Uncertainty-aware organ classification for surgical data science applications in laparoscopy. In: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 11, S. 2649–2659. – ISSN 15582531; Mookiah, Muthu Rama K.; Acharya, U. R.; Chua, Chua K.; Min, Lim C.; Ng, E. Y.; Mushrif, Milind M.; Laude, Augustinus: Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 227 (2013), Nr. 1, S. 37–49. – ISSN 09544119; Morgan, Jessica I.; Chen, Min; Huang, Andrew M.; Jiang, Yu Y.; Cooper, Robert F.: Cone identification in choroideremia: Repeatability, reliability, and au- tomation through use of a convolutional neural network. In: Translational Vision Science and Technology 9 (2020), Nr. 2, S. 1–13. – ISSN 21642591; Müller, Henning; Ünay, Devrim: Medical Decision Support Using Increasingly Large Multimodal Data Sets. In: Big Data Analytics for Large-Scale Multimedia Search (2019), S. 317–336; Nagpal, Kunal; Foote, Davis; Liu, Yun; Chen, Po Hsuan C.; Wulczyn, Ellery; Tan, Fraser; Olson, Niels; Smith, Jenny L.; Mohtashamian, Arash; Wren, James H.; MacDonald, Robert; Peng, Lily H.; Amin, Mahul B.; Evans, Andrew J.; Sangoi, Ankur R.; Mermel, Craig H.; Hipp, Jason D.; Stumpe, Martin C.: Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. In: npj Digital Medicine 2 (2019), dec, Nr. 1, S. 1–10. – ISSN 23986352; Nakatake, Shunji; Murakami, Yusuke; Funatsu, Jun; Koyanagi, Yoshito; Akiyama, Masato; Momozawa, Yukihide; Ishibashi, Tatsuro; Sonoda, Koh H.; Ikeda, Yasuhiro: Early detection of cone photoreceptor cell loss in retinitis pig- mentosa using adaptive optics scanning laser ophthalmoscopy. In: Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 257 (2019), Nr. 6, S. 1169–1181. – ISSN 1435702X; Nie, Dong; Wang, Li; Gao, Yaozong; Shen, Dinggang: FULLY CONVOLU- TIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION Dong. In: Proc IEEE Int Symp Biomed Imaging (2016); Niu, Zhenxing; Zhou, Mo; Wang, Le; Gao, Xinbo; Hua, Gang: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Bd. 2016-Decem, IEEE Computer Society, dec 2016. – ISBN 9781467388504, S. 4920–4928; Perdomo, Oscar; González, Fabio; Müller, Henning: Training Deep Convolutional Neural Networks with Active Learning for Exudate Clas- sification in Eye Fundus Images. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Bd. 10552 LNCS, 2017. – ISBN 9783319675336, S. 146–154; Perdomo, Oscar.; Gonzalez, Fabio.: A Systematic Review of Deep Learning Methods Applied to Ocular Images. In: Ciencia e Ingenieria Neogranadina 30 (2019), Nr. 1. ISBN 0000000314251; Otalora, Sebastian; Gonzalez, Fabio A.; Meriaudeau, Fabrice; Muller, Henning: OCT-NET: A convolutional network for automatic clas- sification of normal and diabetic macular edema using sd-oct volumes. In: Proceedings - International Symposium on Biomedical Imaging 2018-April (2018), Nr. Isbi, S. 1423–1426. – ISBN 9781538636367; Perdomo Charry, Oscar J.; González, Fabio A.: Combin- ing morphometric features and convolutional networks fusion for glaucoma diagnosis. (2017), Nr. November, S. 57. – ISBN 9781510616332; Pinz, A.; Bernogger, S.; Datlinger, P.; Kruger, A.: Mapping the human retina. In: IEEE Transactions on Medical Imaging 17 (1998), Aug, Nr. 4, S. 606–619. – ISSN 1558–254X; Piotter, Elena; McClements, Michelle E.; Maclaren, Robert E.: Therapy approaches for stargardt disease. In: Biomolecules 11 (2021), Nr. 8, S. 1–28. – ISSN 2218273X; Polikar, R.; Tilley, C.; Hillis, B.; Clark, C. M.: Multimodal EEG, MRI and PET data fusion for Alzheimer’s disease diagnosis. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010. – ISSN 1558–4615, S. 6058–6061; Rahimi, Ali; Recht, Ben: Random features for large-scale kernel machines. In: Advances in neural information . . . (2007), Nr. 1, S. 1–8. – ISBN 160560352X; Recht, Benjamin: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference, 2009. – ISBN 160560352X; Ramirez, Geovany A.; Baltrušaitis, Tadas; Morency, Louis-Philippe: Modeling Latent Discriminative Dynamic of Multi-dimensional Affective Signals. In: D’Mello, Sidney (Hrsg.); Graesser, Arthur (Hrsg.); Schuller, Björn (Hrsg.); Martin, Jean-Claude (Hrsg.): Affective Computing and Intelligent Interaction. Berlin, Heidel- berg : Springer Berlin Heidelberg, 2011. – ISBN 978–3–642–24571–8, S. 396–406; Rasmussen, Carl E.; Williams, Christopher K. I.: Gaussian processes for machine learning. The MIT Press, 2006. – ISBN 026218253X; Hacihaliloglu, Ilker; Singer, Eric A.; Foran, David J.; Qi, Xin: Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images. In: Frontiers in Bioengineering and Biotechnology 7 (2019), Nr. May, S. 1–12. – ISSN 2296–4185; Ritter, N.; Owens, R.; Cooper, J.; Eikelboom, R. H.; Van Saarloos, P. P.: Registration of stereo and temporal images of the retina. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 404–418. – ISSN 1558–254X; Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas: U-net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Sci- ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9351 (2015), S. 234–241. – ISBN 9783319245737; Romero-Borja, Fernando; III, William J. D.; Queener, Hope; Hebert, Thomas J.; Campbell, Melanie C.: Adaptive optics scanning laser ophthalmoscopy. In: Opt. Express 10 (2002), May, Nr. 9, S. 405–412; Russakovsky, Olga; Deng, Jia; Su, Hao; Satheesh, Sanjeev; Ma, Sean; Huang, Zhiheng; Karpathy, Andrej; Khosla, Aditya; Bernstein, Michael; Berg, Alexander C.; Fei-Fei, Li: ImageNet Large Scale Visual Recognition Challenge. In: International Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, S. 211–252; Sahran, Shahnorbanun; Albashish, Dheeb; Abdullah, Azizi; Shukor, Nor- dashima A.; Hayati Md Pauzi, Suria: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. In: Artificial Intelligence in Medicine 87 (2018), S. 78–90. – ISSN 18732860; Salam, Anum A.; Khalil, Tehmina; Akram, M. U.; Jameel, Amina; Basit, Imran: Automated detection of glaucoma using structural and non structural features. In: SpringerPlus 5 (2016), Nr. 1. – ISSN 21931801; Wazir, Kamran; Anwar, Syed M.; Majid, Muhammad: Autonomous Glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: 2015 IEEE International Symposium on Signal Pro- cessing and Information Technology, ISSPIT 2015 (2016), Nr. c, S. 370–374. ISBN 9781509004805; Schlegl, Thomas; Waldstein, Sebastian; Vogl, Wolf-Dieter; Schmidt- Erfurth, Ursula; Langs, Georg: Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks. In: Information Processing in Medical Imaging 9123 (2015), Nr. Chapter 58, S. 733–745. – ISBN 978–3–319–19991–7; Schmidhuber, Jürgen: Deep Learning in neural networks: An overview. In: Neural Networks 61 (2015), S. 85–117. – ISBN 0893–6080; Shah, Mital; Roomans Ledo, Ana; Rittscher, Jens: Automated classification of normal and Stargardt disease optical coherence tomography images using deep learn- ing. In: Acta Ophthalmologica 98 (2020), Nr. 6, S. e715–e721; Shawe-Taylor, John; Cristianini, Nello: Kernel Methods for Pattern Analysis. New York, New York, USA : Cambridge University Press, 2004. – ISBN 9780521813976; Singh, Amitojdeep; Sengupta, Sourya; Lakshminarayanan, Vasudevan: Ex- plainable deep learning models in medical image analysis. In: Journal of Imaging 6 (2020), Nr. 6, S. 1–19. – ISSN 2313433X; Society, American C. Key Statistics for Prostate Cancer. 2023; Stolte, Skylar; Fang, Ruogu: A survey on medical image analysis in diabetic retinopathy. In: Medical Image Analysis 64 (2020), S. 101742. – ISSN 13618423; Olsson, Henrik; Solorzano, Leslie; De- lahunt, Brett; Berney, Daniel M.; Bostwick, David G.; Grignon, David J.; Humphrey, Peter A.; Iczkowski, Kenneth A.; Kench, James G.; Kristiansen, Glen; van der Kwast, Theodorus H.; Leite, Katia R.; McKenney, Jesse K.; Oxley, Jon; Pan, Chin C.; Samaratunga, Hemamali; Srigley, John R.; Takahashi, Hiroyuki; Tsuzuki, Toyonori; Varma, Mu- rali; Zhou, Ming; Lindberg, Johan; Lindskog, Cecilia; Ruusuvuori, Pekka; Wählby, Carolina; Grönberg, Henrik; Rantalainen, Mattias; Egevad, Lars; Eklund, Martin: Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. In: The Lancet Oncology 21 (2020), Nr. 2, S. 222–232. – ISSN 14745488; Summerfield, Quentin: L ipreading and audio-visual speech perception. In: Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 335 (1992), Nr. 1273, S. 71–78; Sun, Yunlian; Tang, Jinhui; Sun, Zhenan; Tistarelli, Massimo: Facial Age and Expression Synthesis Using Ordinal Ranking Adversarial Networks. In: IEEE Transactions on Information Forensics and Security 15 (2020), S. 2960–2972. – ISSN 15566021; Szegedy, Christian; Vanhoucke, Vincent; Ioffe, Sergey; Shlens, Jon; Wojna, Zbigniew: Rethinking the Inception Architecture for Computer Vision. In: Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December (2016), S. 2818–2826. – ISBN 9781467388504; Tang, Yehui; Yan, Junchi; Hu, Guoqiang; Zhang, Baohua; Zhou, Jinzan: Recent progress and perspectives on quantum computing for finance. In: Service Oriented Computing and Applications 16 (2022), Nr. 4, S. 227–229; Teng, Q.; Liu, Z.; Song, Y.; Han, K.; Lu, Y.: A survey on the interpretability of deep learning in medical diagnosis. In: Multimed Syst 28 (2022), Nr. 6, S. 2335–2355; Threatt, Jennifer; Williamson, Jennifer F.; Huynh, Kyle; Davis, Richard M.: Ocular disease, knowledge and technology applications in patients with diabetes. In: American Journal of the Medical Sciences 345 (2013), Nr. 4, S. 266–270. – ISSN 00029629; Tian, Li; Ma, Liyan; Wen, Zhijie; Xie, Shaorong; Xu, Yupeng: Learning Dis- criminative Representations for Fine-Grained Diabetic Retinopathy Grading. (2020); Toledo-Cortés, Santiago; De La Pava, Melissa; Perdómo, Oscar; González, Fabio A.: Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification. In: Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science, vol 12069. Springer, Cham., 2020, S. 206–215; Toledo-Cortés, Santiago: AOSLO-CNN Diagnosis and Counting. https:// github.com/stoledoc/AOSLO-CNN_Diagnosis_Counting. 2022. – [Online; accessed 01-Mar-2022]; Toledo-Cortés, Santiago: DQOR Code for Medical Image Grading with Deep Quan- tum Ordinal Regression. https://github.com/stoledoc/DQOR. 2022. – [Online; ac- cessed 01-Mar-2022]; Dubis, Adam M.; Müller, Henning: Deep Density Estimation for Cone Counting and Diagnosis of Genetic Eye Diseases From Adaptive Optics Scanning Light Ophthalmoscope Images. In: Transla- tional Vision Science Technology 12 (2023), 11, Nr. 11, S. 25–25. – ISSN 2164–2591; Useche, Diego H.; González, Fabio A.: Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. In: Computers in Biology and Medicine 145 (2022), S. 105472. – ISSN 0010–4825; Tolkach, Yuri; Dohmgörgen, Tilmann; Toma, Marieta; Kristiansen, Glen: High-accuracy prostate cancer pathology using deep learning. In: Nature Machine Intelligence 2 (2020), jul, Nr. 7, S. 411–418. – ISSN 25225839; In: Tsang, Stephen H.; Sharma, Tarun: Stargardt Disease. Cham : Springer International Publishing, 2018, S. 139–151. – ISBN 978–3–319–95046–4; Uppamma, P.; Bhattacharya, S.: Deep Learning and Medical Image Process- ing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends. In: J Healthc Eng 2023 (2023), S. 2728719; Urban, G.; Bendszus, M.; Hamprecht, Fred A.; Kleesiek, J.: Multi-modal Brain Tumor Segmentation using Deep Convolutional NeuralNetworks. In: MIC- CAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winningcontribution, 2014, S. 31–35; Vaghefi, Ehsan; Hill, Sophie; Kersten, Hannah M.; Squirrell, David: Mul- timodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration : A Feasibility Study. 2020 (2020); Vaicenavicius, Juozas; Widmann, David; Andersson, Carl; Lindsten, Fredrik; Roll, Jacob; Schön, Thomas: Evaluating model calibration in classification. In: Chaudhuri, Kamalika (Hrsg.); Sugiyama, Masashi (Hrsg.): Proceedings of Machine Learning Research Bd. 89, PMLR, 16–18 Apr 2019, S. 3459–3467; Van Grinsven, Mark J.; Buitendijk, Gabriëlle H.S.; Brussee, Corina; Van Ginneken, Bram; Hoyng, Carel B.; Theelen, Thomas; Klaver, Caroline C.; Sánchez, Clara I.: Automatic identification of reticular pseudodrusen using multi- modal retinal image analysis. In: Investigative Ophthalmology and Visual Science 56 (2015), Nr. 1, S. 633–639. – ISSN 15525783; Vanegas, Jorge A.: Large-scale Non-linear Multimodal Semantic Embedding Large- scale Non-linear Multimodal Semantic Embedding, Dissertation, 2017; Voets, Mike; Møllersen, Kajsa; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11; Bongo, Lars A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. In: PLoS ONE 14 (2019), Nr. 6, S. 1–11. – ISBN 1111111111; Wang, Daihou; Zhong, Hua; Kim, Isaac Y.; Qi, Xin: Exploring automatic prostate histopathology image gleason grading via local structure modeling. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem (2015), S. 2649–2652. – ISBN 9781424492718; Wang, Weisen; Xu, Zhiyan; Yu, Weihong; Zhao, Jianchun; Yang, Jingyuan; He, Feng; Yang, Zhikun; Chen, Di; Ding, Dayong; Chen, Youxin; Li, Xirong: Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization. (2019), S. 156–164. – ISBN 9783030322380; Wells, John A.; Glassman, Adam R.; Ayala, Allison R.; Jampol, Lee M.; Bressler, Neil M.; Bressler, Susan B.; Brucker, Alexander J.; Ferris, Fred- erick L.; Hampton, G. R.; Jhaveri, Chirag; Melia, Michele; Beck, Roy W.: Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema Two-Year Re- sults from a Comparative Effectiveness Randomized Clinical Trial. In: Ophthalmology 123 (2016), Nr. 6, S. 1351–1359; Wilkinson, C. P.; Ferris, Frederick L.; Klein, Ronald E.; Lee, Paul P.; Agardh, Carl D.; Davis, Matthew; Dills, Diana; Kampik, Anselm; Pararajasegaram, R.; Verdaguer, Juan T.; Lum, Flora: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. In: Ophthalmology 110 (2003), Nr. 9, S. 1677–1682; Wilson, Andrew; Nickisch, Hannes: Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP). In: Proceedings of the 32nd International Conference on Machine Learning, JMLR: W&CP. Lille, France, 2015; World Health Organisation: World report on vision. 2019 ( 14). – Forschungs- bericht. – 180–235 S. – ISBN 9789241516570; Wynne, Niamh; Duncan, Jacque L.: Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). In: Progress in Retinal and Eye Research (2021), Nr. October, S. 100920. – ISSN 18731635; Xie, Weidi; Noble, J. A.; Zisserman, Andrew: Microscopy cell counting and de- tection with fully convolutional regression networks. In: Computer Methods in Biome- chanics and Biomedical Engineering: Imaging and Visualization 6 (2018), Nr. 3, S. 283–292. – ISSN 21681171; Xin, Qiu; Elliot, Meyerson; Miikkulainen, Risto: Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel. In: ICLR 2020., 2019, S. 1–17. Addis Ababa, Ethiopia; Yang, Jialiang; Ju, Jie; Guo, Lei; Ji, Binbin; Shi, Shufang; Yang, Zixuan; Gao, Songlin; Yuan, Xu; Tian, Geng; Liang, Yuebin; Yuan, Peng: Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. In: Computational and Structural Biotechnology Journal 20 (2022), S. 333–342. – ISSN 2001–0370; Yap, Jordan; Yolland, William; Tschandl, Philipp: Multimodal skin lesion classification using deep learning. In: Experimental Dermatology 27 (2018), Nr. 11, S. 1261–1267. – ISSN 16000625; Yau, Joanne W.; Rogers, Sophie L.; Kawasaki, Rho; Lamoureux, Ecosse L.; Kowalski, Jonathan W.; Bek, Toke; Chen, Shih J.; Dekker, Jacqueline M.; Fletcher, Astrid; Grauslund, Jakob; Haffner, Steven; Hamman, Richard F.; Ikram, M. K.; Kayama, Takamasa; Klein, Barbara E.; Klein, Ronald; Krish- naiah, Sannapaneni; Mayurasakorn, Korapat; O’Hare, Joseph P.; Orchard, Trevor J.; Porta, Massimo; Rema, Mohan; Roy, Monique S.; Sharma, Tarun; Shaw, Jonathan; Taylor, Hugh; Tielsch, James M.; Varma, Rohit; Wang, Jie J.; Wang, Ningli; West, Sheila; Zu, Liang; Yasuda, Miho; Zhang, Xinzhi; Mitchell, Paul; Wong, Tien Y.: Global prevalence and major risk factors of diabetic retinopathy. In: Diabetes Care 35 (2012), Nr. 3, S. 556–564; Ramasubramanian, Bhoopalan; Selvaperumal, Sundaramoorthy; Kim, Deok W.: The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. In: Medical and Biological Engineering and Computing 57 (2019), Nr. 3, S. 677–687. – ISSN 17410444; Zadeh, Amir; Chen, Minghai; Cambria, Erik; Poria, Soujanya; Morency, Louis P.: Tensor fusion network for multimodal sentiment analysis. In: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings (2017), S. 1103–1114. ISBN 9781945626838; Zana, F.; Klein, J. C.: A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. In: IEEE Transactions on Medical Imaging 18 (1999), May, Nr. 5, S. 419–428. – ISSN 1558–254X; Zeng, Xianglong; Chen, Haiquan; Luo, Yuan; Ye, Wenbin: Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. In: IEEE Access 7 (2019), Nr. c, S. 30744–30753; Zhang, Daoqiang; Wang, Yaping; Zhou, Luping; Yuan, Hong: Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment. In: Neuroimage (2011). – ISBN 6176321972; Zhang, Yao; Ni, Qiang: Recent advances in quantum machine learning. In: Quantum Engineering 2 (2020), Nr. 1, S. e34; https://repositorio.unal.edu.co/handle/unal/85336; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
8
المؤلفون: Coll Corbilla, Jordi
المساهمون: Nuñez Do Rio, Joan Manuel, Ventura Royo, Carles
المصدر: O2, repositorio institucional de la UOC
Universitat Oberta de Catalunya (UOC)مصطلحات موضوعية: aprendizaje profundo, aprenentatge profund, deep learning, eye diseases, Inteligencia artificial -- TFM, anàlisi d'imatges mèdiques, xarxes neuronals convolucionals, malalties oculars, redes neuronales convolucionales, medical imaging analysis, classificació d'imatges, retinography, análisis de imágenes médicas, Artificial intelligence -- TFM, clasificación de imágenes, Intel·ligència artificial -- TFM, convolutional neural networks, retinografia, retinografía, enfermedades oculares, image classification
وصف الملف: application/pdf
-
9Dissertation/ Thesis
المؤلفون: Cano Ramírez, Fabián Alberto
المساهمون: Cruz Roa, Angel Alfonso
مصطلحات موضوعية: Histopatología, Patología digital, Aprendizaje de una sola vez, Aprendizaje semi-supervisado, Análisis de imágenes médicas, Clasificación automática, Histopathology, Digital pathology, One shot learning, Semi-supervised learning, Medical image analysis, Automatic classification
وصف الملف: 74 páginas; application/pdf
Relation: Agencia de Noticias UN. (2017). Especialistas médicos, calidad antes que cantidad. Retrieved from http://agenciadenoticias.unal.edu.co/detalle/article/especialistas-medicos-calidad-antes-que-cantidad.html; Angel Arul Jothi, J., & Mary Anita Rajam, V. (2017). A survey on automated cancer diagnosis from histopathology images. Artificial Intelligence Review, 48(1), 31–81. https://doi.org/10.1007/s10462-016-9494-6; Arévalo, J., Cruz-Roa, A., & Gonzalez O, F. A. (2014). Histopathology image representation for automatic analysis: a state-of-the-art review. Rev. Fac. Med. Bogotá, 22(2), 79–91. Retrieved from http://www.scielo.org.co/pdf/med/v22n2/v22n2a09.pdf; Bracey, T. (2017). Digital pathology. The Bulletin of the Royal College of Surgeons of England, 99(3), 93–96. https://doi.org/10.1308/rcsbull.2017.93; Cruz-Roa, A., Diaz, G., & González, F. (2011). A framework for semantic analysis of histopathological images using nonnegative matrix factorization. In 2011 6th Colombian Computing Congress (CCC) (pp. 1–7). IEEE. https://doi.org/10.1109/COLOMCC.2011.5936285; Cruz Roa, A., Romero, E., & González, F. (2013). An adaptive image representation learned from data for cervix cancer tumor detection, 8676, 86760Q. https://doi.org/10.1117/12.2007081; Daniel, C., Macary, F., García, M., Klossa, J., Laurinavičius, A. (2011). Recent advances in standards for collaborative Digital Anatomic Pathology. Diagnostic Pathology. https://doi.org/10.1186/1746-1596-6-S1-S17; Demir, C., & Yener, B. (2005). Automated cancer diagnosis based on histopathological images: a systematic survey. Dept. Comput. Sci., Rensselaer Polytechnic Inst., Troy, NY, USA, Tech. Rep., TR-05-09 (February), 1–16. https://doi.org/10.1.1.61.1199; Doyle, S., Monaco, J., Feldman, M., Tomaszewski, J., & Madabhushi, A. (2011). An active learning based classification strategy for the minority class problem: Application to histopathology annotation. BMC Bioinformatics, 12. https://doi.org/10.1186/1471-2105-12-424; Fuchs, T. J., & Buhmann, J. M. (2011, October). Computational pathology: Challenges and promises for tissue analysis. Computerized Medical Imaging and Graphics. https://doi.org/10.1016/j.compmedimag.2011.02.006; García, M., Bueno, G., Peces, C., González, J., Carbajo, M. (2005). Preparaciones digitales en los servicios de Anatomía Patológica (II). Análisis de soluciones existentes. Revista Española de Patología, Vol. 38, n.o 4. Retrieved from http://www.patologia.es/volumen38/vol38-num4/38-4n03.htm; García, G., & Sánchez, F. (2012). Enteritis necrótica en aves de ornato. Universidad Nacional Autónoma de México. Retrieved from https://www.engormix.com/avicultura/articulos/enteritis-necrotica-aves-ornato-t29602.htm; Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255). IEEE. https://doi.org/10.1109/CVPRW.2009.5206848; Komura, D., & Ishikawa, S. (2017). Machine learning methods for histopathological image analysis. Retrieved from https://arxiv.org/pdf/1709.00786.pdf; Lake, B. M., Salakhutdinov, R. R., Gross, J., & Tenenbaum, J. B. (2011). One shot learning of simple visual concepts. Proceedings of the 33rd Annual Conference of the Cognitive Science Society (CogSci 2011), 172, 2568–2573. Retrieved from http://palm.mindmodeling.org/cogsci2011/papers/0601/paper0601.pdf; Megías, P., & Molist, P. (2018). Técnicas histológicas, Proceso histológico. Atlas de histología vegetal y animal. Departamento de Biología Funcional y Ciencias de la Salud. Facultad de Biología. Universidad de Vigo, España. Retrieved from https://mmegias.webs.uvigo.es/6-tecnicas/1-proceso.php; Meyer, J., & Paré, G. (2015). Telepathology impacts and implementation challenges. In Archives of Pathology and Laboratory Medicine (Vol. 139, pp. 1550–1557). College of American Pathologists. https://doi.org/10.5858/arpa.2014-0606-RA; Nimo, Ana María. (2016). La patología digital revoluciona el proceso de diagnóstico. Retrieved from http://www.innovacionensalud.elmundo.es/salud-digital/la-patologia-digital-revoluciona-el-proceso-de-diagnostico; Padmanabhan, R. 1984-. (2014). Active and Transfer learning Methods for Computational Histology. Retrieved from https://uh-ir.tdl.org/uh-ir/handle/10657/787; Pantanowitz, L., Evans, A., Pfeifer, J., Collins, L., Valenstein, P., Kaplan, K., … Colgan, T. (2011). Review of the current state of whole slide imaging in pathology. Journal of Pathology Informatics, 2(1), 36. https://doi.org/10.4103/2153-3539.83746; Journal of Pathology Informatics, 2(1), 36. https://doi.org/10.4103/2153-3539.83746 21. Pardo, C., de Vries, E., Duarte, J. M., & Piñeros, M. (2015). Cáncer en la Unidad de Cáncer del Hospital Departamental de Villavicencio, Colombia, 2006-2008. Revista Colombiana de Cancerología, 19(3), 125–132. https://doi.org/10.1016/j.rccan.2015.06.005; Puerto, M., Vargas, T., & Cruz-Roa, A. (2016). A Digital Pathology application for whole-slide histopathology image analysis based on genetic algorithm and Convolutional Networks. In 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (pp. 1–7). IEEE. https://doi.org/10.1109/LA-CCI.2016.7885738; Redacción de El País. (2016). ¿Faltan más especialistas médicos en Cali?. Retrieved from www.elpais.com.co/colombia/faltan-mas-especialistas-medicos-en-cali.html; Ross, M. H., Pawlina, W., & Negrete, J. H. (2007). Histología : texto y atlas color con biología celular y molecular. Médica Panamericana.; Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y; Treanor, D., Gallas, B. D., Gavrielides, M. A., & Hewitt, S. M. (2015). Evaluating whole slide imaging: A working group opportunity. Journal of Pathology Informatics, 6, 4. Retrieved from http://www.jpathinformatics.org/text.asp?2015/6/1/4/151880; Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., & Wierstra, D. (2016). Matching Networks for One Shot Learning. https://doi.org/10.1109/CVPR.2016.95; Wright, A., Magee, D., Quirke, P., & Treanor, D. E. (2014). Towards automatic patient selection for chemotherapy in colorectal cancer trials. In M. N. Gurcan & A. Madabhushi (Eds.) (p. 90410A). https://doi.org/10.1117/12.2043220; Pardo, Constanza, de Vries, Esther, Duarte, José María, & Piñeros, Marion. (2015). Cáncer en la Unidad de Cáncer del Hospital Departamental de Villavicencio, Colombia, 2006-2008. Revista Colombiana de Cancerología, 19(3), 125-132.; Piñeros, M., Sánchez, R., Perry, F., García, O., Ocampo, R., & Cendales, R. (2011). Demoras en el diagnóstico y tratamiento de mujeres con cáncer de mama en Bogotá, Colombia. Salud Pública de México, 53(6), 478-485.; Bromley, J., Bentz, J., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Sackinger, E., & Shah, R. (1993). Signature verification using a siamese time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7 (04):669–688.; Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese Neural Networks for One-shot Image Recognition. Department of Computer Science, University of Toronto. Toronto, Ontario, Canada. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37; Computer Vision. (2018). Siamese Neural Networks. Lugar de publicación: Computer Vision, Tecnalia. https://computervision.tecnalia.com/es/2018/08/siamese-neural-networks/; Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., Gonzalez, F., & Madabhushi, A. (2017). Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent. In: Scientific Reports 7, 46450. https://doi.org/https://doi.org/doi:10.1038/srep46450; Cruz-Roa, A., Arevalo, J., Judkinsc, A., Madabhushid, A., and Gonzalez, F. (2015). A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning, 11th International Symposium on Medical Information Processing and Analysis 9681; Krizhevsky, A., Sutskever, I. Hinton, G. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems 25, 1106-1114; Ciresan, D., Giusti, A., Gambardella, L. Schmidhuber, J. (2013). Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, 8150, 411-418; Wang, H. et al. (2014). Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. In: Journal of Medical Imaging 1, 34003; Cruz-Roa, A. et al. (2014). Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: Proc. SPIE 9041, 904103-904115; DeSantis, C., Ma, J., Bryan, L. Jemal. (2014). A. Breast Cancer Statistics, 2013. In: A Cancer Journal for Clinicians 64(1), 52-62.; DeSantis, C., Siegel, R., Bandi, P. Jemal. (2011). A. Breast cancer statistics, 2011. In: A Cancer Journal for Clinicians 61, 408-418; Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. (2013). Decaf: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531; Byra, M., Styczynski, G., Szmigielski, C., Kalinowski, P., Michałowski, Ł., Paluszkiewicz, R., Nowicki, A. (2018). Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. International journal of computer assisted radiology and surgery, 13(12), 1895–1903. doi:10.1007/s11548-018-1843-2; Huynh BQ, Li H, Giger ML. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging. doi:10.1117/1.JMI.3.3.034501.; Deshpande, A. (n.d.). A Beginner's Guide To Understanding Convolutional Neural Networks. Recuperado de https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/; Hong, S. (2017). A Vision for Making Deep Learning Simple From Machine Learning Practitioners to Business Analysts. Databricks. Recuperado de https://databricks.com/blog/2017/06/06/databricks-vision-simplify-large-scale-deep-learning.html; Cano, F., Madabhushi, A., & Cruz-Roa, A. (2018). A comparative analysis of sensitivity of convolutional neural networks for histopathology image classification in breast cancer. Proc. SPIE 10975, 14th International Symposium on Medical Information Processing and Analysis, 109750W; doi:10.1117/12.2511647; https://doi.org/10.1117/12.2511647; Neurohive. (2018). VGG16 – Convolutional Network for Classification and Detection. Recuperado de https://neurohive.io/en/popular-networks/vgg16/; Recuperado de https://neurohive.io/en/popular-networks/vgg16/ 49. Lamba, H. (2019). One Shot Learning with Siamese Networks using Keras. Publicado en: Towards Data Science. Recuperado de https://towardsdatascience.com/one-shot-learning-with-siamese-networks-using-keras-17f34e75bb3d; Freitas, T. (2018). Implementation of Siamese Neural Networks for One-shot Image Recognition. Recuperado de https://github.com/Goldesel23/Siamese-Networks-for-One-Shot-Learning; Rao, S. (2018). MITOS-RCNN: A Novel Approach to Mitotic Figure Detection in Breast Cancer Histopathology Images using Region Based Convolutional Neural Networks. Elsevier Medical Image Analysis Journal. https://arxiv.org/abs/1807.01788; https://repositorio.unillanos.edu.co/handle/001/4561; Universidad de los Llanos; Repositorio digital Universidad de los Llanos; https://repositorio.unillanos.edu.co
-
10
المؤلفون: Otálora Montenegro, Juan Sebastian
المساهمون: González Osorio, Fabio Augusto
المصدر: Repositorio UN
Universidad Nacional de Colombia
instacron:Universidad Nacional de Colombiaمصطلحات موضوعية: Aprendizaje en Linea, Longitud esperada del gradiente, Expected Gradient Length, Active Learning, Aprendizaje Activo, Machine Learning, Deep Learning, Medical Imaging, 51 Matemáticas / Mathematics, 62 Ingeniería y operaciones afines / Engineering, Redes Neuronales Profundas, Aprendizaje de la Representación, Aprendizaje de máquina, 6 Tecnología (ciencias aplicadas) / Technology, On-line Learning, Análisis de Imágenes Médicas, Eye Fundus imaging
وصف الملف: application/pdf
-
11Dissertation/ Thesis
المؤلفون: Cárdenas Peña, David Augusto
المساهمون: Castellanos Domínguez, César Germán (Thesis advisor)
مصطلحات موضوعية: 6 Tecnología (ciencias aplicadas) / Technology, 62 Ingeniería y operaciones afines / Engineering, Análisis de imágenes medicas, Teoría de kernels, Agrupamiento de RNM, Segmentación basada en atlases, Selección de plantillas, Segmentación Bayesiana, Segmentación basada en parches, Diagnóstico asistido por computador, Función de costo empleando medidas de información, Redes neuronales, Medical image analysis, Kernel theory, MRI clustering, Atlas-based segmentation, Template selection, Bayesian segmentation, Patch-based segmentation, Computer-aided diagnosis, Information-based cost function, Neural networks
وصف الملف: application/pdf
Relation: Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación Ingeniería Electrónica; Ingeniería Electrónica; Cárdenas Peña, David Augusto (2016) Kernel-based image analysis towards MRI segmentation and classification. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.; https://repositorio.unal.edu.co/handle/unal/56541; http://bdigital.unal.edu.co/52348/
-
12Electronic Resource
المؤلفون: Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili., Ali, Mohammed Yousef Salem
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات الفهرس: 62, 004, Enginyeria i arquitectura, Medical image analysis, computer vision, deep learning, Análisis de imágenes médicas, visión por computador, aprendizaje profundo, Anàlisi d'imatges mèdiques, visió per computador, aprenentatge profund, info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
-
13Electronic Resource
المؤلفون: Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili., Escorcia Gutierrez, José
المصدر: TDX (Tesis Doctorals en Xarxa)
مصطلحات الفهرس: 621.3, 62, 61, Ingeniería y arquitectura, Fundus image segmentation, Medical image analysis, Diabetic retinopathy, Segmentación de la imagen del fondo de ojo, Análisis de imágenes médicas, Retinopatía diabética, Segmentació de la imatge del fons, Anàlisi d'imatges mèdiques, Retinopatia diabètica, info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis