يعرض 1 - 20 نتائج من 39 نتيجة بحث عن '"Amplicones"', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 1
    Dissertation/ Thesis
  2. 2
    Dissertation/ Thesis
  3. 3
    Dissertation/ Thesis
  4. 4
    Dissertation/ Thesis

    المؤلفون: Jacome Garrido, Nadin Sabina

    المساهمون: Flores Flor, Francisco Javier

    مصطلحات موضوعية: COLLETOTRICHUM, BIOLOG, MORFOMETRÍA, AMPLICONES

    Relation: Jacome Garrido, Nadin Sabina (2023). Identificación de especies del género Colletotrichum en distintos hospederos, mediante indicadores morfométricos, metabólicos y moleculares. Carrera de Biotecnología. Universidad de las Fuerzas Armadas ESPE. Matriz Sangolquí.; 058546; http://repositorio.espe.edu.ec/handle/21000/37555

  5. 5
    Academic Journal
  6. 6
    Academic Journal

    وصف الملف: application/pdf

    Relation: Lizarazo, P. X., Cabarcas, F. & Alzate, J. F., (2016). Microbiota bacteriana asociada al papel moneda de circulación en Colombia. Infectio. 20 (4), 218-224. DOI:10.1016/j.infect.2015.10.010; http://hdl.handle.net/10495/12788

  7. 7
    Academic Journal
  8. 8

    وصف الملف: 13 p.

    Relation: https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-022-05595-y#citeas; Rodrigues JCF, Godinho JLP, de Souza W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. In: Santos ALS, Branquinha MH, d’Avila-Levy CM, Kneipp LF, Sodré CL, editors. Proteins and proteomics in leishmania and trypanosoma. Dordrecht: Springer Netherlands; 2014; WHO. WHO Factsheet Vector-borne diseases. 2014. https://www.who. int/campaigns/world-health-day/2014/fact-sheets/en/; Bartolomé C, Buendía M, Benito M, De la Rúa P, Ornosa C, MartínHernández R, et al. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J Invertebr Pathol. 2018;154:37–41; Ganyukova AI, Frolov AO, Malysheva MN, Spodareva VV, Yurchenko V, Kostygov AY. A novel endosymbiont-containing trypanosomatid Phytomonas borealis sp. n. from the predatory bug Picromerus bidens (Heteroptera: Pentatomidae). Folia Parasitol. 2019. https://doi.org/10. 14411/fp.2020.004; Onchuru TO, Martinez AJ, Kaltenpoth M. The cotton stainer’s gut micro‑ biota suppresses infection of a cotransmitted trypanosomatid parasite. Mol Ecol. 2018;27:3408–19.; World Health Organization. Ending the neglect to attain the Sustain‑ able Development Goals: a road map for neglected tropical diseases 2021–2030. Overview. Washintong; 2021 p. 7. https://www.who.int/ publications/i/item/9789240010352.; Abras A, Ballart C, Fernández-Arévalo A, Pinazo M-J, Gascón J, Muñoz C, et al. Worldwide control and management of Chagas disease in a new era of globalization: a close look at congenital Trypanosoma cruzi infec‑ tion. Clin Microbiol Rev. 2022;35:e00152-e221; da Silva NAB, de Oliveira EF, Encina CCC, de Figueiredo HR, Paranhos FAC, de Oliveira AG. Efects of El Niño-Southern oscillation on human visceral leishmaniasis in the Brazilian State of Mato Grosso do Sul. Mem Inst Oswaldo Cruz. 2020;115:e190298; Berry I, Berrang-Ford L. Leishmaniasis, confict, and political terror: a spatio-temporal analysis. Soc Sci Med. 2016;167:140–9; Grillet ME, Hernández-Villena JV, Llewellyn MS, Paniz-Mondolf AE, Tami A, Vincenti-Gonzalez MF, et al. Venezuela’s humanitarian crisis, resurgence of vector-borne diseases, and implications for spillover in the region. Lancet Infect Dis. 2019;19:e149–61.; Rodríguez-Morales AJ, Suárez JA, Risquez A, Villamil-Gómez WE, PanizMondolf A. Consequences of Venezuela’s massive migration crisis on imported malaria in Colombia, 2016–2018. Travel Med Infect Dis. 2019;28:98–9.; Suarez J, Carreño L, Paniz-Mondolf A, Marco-Canosa F, Freilij H, Riera J, et al. Infectious diseases, social, economic and political crises, anthropo‑ genic disasters and beyond: Venezuela 2019—implications for public health and travel medicine. 2018;1:73–93.; Valero NNH, Uriarte M. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitol Res. 2020;119:365–84; Afrin F, Khan I, Hemeg HA. Leishmania-host interactions—an epigenetic paradigm. Front Immunol. 2019;10:492; Alemayehu B, Alemayehu M. Leishmaniasis: A review on parasite, vector and reservoir host. Health Sci J. 2017. http://www.hsj.gr/medicine/leish maniasis-a-review-on-parasite-vector-and-reservoir-host.php?aid= 20131. Accessed on 21 Oct 2019; de Castro Neto AL, da Silveira JF, Mortara RA. Comparative analysis of virulence mechanisms of trypanosomatids pathogenic to humans. Front Cell Infect Microbiol. 2021;11:669079.; Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: a review and assessment of recent research. Biomed Pharmacother. 2021;139:111671.; Ferro C, López M, Fuya P, Lugo L, Cordovez JM, González C. Spatial Distribution of Sand Fly Vectors and Eco-Epidemiology of Cutaneous Leishmaniasis Transmission in Colombia. PLOS ONE. 2015;10:e0139391.; González C, Cabrera OL, Munstermann LE, Ferro C. Distribución de los vectores de Leishmania infantum (Kinetoplastida: Trypanosomatidae) en Colombia. Biomedica. 2012;26:64.; Paternina-Gómez M, Díaz-Olmos Y, Paternina LE, Bejarano EE. Alta prevalencia de infección por Leishmania (Kinetoplastidae: Trypanoso‑ matidae) en caninos del norte de Colombia. Biomédica. 2013. http:// www.revistabiomedica.org/index.php/biomedica/article/view/780. Accessed on 26 Apr 2020; Gürtler RE, Cecere MC, Lauricella MA, Cardinal MV, Kitron U, Cohen JE. Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology. 2007;134:69–82; Kamdem CN, Tiofack AAZ, Mewamba EM, Ofon EA, Gomseu EBD, Simo G. Molecular identifcation of diferent trypanosome species in tsetse fies caught in the wildlife reserve of Santchou in the western region of Cameroon. Parasitol Res. 2020;119:805–13.; Ribeiro G, dos Santos CGS, Lanza F, Reis J, Vaccarezza F, Diniz C, et al. Wide distribution of Trypanosoma cruzi-infected triatomines in the State of Bahia. Brazil Parasit Vectors. 2019;12:604; Rodriguez F, Luna BS, Calderon O, Manriquez-Roman C, AmezcuaWinter K, Cedillo J, et al. Surveillance of Trypanosoma cruzi infection in triatomine vectors, feral dogs and cats, and wild animals in and around El Paso county Texas, and New Mexico. PLoS Negl Trop Dis. 2021;15:e0009147; Abbate JM, Maia C, Pereira A, Arfuso F, Gaglio G, Rizzo M, et al. Identifcation of trypanosomatids and blood feeding preferences of phlebotomine sand fy species common in Sicily Southern Italy. PLOS ONE. 2020;15:e0229536.; Buatong J, Dvorak V, Thepparat A, Thongkhao K, Koyadun S, Siriyasatien P, et al. Phlebotomine sand fies in Southern Thailand: entomological survey, identifcation of blood meals and molecular detection of Trypa‑ nosoma spp. Insects. 2022;13:197.; Srisuton P, Sunantaraporn B, Sor-suwan B, et al. Detection of Leishmania and Trypanosoma DNA in feld-caught sand fies from endemic and non-endemic areas of leishmaniasis in Southern Thailand. Insects. 2019;10:238.; Castelli G, Bruno F, Reale S, Catanzaro S, Valenza V, Vitale F. Molecular Diagnosis of Leishmaniasis: Quantifcation of Parasite Load by a RealTime PCR Assay with High Sensitivity. Pathogens. 2021;10:865.; Dantas-Torres F, Solano-Gallego L, Baneth G, Ribeiro VM, de Paiva-Cav‑ alcanti M, Otranto D. Canine leishmaniosis in the old and new worlds: unveiled similarities and diferences. Trends Parasitol. 2012;28:531–8.; Dantas-Torres F, Miró G, Baneth G, Bourdeau P, Breitschwerdt E, Capelli G, et al. Canine Leishmaniasis control in the context of one health. Emerg Infect Dis. 2019;25:1–4; Eloy LJ, Lucheis SB. Hemoculture and polymerase chain reaction using primers TCZ1/TCZ2 for the diagnosis of canine and feline trypanoso‑ miasis. ISRN Vet Sci. 2012;2012:1–6.; Hassan-Kadle AA, Ibrahim AM, Nyingilili HS, Yusuf AA, Vieira RFC. Parasi‑ tological and molecular detection of Trypanosoma spp. in cattle, goats and sheep in Somalia. Parasitology. 2020;147:1786–91.; Cássia-Pires R, Boité MC, D’Andrea PS, Herrera HM, Cupolillo E, Jansen AM, et al. Distinct Leishmania Species Infecting Wild Caviomorph Rodents (Rodentia: Hystricognathi) from Brazil. PLoS Negl Trop Dis. 2014;8:e3389.; de Ferreira EC, Cruz I, Cañavate C, de Melo LA, Pereira AAS, Madeira FAM, et al. Mixed infection of Leishmania infantum and Leishmania braziliensis in rodents from endemic urban area of the New World. BMC Vet Res. 2015;11:71.; Kassahun A, Sadlova J, Dvorak V, Kostalova T, Rohousova I, Frynta D, et al. Detection of Leishmania donovani and L. tropica in Ethiopian wild rodents. Acta Trop. 2015;145:39–44; Nantes WAG, Santos FM, de Macedo GC, Barreto WTG, Gonçalves LR, Rodrigues MS, et al. Trypanosomatid species in Didelphis albiventris from urban forest fragments. Parasitol Res. 2021;120:223–31; Velez ID, Travi BL, Jaramillo C, Montoya J, Segura I, Zea A, et al. Didelphis marsupialis, an Important Reservoir of Trypanosoma (Schizotrypanum) cruzi and Leishmania (Leishmania) chagasi in Colombia. Am J Trop Med Hyg. 1994;50:557–65.; Keatley S, Botero A, Fosu-Nyarko J, Pallant L, Northover A, Thompson RCA. Species-level identifcation of trypanosomes infecting Australian wildlife by high-resolution melting—real time quantitative polymerase chain reaction (HRM-qPCR). Int J Parasitol Parasites Wildl. 2020;13:261–8; Kassahun A, Sadlova J, Benda P, Kostalova T, Warburg A, Hailu A, et al. Natural infection of bats with Leishmania in Ethiopia. Acta Trop. 2015;150:166–70; Medkour H, Davoust B, Dulieu F, Maurizi L, Lamour T, Marié J-L, et al. Potential animal reservoirs (dogs and bats) of human visceral leishma‑ niasis due to Leishmania infantum in French Guiana. PLoS Negl Trop Dis. 2019;13:e0007456.; de Oliveira FM, Costa LHC, de Barros TL, Rauschkolb KIPK, Colombo FA, de Carvalho C, et al. First detection of Leishmania spp DNA in Brazilian bats captured strictly in urban areas. Acta Trop. 2015;150:176–81.; Ardila MM, Carrillo-Bonilla L, Pabón A, Robledo SM. Surveillance of phlebotomine fauna and Didelphis marsupialis (Didelphimorphia: Didel‑ phidae) infection in an area highly endemic for visceral leishmaniasis in Colombia. Biomedica. 2019;39:252–64; Godfrey SS, Keatley S, Botero A, Thompson CK, Wayne AF, Lymbery AJ, et al. Trypanosome co-infections increase in a declining marsupial population. Int J Parasitol Parasit Wildl. 2018;7:221–7.; González C, León C, Paz A, López M, Molina G, Toro D, et al. Diversity patterns, Leishmania DNA detection, and bloodmeal identifcation of Phlebotominae sand fies in villages in northern Colombia. PLoS ONE. 2018;13:e0190686.; López M, Erazo D, Hoyos J, León C, Fuya P, Lugo L, et al. Measuring spatial co-occurrences of species potentially involved in Leishmania transmission cycles through a predictive and feldwork approach. Sci Rep. 2021;11:6789.; Carvalho FS, Albuquerque GR, Carneiro PLS, Wenceslau AA. Genetic variability of Leishmania infantum in naturally infected dogs in the state of Bahia. Brazil Rev Bras Parasitol Veterinária. 2017;26:389–94.; Gouzelou E, Haralambous C, Amro A, Mentis A, Pratlong F, Dedet J-P, et al. Multilocus microsatellite typing (MLMT) of strains from Turkey and cyprus reveals a novel monophyletic L. donovani sensu lato group. PLoS Negl Trop Dis. 2012;6:e1507.; Nemati S, Fazaeli A, Hajjaran H, Khamesipour A, Anbaran MF, Bozorgo‑ mid A, et al. Genetic diversity and phylogenetic analysis of the Iranian Leishmania parasites based on HSP70 gene PCR-RFLP and sequence analysis. Korean J Parasitol. 2017;55:367–74.; Ramírez JD, Hernández C, León CM, Ayala MS, Flórez C, González C. Tax‑ onomy, diversity, temporal and geographical distribution of cutaneous leishmaniasis in Colombia: a retrospective study. Sci Rep. 2016;6:28266.; Calzada JE, Samudio F, de Juncá C, Pineda V, Burleigh BA, Saldaña A. Genetic diversity of Trypanosoma cruzi in Panama inferred by multilocus sequence typing of mitochondrial genes. Microorganisms. 2022;10:287; Velásquez-Ortiz N, Hernández C, Herrera G, Cruz-Saavedra L, Higuera A, Arias-Giraldo LM, et al. Trypanosoma cruzi infection, discrete typing Castillo‑Castañeda et al. Parasites & Vectors (2022) 15:471 Page 11 of 13 units and feeding sources among Psammolestes arthuri (Reduviidae: Triatominae) collected in eastern Colombia. Parasit Vectors. 2019;12:157; Weber JS, Ngomtcho SCH, Shaida SS, Chechet GD, Gbem TT, Nok JA, et al. Genetic diversity of trypanosome species in tsetse fies (Glossina spp.) in Nigeria. Parasit Vectors. 2019;12:481.; Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, et al. Identifcation of blood-feeding sources in panstrongylus, psammolestes, rhodnius and triatoma using ampliconbased next-generation sequencing. Parasit Vectors. 2020;13:434.; Flaherty BR, Barratt J, Lane M, Talundzic E, Bradbury RS. Sensitive universal detection of blood parasites by selective pathogen-DNA enrichment and deep amplicon sequencing. Microbiome. 2021;9:1.; Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019;20:8; Maiguashca Sánchez J, Sueto SOB, Schwabl P, Grijalva MJ, Llewellyn MS, Costales JA. Remarkable genetic diversity of Trypanosoma cruzi and Trypanosoma rangeli in two localities of southern Ecuador identifed via deep sequencing of mini-exon gene amplicons. Parasit Vectors. 2020;13:252.; Moreno Y, Moreno-Mesonero L, Amorós I, Pérez R, Morillo JA, Alonso JL. Multiple identifcation of most important waterborne protozoa in surface water used for irrigation purposes by 18S rRNA amplicon-based metagenomics. Int J Hyg Environ Health. 2018;221:102–11.; Patiño LH, Castillo-Castañeda AC, Muñoz M, Jaimes JE, Luna-Niño N, Hernández C, et al. Development of an amplicon-based next-gener‑ ation sequencing protocol to identify leishmania species and other trypanosomatids in Leishmaniasis endemic areas. Microbiol Spectr. 2021;9:e00652-e721.; Abbasi I, Nasereddin A, Warburg A. Development of a next-generation DNA sequencing-based multi detection assay for detecting and iden‑ tifying Leishmania parasites, blood sources, plant meals and intestinal microbiome in phlebotomine sand fies. Acta Trop. 2019;199:105101.; de Oliveira GE, Filipe M, de Macedo GC, Barreto WTG, Campos JBV, Meyers AC, et al. Maintenance of Trypanosoma cruzi, T evansi and Leishmania spp by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border. Int J Parasitol Parasites Wildl. 2018;7:398–404.; Sevá AP, Ovallos FG, Amaku M, Carrillo E, Moreno J, Galati EAB, et al. Canine-Based Strategies for Prevention and Control of Visceral Leishma‑ niasis in Brazil. PLoS ONE. 2016;11:e0160058.; Llewellyn MS, Messenger LA, Luquetti AO, Garcia L, Torrico F, Tavares SBN, et al. Deep sequencing of the Trypanosoma cruzi GP63 sur‑ face proteases reveals diversity and diversifying selection among chronic and congenital Chagas disease patients. PLoS Negl Trop Dis. 2015;9:e0003458.; Castillo-Castañeda A, Patiño LH, Muñoz M, Ayala MS, Segura M, Bautista J, et al. Amplicon-based next-generation sequencing reveals the co-existence of multiple Leishmania species in patients with visceral leishmaniasis. Int J Infect Dis. 2022;115:35–8.; PAHO W. Epidemiological Report of the Americas. Leishmaniases . 2019 Mar p. 8. Report No.: 7. http://iris.paho.org/xmlui/handle/123456789/ 50505; Patino LH, Mendez C, Rodriguez O, Romero Y, Velandia D, Alvarado M, et al. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Negl Trop Dis. 2017;11:e0005876Patino LH, Mendez C, Rodriguez O, Romero Y, Velandia D, Alvarado M, et al. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Negl Trop Dis. 2017;11:e0005876; Sandoval-Ramírez CM, Hernández C, Teherán AA, Gutierrez-Marin R, Martínez-Vega RA, Morales D, et al. Complex ecological interactions across a focus of cutaneous leishmaniasis in Eastern Colombia: novel description of Leishmania species, hosts and phlebotomine fauna. R Soc Open Sci. 2020;7:200266.; Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6; Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, et al. Global genome diversity of the Leishmania donovani complex. Elife. 2020;9:e51243; Kuhls K, Alam MZ, Cupolillo E, Ferreira GEM, Mauricio IL, Oddone R, et al. Comparative microsatellite typing of new world Leishmania infantum reveals low heterogeneity among populations and its recent old world origin. PLoS Negl Trop Dis. 2011;5:e1155.; Leblois R, Kuhls K, François O, Schönian G, Wirth T. Guns, germs and dogs: on the origin of Leishmania chagasi. Infect Genet Evol. 2011;11:1091–5; Aleixo JA, Nascimento ET, Monteiro GR, Fernandes MZ, Ramos AMO, Wilson ME, et al. Atypical American visceral leishmaniasis caused by dis‑ seminated Leishmania amazonensis infection presenting with hepatitis and adenopathy. Trans R Soc Trop Med Hyg. 2006;100:79–82; Tolezano JE, Uliana SRB, Taniguchi HH, Araújo MFL, Barbosa JAR, Bar‑ bosa JER, et al. The frst records of Leishmania (Leishmania) amazonensis in dogs (Canis familiaris) diagnosed clinically as having canine visceral leishmaniasis from Araçatuba county, São Paulo state. Brazil Vet Parasi‑ tol. 2007;149:280–4; Valdivia HO, Zorrilla VO, Espada LJ, Perez JG, Razuri HR, Vera H, et al. Diversity, distribution and natural Leishmania infection of sand fies from communities along the interoceanic highway in the Southeastern Peruvian Amazon. PLoS Negl Trop Dis. 2021;15:e0009000.; Abdoli A, Maspi N, Ghafarifar F, Nasiri V. Viscerotropic leishmaniasis: a systematic review of the case reports to highlight spectrum of the infection in endemic countries. Parasitol Open. 2018;4:e11.; Hernández C, Cucunubá Z, Flórez C, Olivera M, Valencia C, Zambrano P, et al. Molecular diagnosis of Chagas disease in Colombia: parasitic loads and discrete typing units in patients from acute and chronic phases. PLoS Negl Trop Dis. 2016;10:e0004997.; INS. Informe de evento: Enfermedad de Chagas 2018. Bogotá: Instituto Nacional de Salud; 2019.; Jansen AM, das Xavier SCC, Roque ALR. Trypanosoma cruzi transmis‑ sion in the wild and its most important reservoir hosts in Brazil. Parasit Vectors. 2018;11:502.; Bilheiro AB, da Rosa JA, de Oliveira J, Belintani T, Fontes G, Medeiros JF, et al. First Report of Natural Infection with Trypanosoma cruzi in Rhodnius montenegrensis (Hemiptera, Reduviidae, Triatominae) in Western Amazon. Brazil Vector-Borne Zoonotic Dis. 2018;18:605–10.; Bilheiro AB, da Costa GS, da Araújo MS, Ribeiro WAR, Medeiros JF, Camargo LMA. Identifcation of blood meal sources in species of genus Rhodnius in four diferent environments in the Brazilian Amazon. Acta Trop. 2022;232:106486.; de Sousa PH, Scofeld A, Júnior PSB, dos Lira SD, de Sousa SJ, Chaves JF, et al. Chagas disease in urban and peri-urban environment in the Amazon: Sentinel hosts, vectors, and the environment. Acta Trop. 2021;217:105858.; Ramírez-Chaves H, Suárez Castro A, González-Maya J. Cambios recientes a la lista de mamíferos de Colombia. Mammal Notes. 2016;3:1–9.; Gómez-Bravo A, German A, Abril M, Scavuzzo M, Salomón OD. Spatial population dynamics and temporal analysis of the distribution of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phle‑ botominae) in the city of Clorinda, Formosa. Argentina Parasit Vectors. 2017;10:352.; Correa-Cárdenas CA, Pérez J, Patino LH, Ramírez JD, Duque MC, Romero Y, et al. Distribution, treatment outcome and genetic diversity of Leish‑ mania species in military personnel from Colombia with cutaneous leishmaniasis. BMC Infect Dis. 2020;20:938.; Ferrer E, García H, Bolivar A, Cañizales I, Guerrero R, Herrera L. First molecular detection of Trypanosoma cruzi, T. rangeli and Leishmania spp. in capybaras. Vet Parasitol Reg Stud Rep. 2021;23:100516.; da Silva YSGN, da Silva e SD, da Silva SAC, Silva RBS, de Oliveira PRF, Mota RA, et al. Molecular and serological detection of Leishmania infantum, Toxoplasma gondii, and Leptospira spp in free-ranging capybaras (Hydrochoerus hydrochaeris) from the Atlantic forest. Eur J Wildl Res. 2021;67:13; Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol. 2022;102:108400.; Mirzaei A, Rouhani S, Kazerooni P, Farahmand M, Parvizi P. Molecular detection and conventional identifcation of leishmania species in reservoir hosts of zoonotic cutaneous leishmaniasis in Fars Province, South of Iran. Iran J Parasitol. 2013;8:280–8.; Palatnik-de-Sousa CB, Day MJ. One Health: the global challenge of epidemic and endemic leishmaniasis. Parasit Vectors. 2011;4:197.; Tsokana CN, Sokos C, Giannakopoulos A, Mamuris Z, Birtsas P, Papaspy‑ ropoulos K, et al. First evidence of Leishmania infection in European brown hare (Lepus europaeus) in Greece: GIS analysis and phylogenetic position within the Leishmania spp. Parasitol Res. 2016;115:313–21.; Castillo-Castañeda A, Herrera G, Ayala MS, Fuya P, Ramírez JD. Spatial and temporal variability of visceral leishmaniasis in Colombia, 2007 to 2018. Am J Trop Med Hyg. 2021;105:144–55; Golpayegani AA, Moslem AR, Akhavan AA, Zeydabadi A, Mahvi AH, Allah-Abadi A. Modeling of environmental factors afecting the preva‑ lence of zoonotic and anthroponotic cutaneous, and zoonotic visceral leishmaniasis in foci of Iran: a remote sensing and GIS based study. J Arthropod-Borne Dis. 2018;12:41–66; Risueño J, Ortuño M, Pérez-Cutillas P, Goyena E, Maia C, Cortes S, et al. Epidemiological and genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, dogs and humans associated to vector abundance in Southeast Spain. Vet Parasitol. 2018;259:61–7.; Salgueiro MM, Pimentel MIF, Miranda LFC, Cunha SRR, Oliveira LFA, Lyra MR, et al. Parasite species variation and impact of spatial displacement of the population on cutaneous leishmaniasis in Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg. 2022;116:70–9.; Estrada LG, Ortega E, Vivero RJ, Bejarano EE, Cadena H. Development of Lutzomyia evansi immature stages in peridomiciliary environment in a leishmaniasis urban focus in the Colombian Caribbean. Acta Trop. 2020;208:105523.; Chajbullinova A, Votypka J, Sadlova J, Kvapilova K, Seblova V, Kreisinger J, et al. The development of Leishmania turanica in sand fies and com‑ petition with L. major. Parasit Vectors. 2012;5:219; de Rodrigues OA, Pinheiro GRG, Tinoco HP, Loyola ME, Coelho CM, Dias ES, et al. Competence of non-human primates to transmit Leishmania infantum to the invertebrate vector Lutzomyia longipalpis. PLoS Negl Trop Dis. 2019;13:e0007313.; Serafm TD, Coutinho-Abreu IV, Oliveira F, Meneses C, Kamhawi S, Valen‑ zuela JG. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat Microbiol. 2018;3:548–55.; Funk S, Nishiura H, Heesterbeek H, Edmunds WJ, Checchi F. Identifying transmission cycles at the human-animal interface: the role of animal reservoirs in maintaining gambiense human African trypanosomiasis. PLoS Comput Biol. 2013;9:e1002855.; Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V. Pathogenic land‑ scapes: Interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr. 2010;9:54.; Veeresha P, Malagi NS, Prakasha DG, Baskonus HM. An efcient tech‑ nique to analyze the fractional model of vector-borne diseases. Phys Scr. 2022;97:054004; Lago R de JM do, Sousa IDB de, Albuquerque LP de A, Moraes FC, Aquino DMC de. Aspectos de uma área endêmica para leishmaniose visceral em um município no Maranhão, Brasil. Rev Epidemiol E Con‑ trole Infecção. 2020. https://online.unisc.br/seer/index.php/epidemiolo gia/article/view/15109. Accessed on 6 Jun 2022.; de Montes ACOA, González-Martínez A, Chan-González R, Ibarra-López P, Smith-Ávila S, Córdoba-Aguilar A, et al. Signs of urban evolution? Morpho-functional traits co-variation along a nature-urban gradient in a Chagas disease vector. Front Ecol Evol. 2022;10:805040.; Ocaña-Mayorga S, Bustillos JJ, Villacís AG, Pinto CM, Brenière SF, Grijalva MJ. Triatomine feeding profles and Trypanosoma cruzi Infection, Implications in Domestic and Sylvatic Transmission Cycles in Ecuador. Pathogens. 2021;10:42.; Lypaczewski P, Matlashewski G. Leishmania donovani hybridisation and introgression in nature: a comparative genomic investigation. Lancet Microbe. 2021;2:e250–8.; Rogozin IB, Charyyeva A, Sidorenko IA, Babenko VN, Yurchenko V. frequent recombination events in Leishmania donovani: mining popula‑ tion data. Pathogens. 2020;9:572.; Van den Broeck F, Savill NJ, Imamura H, Sanders M, Maes I, Cooper S, et al. Ecological divergence and hybridization of Neotropical Leishmania parasites. Proc Natl Acad Sci. 2020;117:25159–68Van den Broeck F, Savill NJ, Imamura H, Sanders M, Maes I, Cooper S, et al. Ecological divergence and hybridization of Neotropical Leishmania parasites. Proc Natl Acad Sci. 2020;117:25159–68; World Health Organization. Multisectoral approach to the prevention and control of vector-borne diseases: a conceptual framework [Inter‑ net]. Geneva: World Health Organization; 2020. https://apps.who.int/ iris/handle/10665/331861; Dario MA, Pavan MG, Rodrigues MS, Lisboa CV, Kluyber D, Desbiez ALJ, et al. Trypanosoma rangeli genetic, mammalian hosts, and geographical diversity from fve Brazilian biomes. Pathogens. 2021;10:736; Ramirez LE, Lages-Silva E, Alvarenga-Franco F, Matos A, Vargas N, Fernandes O, et al. High prevalence of Trypanosoma rangeli and Trypanosoma cruzi in opossums and triatomids in a formerly-endemic area of Chagas disease in Southeast Brazil. Acta Trop. 2002;84:189–98; De Araújo VAL, Boité MC, Cupolillo E, Jansen AM, Roque ALR. Mixed infection in the anteater Tamandua tetradactyla (Mammalia: Pilosa) from Pará State, Brazil: Trypanosoma cruzi T. rangeli and Leishmania infantum. Parasitol. 2013;140:455–60.; Da Maia SF, Junqueira ACV, Campaner M, Rodrigues AC, Crisante G, Ramirez LE, et al. Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Mol Ecol. 2007;16:3361–73; Vallejo GA, Guhl F, Carranza JC, Lozano LE, Sánchez JL, Jaramillo JC, et al. kDNA markers defne two major Trypanosoma rangeli lineages in LatinAmerica. Acta Trop. 2002;81:77–82.; das Xavier SCC, Roque ALR, Bilac D, de Araújo VAL, da Neto SFC, Lorosa ES, et al. Distantiae transmission of Trypanosoma cruzi: a new epide‑ miological feature of acute chagas disease in Brazil. PLoS Negl Trop Dis. 2014;8:e2878.; Espinosa-Álvarez O, Ortiz PA, Lima L, Costa-Martins AG, Serrano MG, Herder S, et al. Trypanosoma rangeli is phylogenetically closer to old world trypanosomes than to Trypanosoma cruzi. Int J Parasitol. 2018;48:569–84; Saldaña A, Santamaría AM, Pineda V, Vásquez V, Gottdenker NL, Calzada JE. A darker chromatic variation of Rhodnius pallescens infected by specifc genetic groups of Trypanosoma rangeli and Trypanosoma cruzi from Panama. Parasit Vectors. 2018;11:423; Vallejo G, Guhl F, Carranza JC, Herrera C, Urrea D, Falla A, et al. Trypano‑ soma cruzi population variability in Colombia: possible coevolution in diferent vector species. Rev Soc Bras Med Trop. 2009;42:38–45.; Chihi A, O’Brien Andersen L, Aoun K, Bouratbine A, Stensvold CR. Ampli‑ con-based next-generation sequencing of eukaryotic nuclear riboso‑ mal genes (metabarcoding) for the detection of single-celled parasites in human faecal samples. Parasite Epidemiol Control. 2022;17:e00242.; Gupta S, Mortensen MS, Schjørring S, Trivedi U, Vestergaard G, Stokholm J, et al. Amplicon sequencing provides more accurate microbiome information in healthy children compared to culturing. Commun Biol. 2019;2:291; Chaorattanakawee S, Korkusol A, Tippayachai B, Promsathaporn S, Poole-Smith BK, Takhampunya R. Amplicon-based next generation sequencing for rapid identifcation of rickettsia and ectoparasite species from entomological surveillance in Thailand. Pathogens. 2021;10:215; Tonge DP, Pashley CH, Gant TW. Amplicon –based metagenomic analy‑ sis of mixed fungal samples using proton release amplicon sequencing. PLoS ONE. 2014;9:e93849.; Ma L, Jakobiec FA, Dryja TP. A review of next-generation sequencing (NGS): applications to the diagnosis of ocular infectious diseases. Semin Ophthalmol. 2019;34:223–31.; Cravero K, Medford A, Pallavajjala A, Canzoniero J, Hunter N, Chu D, et al. Biotinylated amplicon sequencing: a method for preserving DNA samples of limited quantity. Pract Lab Med. 2018;12:e00108.; Medinger R, Nolte V, Pandey RV, Jost S, Ottenwälder B, Schlöt‑ terer C, et al. diversity in a hidden world: potential and limitation of Castillo‑Castañeda et al. Parasites & Vectors (2022) 15:471 Page 13 of 13 • fast, convenient online submission • thorough peer review by experienced researchers in your field • rapid publication on acceptance • support for research data, including large and complex data types • gold Open Access which fosters wider collaboration and increased citations • maximum visibility for your research: over 100M website views per year At BMC, research is always in progress. Learn more biomedcentral.com/submissions Ready to submit y submit your research ? Choose BMC and benefit from: next -generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol. 2010;19:32–40.; Rodrigues DC, Silva R, Rondinelli E, Ürményi TP. Trypanosoma cruzi: modulation of HSP70 mRNA stability by untranslated regions during heat shock. Exp Parasitol. 2010;126:245–53.; Hernández C, Salazar C, Brochero H, Teherán A, Buitrago LS, Vera M, et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: parasite infection, feeding sources and discrete typing units. Parasit Vectors. 2016;9:620; Filgueira CPB, Moreira OC, Cantanhêde LM, de Farias HMT, Porrozzi R, Britto C, et al. Comparison and clinical validation of qPCR assays target ‑ ing Leishmania 18S rDNA and HSP70 genes in patients with American tegumentary leishmaniasis. PLoS Negl Trop Dis. 2020;14:e0008750.; https://doi.org/10.1186/s13071-022-05595-y; https://hdl.handle.net/20.500.12494/52717; Castillo-Castañeda, A.C., Patiño, L.H., Zuñiga, M.F. et al. An overview of the trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites infecting several mammal species in Colombia. Parasites Vectors 15, 471 (2022). https://doi.org/10.1186/s13071-022-05595-y

  9. 9
    Academic Journal

    Relation: Харченко А. В. Комплексная иммуногистохимическая и молекулярно-биологическая диагностика предопухолевих процессов слизистой оболочки желудка / А. В. Харченко // Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії. – 2014. – Т. 14, Вип. 2 (46). – С. 165 – 170.; 2077-1096 (Print); 2077-1126 (On-line); УДК 616. 33 – 008.3 : 616 - 071; http://repository.pdmu.edu.ua/handle/123456789/9508

  10. 10
    Academic Journal
  11. 11
    Academic Journal

    Relation: Харченко О. В. Діагностичні особливості диспластичних змін епітелію слизової оболонки шлунка за допомогою методу ISSR-PCR у хворих на хронічну виразку шлунка / О. В. Харченко // Вісник морфології. – 2014. – № 1. – С. 89–92.; УДК: 616.33 - 002 :616 - 002. 2:[611.018.7] : [616 - 052]; http://repository.pdmu.edu.ua/handle/123456789/9364

  12. 12
    Academic Journal

    Relation: Харченко О. В. Діагностика диспластичних змін слизової оболонки шлунка за допомогою методу ISSR-PCR у хворих на хронічну виразку дванадцятипалої кишки / О. В. Харченко // Вісник проблем біології і медицини. – 2014. – Вип. 1(106). – С. 199–203.; 2077-4214 (Print); 2523-4110 (on-line); УДК: 616 – 07: 616. 33 – 008. 3; http://repository.pdmu.edu.ua/handle/123456789/9359

  13. 13
    Academic Journal

    Relation: Харченко О. В. Порівняльна характеристика результатів генотипування епітелію слизової оболонки шлунка / О. В. Харченко // Світ медицини та біології. – 2014. – № 2 (44). – С. 178–181.; 2079-8334 (print); 2412-9348 (on-line); УДК 611.018.7.019 :(616.342 :616 – 002.2+616.33+616.33– 006) :616 – 052; http://repository.pdmu.edu.ua/handle/123456789/9358

  14. 14
    Academic Journal
  15. 15
    Academic Journal

    Relation: Марковський В. Д. Комплексна патоморфологічна диференційна діагностика передпухлинних процесів і раку шлунка / В. Д. Марковський, О. В. Харченко, // Патологія. – 2012. – № 3. – С. 15–18.; 2306-8027 (print); 2310-1237 (on-line); УДК [615.234:616-006.6]:616-7; http://repository.pdmu.edu.ua/handle/123456789/9365

  16. 16
    Academic Journal

    Relation: Харченко О. В. Динаміка проявів фенотипу дисплазій епітелію слизової оболонки шлунка у відповідності з їх генотипом на матеріалі вивчення світлової мікроскопії та ДНК-типування за методом ISSR-PCR / О. В. Харченко // Вісник морфології. – 2009. – Т. 15, № 2. – С. 396–402.; 1818-1295 (Print); 2616-6194 (On-line); УДК: 575.21:611.33:[577.215]; http://repository.pdmu.edu.ua/handle/123456789/9510

  17. 17

    المؤلفون: Kharchenko, O.

    المصدر: BIOLOGY & ECOLOGY; Том 2, № 2 (2016); 99-105
    Біологія та екологія; Том 2, № 2 (2016); 99-105

    مصطلحات موضوعية: DNA, amplicones, phenotype, ДНК, амплікони, фенотип

    وصف الملف: application/pdf

  18. 18
  19. 19
  20. 20