-
1Conference
المؤلفون: Alfaro-Marenco, Maria A, Villota-Alava, Maria A, Parra-Lopez, Carlos A, Bernal-Estevez, David A
المصدر: Regular and Young Investigator Award Abstracts ; page A983-A983
-
2Academic Journal
المؤلفون: Jerónimo, Adrián, Olmos, Carmen, Zulet, Pablo, Gómez-Ramírez, Daniel, Anguita, Manuel, Carlos Castillo, Juan, Escrihuela-Vidal, Francesc, Cuervo, Guillermo, Calderón-Parra, Jorge, Ramos, Antonio, Cabezón, Gonzalo, Álvarez Rodríguez, Jesús, Pulido, Paloma, de Miguel-Álava, María, Sáez, Carmen, López, Javier, Vilacosta, Isidre, San Román, J. Alberto
المساهمون: Universidad Europea de Madrid
المصدر: Infection ; volume 52, issue 6, page 2425-2434 ; ISSN 0300-8126 1439-0973
-
3Academic Journal
المؤلفون: Alava, Maria Eugenia
المصدر: Álabe; No. 29 (2024): enero-junio 2024; 181-202 ; Alabe Revista de Investigación sobre Lectura y Escritura; Núm. 29 (2024): enero-junio 2024; 181-202 ; ÁLABE é a revista da Rede Internacional de Ununiversidades Leitoras; n. 29 (2024): enero-junio 2024; 181-202 ; 2171-9624 ; 10.25115/alabe29
مصطلحات موضوعية: Generación del 68, Generación del 70, Generación del 80, poesía comprometida, Olvido García Valdés, Generation of the 68s, Generation of the 70s, Generation of the 80s, committed poetry, Geração dos anos 68, Geração dos anos 70, Geração dos anos 80, poesia empenhada
وصف الملف: application/pdf
-
4Academic Journal
المؤلفون: Rosero Limones, Blanca Alexandra, Ayala Páez, Gladys Mariela, Manzano Alava, María Fernanda, Oña Jiménez, Jennit Amparo
المصدر: Maestro y Sociedad; 2023: Especial Number; 251-263 ; Maestro y Sociedad; 2023: Número Especial; 251-263 ; 1815-4867
مصطلحات موضوعية: linguistic competence, oral language, neuropsychological evaluation, metalinguistic skills, competencia lingüística, lenguaje oral, evaluación neuropsicológica, habilidades metalingüísticas
وصف الملف: application/pdf; text/html
-
5Academic Journal
المؤلفون: Gómez Chilán, Lilian Florinda, Chuquitarco Encalada, Soraya Marisol, Chavesta Álava, María Verónica, Ricaurte Tarira, Adriana Cristina
المصدر: LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades; Vol. 5 Núm. 2 (2024): LATAM XII; 837 – 857 ; 2789-3855 ; 10.56712/latam.v5i2
مصطلحات موضوعية: abandono escolar, psicosocial, educación, examen de bachillerato, unidad de educación
وصف الملف: application/pdf
Relation: https://latam.redilat.org/index.php/lt/article/view/1919/2466; https://latam.redilat.org/index.php/lt/article/view/1919
-
6Academic Journal
المصدر: Tesla Revista Científica; Vol. 3 No. 2 (2023); e234 ; Tesla Revista Científica; Vol. 3 Núm. 2 (2023); e234 ; 2796-9320 ; 10.55204/trc.v3i2
مصطلحات موضوعية: Contabilidad, metodología, enseñanza y aprendizaje, Accounting, methodology, teaching and learning
وصف الملف: application/pdf
Relation: https://tesla.puertomaderoeditorial.com.ar/index.php/tesla/article/view/234/306; https://tesla.puertomaderoeditorial.com.ar/index.php/tesla/article/view/234
-
7Academic Journal
المؤلفون: Llano-León, Manuela, Martínez-Enriquez, Laura Camila, Rodríguez-Bohórquez, Oscar Mauricio, Velandia-Vargas, Esteban Alejandro, Lalinde-Ruíz, Nicolás, Villota-Álava, María Alejandra, Rodríguez-Rodríguez, Ivon Johanna, Montilla-Velásquez, María del Pilar, Parra-López, Carlos Alberto
المساهمون: Hira, Sumit Kumar, Dirección de Investigación de Bogotá - Universidad Nacional de Colombia, Fundación Salud de Los Andes, MINCIENCIAS
المصدر: PLOS ONE ; volume 18, issue 4, page e0277714 ; ISSN 1932-6203
-
8Academic Journal
المؤلفون: Álava, María F., Flores, José A., Floreano, Erika D.
المصدر: Revista Espacios; Vol. 43 Núm. 09 (2022); 1-20 ; 2739-0071 ; 0798-1015
-
9Dissertation/ Thesis
المؤلفون: Villota Alava, María Alejandra
المساهمون: Parra López, Carlos Alberto, Clavijo Ramirez, Carlos Arturo, Inmunología y Medicina Traslacional, Patarroyo Gutiérrez, Manuel Alfonso, Villota Alava, María Alejandra https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001786060
مصطلحات موضوعية: 610 - Medicina y salud::615 - Farmacología y terapéutica, Antígenos de Neoplasias, Antígenos Virales/análisis, Inmunoterapia/métodos, Antigens, Neoplasm, Viral/analysis, Immunotherapy/methods, Minigenes, Neoantígenos, Células presentadoras de antígeno artificiales, Transfección, Transducción, Citometría de Flujo, Inmunoterapia, Minigene, Neoantigens, Artificial Antigen Presenting Cells, Transfection, Flow Cytometry, Transduction, Immunotherapy
وصف الملف: 164 páginas; application/pdf
Relation: Bireme; Tan, S., D. Li, and X. Zhu, Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother, 2020. 124: p. 109821.; Dagher, O.K., et al., Advances in cancer immunotherapies. Cell, 2023. 186(8): p. 1814-1814.e1.; Zhang, Y. and Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol, 2020. 17(8): p. 807-821.; Lollini, P.L., et al., Vaccines for tumour prevention. Nat Rev Cancer, 2006. 6(3): p. 204-16.; Fu, C., et al., DC-Based Vaccines for Cancer Immunotherapy. Vaccines (Basel), 2020. 8(4).; Devi, G.R. and S. Nath, Delivery of Synthetic mRNA Encoding FOXP3 Antigen into Dendritic Cells for Inflammatory Breast Cancer Immunotherapy. Methods Mol Biol, 2016. 1428: p. 231-43.; Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.; Carreno, B.M., et al., Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015. 348(6236): p. 803-8.; Patente, T.A., et al., Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol, 2018. 9: p. 3176.; Lesterhuis, W.J., et al., Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res, 2010. 30(12): p. 5091-7.; Cafri, G., et al., mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of clinical investigation, 2020. 130(11).; Aurisicchio, L., et al., A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology, 2014. 3(1).; Tateshita, N., et al., Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. Journal of controlled release : official journal of the Controlled Release Society, 2019. 310.; Lu, Y., et al., Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clinical cancer research : an official journal of the American Association for Cancer Research, 2014. 20(13).; Gelband, H., et al., Cancer: Disease Control Priorities, Third Edition (Volume 3). 2015.; Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.; Kennedy, L.B. and A.K.S. Salama, A review of cancer immunotherapy toxicity. CA Cancer J Clin, 2020. 70(2): p. 86-104.; Igarashi, Y. and T. Sasada, Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res, 2020. 2020: p. 5825401.; Maus, M.V., et al., Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol, 2014. 32: p. 189-225.; Bernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer, 2018. 18(1): p. 77.; Karpanen, T. and J. Olweus, The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Front Immunol, 2017. 8: p. 1718.; Wells, D.K., et al., Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020. 183(3): p. 818-834.e13.; Bradley, P. and P.G. Thomas, Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol, 2019. 37: p. 547-570.; E, S., et al., Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (New York, N.Y.), 2016. 352(6291).; Ali, M., et al., Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc, 2019. 14(6): p. 1926-1943.; Aurisicchio, L., et al., Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res, 2019. 38(1): p. 78.; Farkona, S., E.P. Diamandis, and I.M. Blasutig, Cancer immunotherapy: the beginning of the end of cancer? BMC Med, 2016. 14: p. 73.; van der Bruggen, P., et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991. 254(5038): p. 1643-7.; Gaugler, B., et al., Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med, 1994. 179(3): p. 921-30.; Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.; Kawakami, Y., et al., Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6458-62.; Kantoff, P.W., et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363(5): p. 411-22.; Mou, Z., Y. He, and Y. Wu, Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett, 2009. 278(2): p. 123-129.; Di Oto, E., et al., Prognostic impact of HER-2 Subclonal Amplification in breast cancer. Virchows Arch, 2017. 471(3): p. 313-319.; Brinkman, J.A., et al., Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther, 2004. 4(2): p. 181-98.; Disis, M.L., et al., Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol, 2002. 20(11): p. 2624-32.; Rivoltini, L., et al., Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol, 1995. 154(5): p. 2257-65.; Simpson, A.J., et al., Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer, 2005. 5(8): p. 615-25.; Thomas, R., et al., NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol, 2018. 9: p. 947.; Kakimi, K., et al., A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer, 2011. 129(12): p. 2836-46.; Chamucero-Millares, J.A., D.A. Bernal-Estévez, and C.A. Parra-López, Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol, 2021. 360: p. 104257.; Spaete, R.R., R.C. Gehrz, and M.P. Landini, Human cytomegalovirus structural proteins. J Gen Virol, 1994. 75 ( Pt 12): p. 3287-308.; Solache, A., et al., Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol, 1999. 163(10): p. 5512-8.; Wloch, M.K., et al., Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis, 2008. 197(12): p. 1634-42.; Bouvier, N.M. and P. Palese, The biology of influenza viruses. Vaccine, 2008. 26 Suppl 4(Suppl 4): p. D49-53.; Choo, J.A., et al., The immunodominant influenza A virus M158-66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. J Virol, 2014. 88(18): p. 10613-23.; Lillie, P.J., et al., Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis, 2012. 55(1): p. 19-25.; Dörrie, J., et al., Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics, 2020. 12(2).; Chen, Y.Z., et al., Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol, 2010. 2010: p. 565643.; Li, G.B. and G.X. Lu, Gene delivery efficiency in bone marrow-derived dendritic cells: comparison of four methods and optimization for lentivirus transduction. Mol Biotechnol, 2009. 43(3): p. 250-6.; Mack, C.A., et al., Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther, 1997. 8(1): p. 99-109.; Foged, C., et al., Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine, 2004. 22(15-16): p. 1903-13.; Yamada, M., et al., Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice. J Control Release, 2004. 98(1): p. 157-67.; Lu, Y., et al., Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials, 2007. 28(21): p. 3255-62.; Kim, T.H., et al., Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol, 2006. 6(9-10): p. 2796-803.; Ali, O.A. and D.J. Mooney, Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. J Control Release, 2008. 132(3): p. 273-8.; Potter, H. and R. Heller, Transfection by Electroporation. Curr Protoc Mol Biol, 2018. 121: p. 9.3.1-9.3.13.; Schwartz, R.H., T cell anergy. Annu Rev Immunol, 2003. 21: p. 305-34.; Butler, M.O. and N. Hirano, Human cell-based artificial antigen-presenting cells for cancer immunotherapy. Immunol Rev, 2014. 257(1): p. 191-209.; Kim, J.V., et al., The ABCs of artificial antigen presentation. Nat Biotechnol, 2004. 22(4): p. 403-10.; Neal, L.R., et al., The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. J Immunol Res Ther, 2017. 2(1): p. 68-79.; Klein, E., et al., Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer, 1976. 18(4): p. 421-31.; Butler, M.O., et al., A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles. Int Immunol, 2010. 22(11): p. 863-73.; Stepanenko, A.A. and V.V. Dmitrenko, HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene, 2015. 569(2): p. 182-90.; Hong, C.H., et al., Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. J Immunother, 2017. 40(6): p. 201-210.; Lee, M.N. and M. Meyerson, Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci Immunol, 2021. 6(55).; Prasher, D.C., Using GFP to see the light. Trends Genet, 1995. 11(8): p. 320-3.; Schmidt, A., et al., lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res Brain Res Protoc, 1998. 3(1): p. 54-60.; Hoffman, R.M., Green fluorescent protein imaging of tumor cells in mice. Lab Anim (NY), 2002. 31(4): p. 34-41.; Okabe, M., et al., 'Green mice' as a source of ubiquitous green cells. FEBS Lett, 1997. 407(3): p. 313-9.; Yang, M., et al., Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1206-11.; Han, Q., et al., Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1607-12.; Peng, S., et al., Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Rep, 2019. 28(10): p. 2728-2738.e7.; Bentzen, A.K. and S.R. Hadrup, Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother, 2017. 66(5): p. 657-666.; Zappasodi, R., et al., In vitro assays for effector T cell functions and activity of immunomodulatory antibodies. Methods Enzymol, 2020. 631: p. 43-59.; Rochman, Y., R. Spolski, and W.J. Leonard, New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol, 2009. 9(7): p. 480-90.; Jicha, D.L., J.J. Mulé, and S.A. Rosenberg, Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med, 1991. 174(6): p. 1511-5.; Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45.; Boyman, O., et al., Cytokines and T-cell homeostasis. Curr Opin Immunol, 2007. 19(3): p. 320-6.; Ettinger, R., et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol, 2005. 175(12): p. 7867-79.; van den Broek, T., J.A.M. Borghans, and F. van Wijk, The full spectrum of human naive T cells. Nat Rev Immunol, 2018. 18(6): p. 363-373.; Melichar, B., et al., Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumour-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol, 2000. 119(1): p. 19-27.; Young, J.W., et al., The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J Clin Invest, 1992. 90(1): p. 229-37.; Li, Z., et al., CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol, 2019. 10: p. 1312.; Hirano, N., et al., Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood, 2006. 107(4): p. 1528-36.; Wallet, M.A., P. Sen, and R. Tisch, Immunoregulation of dendritic cells. Clin Med Res, 2005. 3(3): p. 166-75.; Shuford, W.W., et al., 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med, 1997. 186(1): p. 47-55.; Martinez-Perez, A.G., et al., 4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci, 2021. 22(12).; Díaz, Á., et al., CD40-CD154: A perspective from type 2 immunity. Semin Immunol, 2021. 53: p. 101528.; Alunno, A., et al., Novel Therapeutic Strategies in Primary Sjögren's Syndrome. Isr Med Assoc J, 2017. 19(9): p. 576-580.; Hassan, G.S., J. Stagg, and W. Mourad, Role of CD154 in cancer pathogenesis and immunotherapy. Cancer Treat Rev, 2015. 41(5): p. 431-40.; Bacher, P. and A. Scheffold, Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A, 2013. 83(8): p. 692-701.; Dawicki, W. and T.H. Watts, Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol, 2004. 34(3): p. 743-751.; Otano, I., et al., CD137 (4-1BB) costimulation of CD8. Nat Commun, 2021. 12(1): p. 7296.; Bajnok, A., et al., The Distribution of Activation Markers and Selectins on Peripheral T Lymphocytes in Preeclampsia. Mediators Inflamm, 2017. 2017: p. 8045161.; Spetz, J., A.G. Presser, and K.A. Sarosiek, T Cells and Regulated Cell Death: Kill or Be Killed. Int Rev Cell Mol Biol, 2019. 342: p. 27-71.; Reddy, M., et al., Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods, 2004. 293(1-2): p. 127-42.; Marzio, R., J. Mauël, and S. Betz-Corradin, CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol, 1999. 21(3): p. 565-82.; González-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.; Lim, L.C., et al., A whole-blood assay for qualitative and semiquantitative measurements of CD69 surface expression on CD4 and CD8 T lymphocytes using flow cytometry. Clin Diagn Lab Immunol, 1998. 5(3): p. 392-8.; Gorabi, A.M., et al., The pivotal role of CD69 in autoimmunity. J Autoimmun, 2020. 111: p. 102453.; Mallett, S., S. Fossum, and A.N. Barclay, Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J, 1990. 9(4): p. 1063-8.; Croft, M., et al., The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev, 2009. 229(1): p. 173-91.; Rogers, P.R., et al., OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity, 2001. 15(3): p. 445-55.; Walker, L.S., et al., Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med, 1999. 190(8): p. 1115-22.; Jubel, J.M., et al., The Role of PD-1 in Acute and Chronic Infection. Front Immunol, 2020. 11: p. 487.; Keir, M.E., et al., PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008. 26: p. 677-704.; Pentcheva-Hoang, T., et al., B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004. 21(3): p. 401-13.; Walunas, T.L., et al., CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J Immunol, 1996. 156(3): p. 1006-13.; Buchbinder, E.I. and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol, 2016. 39(1): p. 98-106.; Sharpe, A.H. and G.J. Freeman, The B7-CD28 superfamily. Nat Rev Immunol, 2002. 2(2): p. 116-26.; Workman, C.J., et al., Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol, 2004. 172(9): p. 5450-5.; Ménager, J., et al., Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One, 2014. 9(2): p. e89897.; Aspord, C., et al., pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur J Immunol, 2014. 44(10): p. 2880-92.; Wang, M., et al., Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology, 2011. 132(4): p. 482-91.; Dhanda, S.K., et al., IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res, 2019. 47(W1): p. W502-W506.; Czerniecki, B.J., et al., Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res, 2007. 67(4): p. 1842-52.; Jain, R.K., et al., Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J, 2001. 360(Pt 3): p. 645-9.; Arnaud, M., et al., Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat Biotechnol, 2022. 40(5): p. 656-660.; Liu, Y., et al., Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol, 2022. 13: p. 1016817.; Phetsouphanh, C., J.J. Zaunders, and A.D. Kelleher, Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci, 2015. 16(8): p. 18878-93.; Azuma, M., Co-signal Molecules in T-Cell Activation : Historical Overview and Perspective. Adv Exp Med Biol, 2019. 1189: p. 3-23.; Curtsinger, J.M., et al., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol, 1999. 162(6): p. 3256-62.; Tanimoto, K., et al., Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy, 2014. 16(1): p. 135-46.; Riedhammer, C., D. Halbritter, and R. Weissert, Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol Biol, 2016. 1304: p. 53-61.; Van Camp, K., et al., Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods, 2010. 354(1-2): p. 1-10.; Chong, Z.X., S.K. Yeap, and W.Y. Ho, Transfection types, methods and strategies: a technical review. PeerJ, 2021. 9: p. e11165.; Nastasi, C., L. Mannarino, and M. D'Incalci, DNA Damage Response and Immune Defense. Int J Mol Sci, 2020. 21(20).; Mortara, L., et al., Therapy-induced antitumor vaccination by targeting tumor necrosis factor alpha to tumor vessels in combination with melphalan. Eur J Immunol, 2007. 37(12): p. 3381-92.; Lejeune, F.J., et al., Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun, 2006. 6: p. 6.; Kang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33.; Jouanguy, E., et al., A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet, 1999. 21(4): p. 370-8.; Ikeda, H., L.J. Old, and R.D. Schreiber, The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 2002. 13(2): p. 95-109.; Ikeda, H, R.R., A.M. Ghoneim, and N. El-Mashad, TNF-α gene polymorphisms and expression. Springerplus, 2016. 5(1): p. 1508.; Trapani, J.A. and V.R. Sutton, Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol, 2003. 15(5): p. 533-43.; de Jong, R., et al., Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol, 1991. 146(8): p. 2488-94.; Walker, L.S., et al., Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol Today, 2000. 21(7): p. 333-7.; Acuto, O. and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol, 2003. 3(12): p. 939-51.; Kaminski, D.A., et al., CD28 and inducible costimulator (ICOS) signalling can sustain CD154 expression on activated T cells. Immunology, 2009. 127(3): p. 373-85.; Wolfl, M., et al., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 2007. 110(1): p. 201-10.; Ahn, E., et al., Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A, 2018. 115(18): p. 4749-4754.; Waterhouse, P., et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995. 270(5238): p. 985-8.; Steiner, K., et al., Enhanced expression of CTLA-4 (CD152) on CD4+ T cells in HIV infection. Clin Exp Immunol, 1999. 115(3): p. 451-7.; Goldberg, M.V. and C.G. Drake, LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol, 2011. 344: p. 269-78.; Fuertes Marraco, S.A., et al., Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol, 2015. 6: p. 310.; Wang, W., et al., PD-L1/PD-1 signal deficiency promotes allogeneic immune responses and accelerates heart allograft rejection. Transplantation, 2008. 86(6): p. 836-44.; Bernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer, 2016. 16: p. 591.; Kaech, S.M., E.J. Wherry, and R. Ahmed, Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol, 2002. 2(4): p. 251-62.; Hsiue, E.H., et al., Targeting a neoantigen derived from a common. Science, 2021. 371(6533).; Maus, M.V., et al., Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol, 2002. 20(2): p. 143-8.; Zeng, W., et al., Artificial antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand efficiently expand functional T cells specific to tumor-associated antigens. Immunobiology, 2014. 219(8): p. 583-92.; Shao, J., et al., Artificial antigen-presenting cells are superior to dendritic cells at inducing antigen-specific cytotoxic T lymphocytes. Cell Immunol, 2018. 334: p. 78-86.; Butler, M.O., et al., Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res, 2007. 13(6): p. 1857-67.; https://repositorio.unal.edu.co/handle/unal/86062; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
10Dissertation/ Thesis
المؤلفون: CARRILLO ALAVA, MARIA ELIZABETH
المساهمون: University/Department: Universitat Politècnica de València. Instituto de Agroquímica y Tecnologia de Alimentos - Institut d'Agroquímica i Tecnologia d'Aliments
Thesis Advisors: FISZMAN DAL SANTO, SUSANA, VARELA TOMASCO, PAULA ALEJANDRA
المصدر: Riunet
مصطلحات موضوعية: Consumidores, Parámetros sensoriales, Parámetros no sensoriales, Actitudes
URL الوصول: http://hdl.handle.net/10251/19007
-
11Academic Journal
المؤلفون: Gómez Chilán, Lilian Florinda, Chavesta Álava, María Verónica, Zambrano Vergara, Alexandra Yicela, Ripalda Vera, Mónica Colombia, Meza Briones, Karina Mariela
المصدر: Latam: revista latinoamericana de Ciencias Sociales y Humanidades, ISSN 2789-3855, null 5, Nº. 4, 2024 (Ejemplar dedicado a: LATAM ; 1 – 12)
مصطلحات موضوعية: educación, comunidad, historia, cambio, desarrollo
وصف الملف: application/pdf
-
12Academic Journal
المؤلفون: Alava, María Eugenia
المصدر: Álabe: Revista de Investigación sobre Lectura y Escritura, ISSN 2171-9624, Nº. 29, 2024 (Ejemplar dedicado a: enero-junio), pags. 181-202
مصطلحات موضوعية: Generación del 68, Generación del 70, Generación del 80, poesía comprometida, Olvido García Valdés, Generation of 68s, Generation of the 70s, Generation of the 80s, committed poetry
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9308284; (Revista) ISSN 2171-9624
-
13Academic Journal
المؤلفون: Vélez Morales , Lisbeth Melina, Fuentes Venegas, Miguel Ángel, Moreira Álava , María Fernanda, Lucio Villacreses, Luis Fernando
المصدر: UNESUM-Ciencias. Revista Científica Multidisciplinaria. ISSN 2602-8166; Vol. 5 Núm. 2 (2021): (Especial Medio Ambiente); 115-128 ; 2602-8166 ; 10.47230/unesum-ciencias.v5.n2.2021
مصطلحات موضوعية: ODS, water resources, agriculture, economy, profitability, recurso hídrico, agricultura, economía, rentabilidad
وصف الملف: application/pdf
Relation: http://revistas.unesum.edu.ec/index.php/unesumciencias/article/view/251/318; http://revistas.unesum.edu.ec/index.php/unesumciencias/article/view/251/441; http://revistas.unesum.edu.ec/index.php/unesumciencias/article/view/251
-
14Academic Journal
المؤلفون: ALAVA, María Eugenia
المصدر: Signa: Revista de la Asociación Española de Semiótica; Vol. 30 (2021); 791-795 ; 2254-9307 ; 1133-3634 ; 10.5944/signa.vol30.2021
وصف الملف: application/pdf
Relation: https://revistas.uned.es/index.php/signa/article/view/29322/22707; https://revistas.uned.es/index.php/signa/article/view/29322
-
15Academic Journal
المؤلفون: Guzmán Cedeño, Ángel Monserrate, Zambrano-Pazmiño, Diego Efrén, Conforme Álava, María Auxiliadora, Vera Vera, Beatriz Rocío
المصدر: Science and Technology; Vol. 13 No. 2 (2020): Science and Technology July - December 2020; 39-45 ; Ciencia y Tecnología; Vol. 13 Núm. 2 (2020): Revista Ciencia y Tecnología Julio - Diciembre 2020; 39-45 ; 1390-4043 ; 1390-4051 ; 10.18779/cyt.v13i2
مصطلحات موضوعية: carga microbiana, compostaje, actividades enzimáticas, Microbial load, composting, enzymatic activities
وصف الملف: application/pdf; text/html
Relation: https://revistas.uteq.edu.ec/index.php/cyt/article/view/391/448; https://revistas.uteq.edu.ec/index.php/cyt/article/view/391/453; https://revistas.uteq.edu.ec/index.php/cyt/article/view/391
-
16Academic Journal
Alternate Title: The Immanent Commitment In Olvido García Valdés' Poetry (1982-2008) In her Fluttering through the Extra-Textual World: The Image Transmuted into a Linguistic Sign. (English)
المؤلفون: EUGENIA ALAVA, MARIA
المصدر: Álabe; ene-jun2024, Issue 29, p181-202, 22p
مصطلحات موضوعية: CHANGE agents, MORINDA citrifolia, POETRY (Literary form), POETS, FEMALES, ANTHOLOGIES
-
17Academic Journal
المصدر: DAYA. Diseño, Arte y Arquitectura.; Nr. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; DAYA. Diseño, Arte y Arquitectura.; No. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; DISEÑO ARTE Y ARQUITECTURA; Núm. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; DAYA. Diseño, Arte y Arquitectura.; N. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; 2550-6609 ; 2588-0667 ; 10.33324/daya.vi6
مصطلحات موضوعية: Vinculación con la sociedad, enseñanza experimental, Engabao
وصف الملف: application/pdf
Relation: https://revistas.uazuay.edu.ec/index.php/daya/article/view/221/291; https://revistas.uazuay.edu.ec/index.php/daya/article/view/221/303; https://revistas.uazuay.edu.ec/index.php/daya/article/view/221/292; https://revistas.uazuay.edu.ec/index.php/daya/article/view/221
-
18Academic Journal
المؤلفون: Alava, María Eugenia
المصدر: Castilla: Estudios de Literatura, ISSN 1989-7383, Nº.9 14, 2023, pags. 901-903
وصف الملف: application/pdf
Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9043692; (Revista) ISSN 1989-7383
-
19Academic Journal
المصدر: Revista Española de Cardiología (English Edition) ; volume 76, issue 4, page 281 ; ISSN 1885-5857
-
20Academic Journal
المصدر: Revista Española de Cardiología ; volume 76, issue 4, page 281 ; ISSN 0300-8932