يعرض 1 - 20 نتائج من 143 نتيجة بحث عن '"Alava, Maria A."', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    Conference
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal
  5. 5
    Academic Journal
  6. 6
    Academic Journal
  7. 7
    Academic Journal
  8. 8
    Academic Journal
  9. 9
    Dissertation/ Thesis

    المساهمون: Parra López, Carlos Alberto, Clavijo Ramirez, Carlos Arturo, Inmunología y Medicina Traslacional, Patarroyo Gutiérrez, Manuel Alfonso, Villota Alava, María Alejandra https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001786060

    وصف الملف: 164 páginas; application/pdf

    Relation: Bireme; Tan, S., D. Li, and X. Zhu, Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother, 2020. 124: p. 109821.; Dagher, O.K., et al., Advances in cancer immunotherapies. Cell, 2023. 186(8): p. 1814-1814.e1.; Zhang, Y. and Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol, 2020. 17(8): p. 807-821.; Lollini, P.L., et al., Vaccines for tumour prevention. Nat Rev Cancer, 2006. 6(3): p. 204-16.; Fu, C., et al., DC-Based Vaccines for Cancer Immunotherapy. Vaccines (Basel), 2020. 8(4).; Devi, G.R. and S. Nath, Delivery of Synthetic mRNA Encoding FOXP3 Antigen into Dendritic Cells for Inflammatory Breast Cancer Immunotherapy. Methods Mol Biol, 2016. 1428: p. 231-43.; Sahin, U., et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017. 547(7662): p. 222-226.; Carreno, B.M., et al., Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 2015. 348(6236): p. 803-8.; Patente, T.A., et al., Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol, 2018. 9: p. 3176.; Lesterhuis, W.J., et al., Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res, 2010. 30(12): p. 5091-7.; Cafri, G., et al., mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. The Journal of clinical investigation, 2020. 130(11).; Aurisicchio, L., et al., A novel minigene scaffold for therapeutic cancer vaccines. Oncoimmunology, 2014. 3(1).; Tateshita, N., et al., Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. Journal of controlled release : official journal of the Controlled Release Society, 2019. 310.; Lu, Y., et al., Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clinical cancer research : an official journal of the American Association for Cancer Research, 2014. 20(13).; Gelband, H., et al., Cancer: Disease Control Priorities, Third Edition (Volume 3). 2015.; Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.; Kennedy, L.B. and A.K.S. Salama, A review of cancer immunotherapy toxicity. CA Cancer J Clin, 2020. 70(2): p. 86-104.; Igarashi, Y. and T. Sasada, Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res, 2020. 2020: p. 5825401.; Maus, M.V., et al., Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol, 2014. 32: p. 189-225.; Bernal-Estévez, D.A., et al., Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy. BMC Cancer, 2018. 18(1): p. 77.; Karpanen, T. and J. Olweus, The Potential of Donor T-Cell Repertoires in Neoantigen-Targeted Cancer Immunotherapy. Front Immunol, 2017. 8: p. 1718.; Wells, D.K., et al., Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020. 183(3): p. 818-834.e13.; Bradley, P. and P.G. Thomas, Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annu Rev Immunol, 2019. 37: p. 547-570.; E, S., et al., Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (New York, N.Y.), 2016. 352(6291).; Ali, M., et al., Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc, 2019. 14(6): p. 1926-1943.; Aurisicchio, L., et al., Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res, 2019. 38(1): p. 78.; Farkona, S., E.P. Diamandis, and I.M. Blasutig, Cancer immunotherapy: the beginning of the end of cancer? BMC Med, 2016. 14: p. 73.; van der Bruggen, P., et al., A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991. 254(5038): p. 1643-7.; Gaugler, B., et al., Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med, 1994. 179(3): p. 921-30.; Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.; Kawakami, Y., et al., Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6458-62.; Kantoff, P.W., et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med, 2010. 363(5): p. 411-22.; Mou, Z., Y. He, and Y. Wu, Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett, 2009. 278(2): p. 123-129.; Di Oto, E., et al., Prognostic impact of HER-2 Subclonal Amplification in breast cancer. Virchows Arch, 2017. 471(3): p. 313-319.; Brinkman, J.A., et al., Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther, 2004. 4(2): p. 181-98.; Disis, M.L., et al., Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol, 2002. 20(11): p. 2624-32.; Rivoltini, L., et al., Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol, 1995. 154(5): p. 2257-65.; Simpson, A.J., et al., Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer, 2005. 5(8): p. 615-25.; Thomas, R., et al., NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol, 2018. 9: p. 947.; Kakimi, K., et al., A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer, 2011. 129(12): p. 2836-46.; Chamucero-Millares, J.A., D.A. Bernal-Estévez, and C.A. Parra-López, Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol, 2021. 360: p. 104257.; Spaete, R.R., R.C. Gehrz, and M.P. Landini, Human cytomegalovirus structural proteins. J Gen Virol, 1994. 75 ( Pt 12): p. 3287-308.; Solache, A., et al., Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol, 1999. 163(10): p. 5512-8.; Wloch, M.K., et al., Safety and immunogenicity of a bivalent cytomegalovirus DNA vaccine in healthy adult subjects. J Infect Dis, 2008. 197(12): p. 1634-42.; Bouvier, N.M. and P. Palese, The biology of influenza viruses. Vaccine, 2008. 26 Suppl 4(Suppl 4): p. D49-53.; Choo, J.A., et al., The immunodominant influenza A virus M158-66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. J Virol, 2014. 88(18): p. 10613-23.; Lillie, P.J., et al., Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis, 2012. 55(1): p. 19-25.; Dörrie, J., et al., Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics, 2020. 12(2).; Chen, Y.Z., et al., Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol, 2010. 2010: p. 565643.; Li, G.B. and G.X. Lu, Gene delivery efficiency in bone marrow-derived dendritic cells: comparison of four methods and optimization for lentivirus transduction. Mol Biotechnol, 2009. 43(3): p. 250-6.; Mack, C.A., et al., Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther, 1997. 8(1): p. 99-109.; Foged, C., et al., Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine, 2004. 22(15-16): p. 1903-13.; Yamada, M., et al., Tissue and intrahepatic distribution and subcellular localization of a mannosylated lipoplex after intravenous administration in mice. J Control Release, 2004. 98(1): p. 157-67.; Lu, Y., et al., Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials, 2007. 28(21): p. 3255-62.; Kim, T.H., et al., Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles. J Nanosci Nanotechnol, 2006. 6(9-10): p. 2796-803.; Ali, O.A. and D.J. Mooney, Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. J Control Release, 2008. 132(3): p. 273-8.; Potter, H. and R. Heller, Transfection by Electroporation. Curr Protoc Mol Biol, 2018. 121: p. 9.3.1-9.3.13.; Schwartz, R.H., T cell anergy. Annu Rev Immunol, 2003. 21: p. 305-34.; Butler, M.O. and N. Hirano, Human cell-based artificial antigen-presenting cells for cancer immunotherapy. Immunol Rev, 2014. 257(1): p. 191-209.; Kim, J.V., et al., The ABCs of artificial antigen presentation. Nat Biotechnol, 2004. 22(4): p. 403-10.; Neal, L.R., et al., The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies. J Immunol Res Ther, 2017. 2(1): p. 68-79.; Klein, E., et al., Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer, 1976. 18(4): p. 421-31.; Butler, M.O., et al., A panel of human cell-based artificial APC enables the expansion of long-lived antigen-specific CD4+ T cells restricted by prevalent HLA-DR alleles. Int Immunol, 2010. 22(11): p. 863-73.; Stepanenko, A.A. and V.V. Dmitrenko, HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene, 2015. 569(2): p. 182-90.; Hong, C.H., et al., Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System. J Immunother, 2017. 40(6): p. 201-210.; Lee, M.N. and M. Meyerson, Antigen identification for HLA class I- and HLA class II-restricted T cell receptors using cytokine-capturing antigen-presenting cells. Sci Immunol, 2021. 6(55).; Prasher, D.C., Using GFP to see the light. Trends Genet, 1995. 11(8): p. 320-3.; Schmidt, A., et al., lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res Brain Res Protoc, 1998. 3(1): p. 54-60.; Hoffman, R.M., Green fluorescent protein imaging of tumor cells in mice. Lab Anim (NY), 2002. 31(4): p. 34-41.; Okabe, M., et al., 'Green mice' as a source of ubiquitous green cells. FEBS Lett, 1997. 407(3): p. 313-9.; Yang, M., et al., Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A, 2000. 97(3): p. 1206-11.; Han, Q., et al., Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1607-12.; Peng, S., et al., Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood. Cell Rep, 2019. 28(10): p. 2728-2738.e7.; Bentzen, A.K. and S.R. Hadrup, Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother, 2017. 66(5): p. 657-666.; Zappasodi, R., et al., In vitro assays for effector T cell functions and activity of immunomodulatory antibodies. Methods Enzymol, 2020. 631: p. 43-59.; Rochman, Y., R. Spolski, and W.J. Leonard, New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol, 2009. 9(7): p. 480-90.; Jicha, D.L., J.J. Mulé, and S.A. Rosenberg, Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med, 1991. 174(6): p. 1511-5.; Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45.; Boyman, O., et al., Cytokines and T-cell homeostasis. Curr Opin Immunol, 2007. 19(3): p. 320-6.; Ettinger, R., et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol, 2005. 175(12): p. 7867-79.; van den Broek, T., J.A.M. Borghans, and F. van Wijk, The full spectrum of human naive T cells. Nat Rev Immunol, 2018. 18(6): p. 363-373.; Melichar, B., et al., Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA-4 on malignant ascites CD3+ tumour-infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol, 2000. 119(1): p. 19-27.; Young, J.W., et al., The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J Clin Invest, 1992. 90(1): p. 229-37.; Li, Z., et al., CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol, 2019. 10: p. 1312.; Hirano, N., et al., Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood, 2006. 107(4): p. 1528-36.; Wallet, M.A., P. Sen, and R. Tisch, Immunoregulation of dendritic cells. Clin Med Res, 2005. 3(3): p. 166-75.; Shuford, W.W., et al., 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med, 1997. 186(1): p. 47-55.; Martinez-Perez, A.G., et al., 4-1BBL as a Mediator of Cross-Talk between Innate, Adaptive, and Regulatory Immunity against Cancer. Int J Mol Sci, 2021. 22(12).; Díaz, Á., et al., CD40-CD154: A perspective from type 2 immunity. Semin Immunol, 2021. 53: p. 101528.; Alunno, A., et al., Novel Therapeutic Strategies in Primary Sjögren's Syndrome. Isr Med Assoc J, 2017. 19(9): p. 576-580.; Hassan, G.S., J. Stagg, and W. Mourad, Role of CD154 in cancer pathogenesis and immunotherapy. Cancer Treat Rev, 2015. 41(5): p. 431-40.; Bacher, P. and A. Scheffold, Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A, 2013. 83(8): p. 692-701.; Dawicki, W. and T.H. Watts, Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol, 2004. 34(3): p. 743-751.; Otano, I., et al., CD137 (4-1BB) costimulation of CD8. Nat Commun, 2021. 12(1): p. 7296.; Bajnok, A., et al., The Distribution of Activation Markers and Selectins on Peripheral T Lymphocytes in Preeclampsia. Mediators Inflamm, 2017. 2017: p. 8045161.; Spetz, J., A.G. Presser, and K.A. Sarosiek, T Cells and Regulated Cell Death: Kill or Be Killed. Int Rev Cell Mol Biol, 2019. 342: p. 27-71.; Reddy, M., et al., Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods, 2004. 293(1-2): p. 127-42.; Marzio, R., J. Mauël, and S. Betz-Corradin, CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol, 1999. 21(3): p. 565-82.; González-Amaro, R., et al., Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med, 2013. 19(10): p. 625-32.; Lim, L.C., et al., A whole-blood assay for qualitative and semiquantitative measurements of CD69 surface expression on CD4 and CD8 T lymphocytes using flow cytometry. Clin Diagn Lab Immunol, 1998. 5(3): p. 392-8.; Gorabi, A.M., et al., The pivotal role of CD69 in autoimmunity. J Autoimmun, 2020. 111: p. 102453.; Mallett, S., S. Fossum, and A.N. Barclay, Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J, 1990. 9(4): p. 1063-8.; Croft, M., et al., The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev, 2009. 229(1): p. 173-91.; Rogers, P.R., et al., OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity, 2001. 15(3): p. 445-55.; Walker, L.S., et al., Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med, 1999. 190(8): p. 1115-22.; Jubel, J.M., et al., The Role of PD-1 in Acute and Chronic Infection. Front Immunol, 2020. 11: p. 487.; Keir, M.E., et al., PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008. 26: p. 677-704.; Pentcheva-Hoang, T., et al., B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004. 21(3): p. 401-13.; Walunas, T.L., et al., CD28 expression is not essential for positive and negative selection of thymocytes or peripheral T cell tolerance. J Immunol, 1996. 156(3): p. 1006-13.; Buchbinder, E.I. and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol, 2016. 39(1): p. 98-106.; Sharpe, A.H. and G.J. Freeman, The B7-CD28 superfamily. Nat Rev Immunol, 2002. 2(2): p. 116-26.; Workman, C.J., et al., Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol, 2004. 172(9): p. 5450-5.; Ménager, J., et al., Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One, 2014. 9(2): p. e89897.; Aspord, C., et al., pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur J Immunol, 2014. 44(10): p. 2880-92.; Wang, M., et al., Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology, 2011. 132(4): p. 482-91.; Dhanda, S.K., et al., IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res, 2019. 47(W1): p. W502-W506.; Czerniecki, B.J., et al., Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res, 2007. 67(4): p. 1842-52.; Jain, R.K., et al., Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem J, 2001. 360(Pt 3): p. 645-9.; Arnaud, M., et al., Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat Biotechnol, 2022. 40(5): p. 656-660.; Liu, Y., et al., Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol, 2022. 13: p. 1016817.; Phetsouphanh, C., J.J. Zaunders, and A.D. Kelleher, Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci, 2015. 16(8): p. 18878-93.; Azuma, M., Co-signal Molecules in T-Cell Activation : Historical Overview and Perspective. Adv Exp Med Biol, 2019. 1189: p. 3-23.; Curtsinger, J.M., et al., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol, 1999. 162(6): p. 3256-62.; Tanimoto, K., et al., Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy, 2014. 16(1): p. 135-46.; Riedhammer, C., D. Halbritter, and R. Weissert, Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol Biol, 2016. 1304: p. 53-61.; Van Camp, K., et al., Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods, 2010. 354(1-2): p. 1-10.; Chong, Z.X., S.K. Yeap, and W.Y. Ho, Transfection types, methods and strategies: a technical review. PeerJ, 2021. 9: p. e11165.; Nastasi, C., L. Mannarino, and M. D'Incalci, DNA Damage Response and Immune Defense. Int J Mol Sci, 2020. 21(20).; Mortara, L., et al., Therapy-induced antitumor vaccination by targeting tumor necrosis factor alpha to tumor vessels in combination with melphalan. Eur J Immunol, 2007. 37(12): p. 3381-92.; Lejeune, F.J., et al., Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun, 2006. 6: p. 6.; Kang, S., H.M. Brown, and S. Hwang, Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw, 2018. 18(5): p. e33.; Jouanguy, E., et al., A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet, 1999. 21(4): p. 370-8.; Ikeda, H., L.J. Old, and R.D. Schreiber, The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 2002. 13(2): p. 95-109.; Ikeda, H, R.R., A.M. Ghoneim, and N. El-Mashad, TNF-α gene polymorphisms and expression. Springerplus, 2016. 5(1): p. 1508.; Trapani, J.A. and V.R. Sutton, Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol, 2003. 15(5): p. 533-43.; de Jong, R., et al., Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol, 1991. 146(8): p. 2488-94.; Walker, L.S., et al., Co-stimulation and selection for T-cell help for germinal centres: the role of CD28 and OX40. Immunol Today, 2000. 21(7): p. 333-7.; Acuto, O. and F. Michel, CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol, 2003. 3(12): p. 939-51.; Kaminski, D.A., et al., CD28 and inducible costimulator (ICOS) signalling can sustain CD154 expression on activated T cells. Immunology, 2009. 127(3): p. 373-85.; Wolfl, M., et al., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 2007. 110(1): p. 201-10.; Ahn, E., et al., Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A, 2018. 115(18): p. 4749-4754.; Waterhouse, P., et al., Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995. 270(5238): p. 985-8.; Steiner, K., et al., Enhanced expression of CTLA-4 (CD152) on CD4+ T cells in HIV infection. Clin Exp Immunol, 1999. 115(3): p. 451-7.; Goldberg, M.V. and C.G. Drake, LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol, 2011. 344: p. 269-78.; Fuertes Marraco, S.A., et al., Inhibitory Receptors Beyond T Cell Exhaustion. Front Immunol, 2015. 6: p. 310.; Wang, W., et al., PD-L1/PD-1 signal deficiency promotes allogeneic immune responses and accelerates heart allograft rejection. Transplantation, 2008. 86(6): p. 836-44.; Bernal-Estévez, D., et al., Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer, 2016. 16: p. 591.; Kaech, S.M., E.J. Wherry, and R. Ahmed, Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol, 2002. 2(4): p. 251-62.; Hsiue, E.H., et al., Targeting a neoantigen derived from a common. Science, 2021. 371(6533).; Maus, M.V., et al., Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol, 2002. 20(2): p. 143-8.; Zeng, W., et al., Artificial antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand efficiently expand functional T cells specific to tumor-associated antigens. Immunobiology, 2014. 219(8): p. 583-92.; Shao, J., et al., Artificial antigen-presenting cells are superior to dendritic cells at inducing antigen-specific cytotoxic T lymphocytes. Cell Immunol, 2018. 334: p. 78-86.; Butler, M.O., et al., Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res, 2007. 13(6): p. 1857-67.; https://repositorio.unal.edu.co/handle/unal/86062; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  10. 10
    Dissertation/ Thesis

    المساهمون: University/Department: Universitat Politècnica de València. Instituto de Agroquímica y Tecnologia de Alimentos - Institut d'Agroquímica i Tecnologia d'Aliments

    Thesis Advisors: FISZMAN DAL SANTO, SUSANA, VARELA TOMASCO, PAULA ALEJANDRA

    المصدر: Riunet

  11. 11
    Academic Journal
  12. 12
    Academic Journal
  13. 13
    Academic Journal
  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
    Academic Journal

    Alternate Title: The Immanent Commitment In Olvido García Valdés' Poetry (1982-2008) In her Fluttering through the Extra-Textual World: The Image Transmuted into a Linguistic Sign. (English)

    المؤلفون: EUGENIA ALAVA, MARIA

    المصدر: Álabe; ene-jun2024, Issue 29, p181-202, 22p

  17. 17
    Academic Journal

    المصدر: DAYA. Diseño, Arte y Arquitectura.; Nr. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; DAYA. Diseño, Arte y Arquitectura.; No. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; DISEÑO ARTE Y ARQUITECTURA; Núm. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; DAYA. Diseño, Arte y Arquitectura.; N. 6 (2019): DAYA 6, diseño, arte y arquitectura; 101 - 124 ; 2550-6609 ; 2588-0667 ; 10.33324/daya.vi6

    وصف الملف: application/pdf

  18. 18
    Academic Journal

    المؤلفون: Alava, María Eugenia

    المصدر: Castilla: Estudios de Literatura, ISSN 1989-7383, Nº.9 14, 2023, pags. 901-903

    وصف الملف: application/pdf

    Relation: https://dialnet.unirioja.es/servlet/oaiart?codigo=9043692; (Revista) ISSN 1989-7383

  19. 19
    Academic Journal
  20. 20
    Academic Journal